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ABSTRACT 
 

 In this work, we address the problem of local model selection with right censored data. 

First, we present the Kaplan-Meier empirical measure which we use to estimate the local 

power divergence between the unknown density of interest and a candidate model. Then, 

we present the asymptotic properties of the estimate that we propose. On the basis of these 

properties, we introduce a local divergence information criterion for model selection in the 

case of right censoring. Finally, we apply our criterion on a real dataset of the acute 

myelocytic leukemia patients who received bone marrow transplantation. Among many 

mixture models with normal components, we find that a mixture of three normal 

components is the best model to describe the distribution of this dataset in different parts 

of its support. 
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1. INTRODUCTION 
 

 Since the pioneer work of Akaike (1973), the model selection problems continue to 

draw the interest of the statisticians. Many authors still deal with this problems such as 

Shang et al. (2024) who proposed a generalized expectation model selection algorithm for 

latent variable selection in multidimensional item response theory models, Mamun and 

Paul (2023) who studied the properties of the forward selection, backward elimination, and 

stepwise selection in generalized linear models, dealing with the normal linear regression 

as a special case, Nabika et al. (2024) who proposed an active learning with model selection 

method using multiple parametric models in order to improve the efficiency of spectral 

experiments and Wen et al. (2024) who elaborated an approach for building model 

confidence sets and gave a theoretical lower bound on the degree of confidence in the 

model confidence sets they built. Furthermore, the theory of 𝜙 divergences between 
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measures, introduced by Csiszar (1963), has been widely applied in statistics. Broniatowski 

and Keziou (2009) used this theory to study some parametric models. Bouzebda and 

Keziou (2010) and Boukeloua (2021) used it to study semiparametric copula models for 

complete and censored data, respectively. Salicrú et al. (1994) proposed 𝜙 divergence tests 

in parametric models. Moreover, Basu et al. (1998) introduced a power divergence measure 

between an unknown density of interest and a parametric model, used in the model 

selection problem. 
 

 The approaches we have cited until now deal with the distribution of interest globally, 

i.e., on its whole support. However, it may happen that the results of the analysis change if 

we consider only a specific zone of this support. In such situations, Avlogiaris et al. (2016a) 

introduced local 𝜙 divergences that allow to quantify the dispersion between two 

distributions only on a part of their support. Using these local 𝜙 divergences, Avlogiaris  

et al. (2016b) proposed local tests in parametric models. These local tests have been 

extended to the case of right censored data by Boukeloua (2024). Moreover, Avlogiaris  

et al. (2019) introduced a local divergence information criterion for model selection based 

on the work of Basu et al. (1998). For our part, we extend the work of Avlogiaris et al. 

(2019) to the context of right censoring. In this context, instead of observing the variable 

of interest, we observe the minimum between this variable and another censoring variable, 

as well as an indicator of censorship, indicating which variable is observed. We start by 

presenting the Kaplan-Meier empirical measure which substitutes the empirical measure 

in the case of right censored data. Basing on this measure, we propose an estimate to the 

local power divergence between the unknown density of interest and a candidate model 

and we give the asymptotic properties of this estimate. Using these properties, we propose 

by analogy with the work of Avlogiaris et al. (2019), a local divergence information 

criterion for model selection under right censoring. Furthermore, we apply our proposed 

criterion on a real dataset of the acute myelocytic leukemia patients who received bone 

marrow transplantation. 
 

 The rest of the paper is organized as follows. In Section 2, we introduce the local 

divergence information criterion for model selection under right censoring. In Section 3, 

we present the results of our application on the acute myelocytic leukemia dataset. We give 

some conclusions and perspectives in Section 4. Finally, we conclude with three 

appendices in which we give some results we need in our theoretical study as well as the 

acute myelocytic leukemia dataset. 

 

2. LOCAL MODEL SELECTION CRITERION 
 

 Let 𝑋 be a non-negative real random variable (r.r.v.) with unknown cumulative 

distribution function G and with probability density function g. The function g is the 

Radon-Nikodym derivative of the probability distribution of X with respect to a 𝜎 −finite 

measure 𝑚 on   ,B   (B   being the Borel 𝜎 −algebra of  ). Moreover, 

consider a set of candidate models  ,F f   d , where f  is the Radon-

Nikodym derivative of a probability measure P  with respect to 𝑚. We assume that 𝑋 is 

right censored by a non-negative r.r.v. 𝑅, independent of 𝑋. More precisely, we have at 
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disposal a sample    
1

min , , 1
i i

i i i i X R
i n

Z X R
 


    

 (where 1E  is the indicator 

function of the set E ) of independent and identically distributed (i.i.d.) random variables 

having the same distribution as  min( , ), 1
i iX R

Z X R


    
. In what follows, for any 

random variable 𝑉, 𝑆𝑉 and 𝑇𝑉 denote, respectively, the survival function and the upper 

endpoint of the support of 𝑉. Moreover, for any right continuous function φ:  , we 

set ( ) lim ( )
0

x x


   
 and ( ) ( ) ( )x x x     whenever the limit exists. 

Furthermore, for any vector or matrix 𝐴, we denote by 𝐴𝑇 the transpose of 𝐴. 
 

 For any function ψ:  , the advanced time transformation of 𝜓 with respect to 𝐺 

is defined by 
 

   
 

   
~ 1

x
X

u dG ux
S x


   , x    

 

(see Efron and Johnstone (1990)). 

 

 Since 𝑋 is not completely observed, we estimate 𝐺 by the Kaplan-Meier estimator, 

defined by 
 

 
 

 /

1 1
ii Z x

i

i

D Z
G xn

U Z

 
   

 
  

where    
1i k n

i k
Z 

 
  are the distinct values in increasing order of  *,h  , 

   11 i i
i Z Z

nD jjZ   
  is the number of real deaths at the instant 𝑍 and 

   
11

j i
i Z Z

nU jZ


   
  is the number of individuals at risk just before the instant iZ  . 

 

 We can show that 
 

   
( )/

1 1
1

j

j

n
j Z x

n j
G x

n j





 
   

  
 , 

 

where    1
,...,

n
Z Z  are the order statistics of the observations 1,..., nZ Z . 

 

 This relation of the Kaplan-Meier estimator is the most used in practice. The empirical 

measure of nG  can be written as 

 
 
 1 1

n

n i i

k n G iKM
n G i Z Z

i i i

Z
P Z

D Z


 


      ,

0
: 0

0


 

 
 

where x , is the Dirac measure at the point x .  
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 Furthermore, let 
* M
  be a known parameter and let  *

,h   be a set of 

Radon-Nikodym derivatives with respect to m , of some parametric probability measures 

on  , absolutely continuous with respect to m . We will use the following local version 

of the Basu, Harris, Hjort and Jones (BHHJ) power divergence (see Basu et al. (1998)) 

between g  and f , introduced by Avlogiaris et al. (2019). 
 

   

         

0

11

,

1 1
1

D g f h x

f x g x f x g x dm x


  

 





 

 
        

 

 

where 𝑎 > 0 is the index parameter. 
 

 This local divergence can be obtained from the local-divergence defined in Avlogiaris 

et al. (2016a) (relation (4)), by choosing the convex function equal to 
 
 

  1 1 1
1a a

a u u u
a a

 
     

 
. 

 

 The limit of  ,aD g f
 when a goes to 0 is the local Kullback-Leibler divergence and 

for 1a   it reduces to the square of the standard local 2L  distance between 𝑔 and f .  
 

 Moreover, let us define 
 

                 1
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1
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  
  
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1
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a





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 Remarking that 
 

             1
1a a

a gfW E h X f X E h X f X
a


  


    

 
 

(where fE  denotes the mathematical expectation under the probability density f ), we 

can approach  aW  , as in Avlogiaris et al. (2019), by 
 

             1
0

1
1a a KM

a naQ h x f x dm x h x f x dP x
a
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  
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 
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 
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1
0

1
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n
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 
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 Assume that g F  and let ˆ
n , be a consistent and asymptotically normal estimator of 

T , the true value of  , constructed from the sample    11, ,..., ,n nZ Z  . The following 
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theorem gives an explicit form of the local expected overall discrepancy between g  and 

f ,   ˆ
g a nE W   which is an estimator of  TaW  . Note that the results of this theorem 

are given under the assumption X RT T . This assumption is very employed in the right 

censoring setting and it allows, in particular, to apply the strong law of large numbers under 

right censoring (see Theorem 2 below and the remark that follows it). 

 

Theorem 1. 

 Under the assumption X RT T , we have 

1.         ˆ ˆ ˆ ˆ1
T

T Tn T ng a n a nnE W nQ n a J  
   
  

            

 

2.   
1

ˆ ˆ

i

rT

T T Tn n igE n J


   
   
    

        

  where      1

0

1ˆ arg min 1a a KM
nn f x f x dP x

a

 
 



  
      

   
  

 

  1 2, ,..., r   . are the non-zero eigenvalues of the matrix    T TJ AVar    
 

  With 𝑟 = rank       T T TAVar J AVar   , 

 

        
   

 1 log loga
T

i j

f x f x
J h x f x dm x

  
 

  
  

   
  

 

        1 1
T T T TAVar J K J       

 

with  
 

         1

0 T T T

T a
TJ u x u x f x dm x

 
      

 

and 

           
 

 
 

1 2

0
T

T T T T

a
T

T

R

f x
K u x u x u x u x dm x

S x




    
   

 

           1 1

0 0T T T T

a T au x f x dm x u x f x dm x
  

    
 

    logu x f x  
 

 

Proof: 

 Using the strong law of large numbers in the case of right censored data  

(see Theorem 2 below) and the central limit theorem in the same case (see Theorem 3 

below), this theorem can be proved in the same way as Proposition 5 of Avlogiaris et al. 

(2019).  
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 From this theorem, we define the local divergence information criterion as follows. 
 

     
1

, 1,ˆ ˆ,..., 1
i

r

a n a ir nL nQ an


          

 

 In a certain zone of the support of 𝑋, determined by the density h , this criterion allows 

to choose the most relevant model to describe the distribution of 𝑋, from a collection of 

possible models. For example, if we have to choose locally between two candidate models 

1f  and 2f , we compare between  , 1
(1)

,ˆ ,...,a n rnL     and  , 1
(2)

,ˆ ,...,a n rnL     and the 

smallest between these two values determines the most relevant model. 

 

3. REAL DATA APPLICATION 
 

 In this section, we will illustrate our proposed criterion of local model selection,  

on a dataset of the survival time of acute myelocytic leukemia patients after the bone 

marrow transplantation. This dataset was used by Copelan et al. (1991) and it is given in 

Appendix C. It is composed of 80 complete observations and 57 right censored 

observations. The survival times being recorded in days, we divide by 365 to treat them in 

years. First, we represent in the left panel of Figure 1, the censored data histogram  

(see Huzurbazar (2005)) of the obtained dataset. We remark that this histogram highlights 

at least two main bulks of observations separated by some gaps. These two bulks are 

presented in red in the figure (bulk B1 and bulk B2). So, we can see that a mixture of at 

least two normal components is a suitable model to describe this dataset. Starting out from 

this observation, we consider the following four candidate models. 

 Model 1: Mixture of two normal components. 

 Model 2: Mixture of three normal components. 

 Model 3: Mixture of four normal components. 

 Model 4: Mixture of five normal components. 
 

 We use the estimator ˆ
n  given in (1) to estimate the parameters of these models, with 

an index parameter of 𝑎 = 0.01. As it is noted above, the limit of the local BHHJ power 

divergence  ,  aD g f
 , when a goes to 0, is the local Kullback-Leibler divergence. So, 

our choice of a makes the local power divergence D
 close to the local Kullback-Leibler 

which is a very employed divergence. The obtained values for the estimators of the 

parameters are given in Table 1 below, where ˆiµ  (resp. ˆ
i ) is the estimator of the mean 

(resp. the standard deviation) of the ith normal component. Then, we present in the right 

panel of Figure 1, the density of each candidate model with the estimated parameters. 
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Table 1 

Estimation of the Parameters of the Candidate Models 

The Model Estimation of the Parameters 

Model 1 µ̂1 = 0.11, 𝜎̂1 = 0.2, µ̂2 = 7.07, 𝜎̂2 = 0.1 

Model 2 µ̂1 = 0.11, 𝜎̂1 = 0.11, µ̂2 = 1.30, 𝜎̂2 = 0.6, µ̂3 =  7.10, 𝜎̂3 =  0.1 

Model 3 
µ̂1 = 0.11, 𝜎̂1 = 0.08, µ̂2 = 1.02, 𝜎̂2 = 0.5, µ̂3 =  6, 𝜎̂3 =  0.6, 
µ̂4 = 6.95, 𝜎̂4 = 0.04 

Model 4 
µ̂1 = 0.11, 𝜎̂1 = 0.07, µ̂2 = 0.66, 𝜎̂2 = 0.37, µ̂3 =  2.8, 𝜎̂3 = 1, 
µ̂4 = 6, 𝜎̂4 = 0.6, µ̂5 =  6.95, 𝜎̂5 =  0.01 

 

  
Figure 1: Censored Data Histogram of the Acute Myelocytic Leukemia Data 

 

 Moreover, we calculate the local divergence information criterion for each candidate 

model. For that, we use a normal kernel with mean µ and variance (0.1)2, with different 

values of µ, allowing to consider different zones of the support of the variable of interest. 

The results we obtain are presented in Table 2 below. We also indicate, in each zone, the 

selected model which corresponds to the smallest value of the information criterion. We 

remark that for all considered zones, the best model is model 2 (mixture of three normal 

components), so it is the model that best describes the data in the different parts of the 

support of the variable of interest. 

 

Table 2 

The Local Divergence Information Criterion for  

Different Choices of the Kernel Function 

µ Model 1 Model 2 Model 3 Model 4 Selected Model 

0.1 9.4 × 1010 1.7497 × 104 3.2 × 1010 3.5 × 108 Model 2 

1 6.7 × 1011 7.8159 × 103 1.2 × 108 1.8 × 108 Model 2 

2 2.6 × 1011 3.2157 × 104 3.4 × 109 6.7 × 1010 Model 2 

3 1.3 × 1011 5.3312 × 104 2.5 × 109 5.4 × 1011 Model 2 

6 3 × 109 −8.3605 × 102 4.5 × 109 3.8 × 1010 Model 2 

7 3 × 1010 3.5723 × 103 8.7 × 106 2 × 1010 Model 2 
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 In order to deeply investigate the distribution of the studied survival time, we present 

in Figure 2 the density function, the survival function and the failure rate of Model 2  

(with the estimated parameters given in Table 1 above). Moreover, the calculation of  

the median, the mean and the standard deviation of this model gives the results presented 

in Table 3. 

 

   

Figure 2: Density, Survival Function and Failure Rate of Model 2  

(From left to right) 

 

Table 3 

Characteristics of Model 2 

Median 1.3 

Mean 2.8367 

Standard Deviation 3.0223 

 

4. CONCLUSION 
 

 In the context of right censored data, we have proposed a local divergence information 

criterion allowing model selection in specific parts of the support of the studied 

distribution. This criterion generalizes the one introduced by Avlogiaris et al. (2019). To 

obtain the theoretical results, we have based on the strong law of large numbers and the 

central limit theorem under right censoring. Moreover, we have applied our proposed 

criterion on a real dataset of the acute myelocytic leukemia patients. In particular, we have 

locally selected the best model that describes this dataset among some mixture models with 

normal components. The results we have obtained show that in many parts of the support 

of the studied distribution, a mixture model with three normal components is the best model 

that fits the dataset. Our approach can also be applied in many other fields involving the 

right censorship. For example, in the reliability for the study of the operating time of 

components, in insurance for the study of the survival time of insureds, in economy for the 

study of the effectiveness of financial policies and in environmental studies where certain 

variables may not be completely observed due to the detection ability of the measurement 

tools. In the future, it would be interesting to consider other types of censoring such as 

doubly or interval censored data. For that, we first have to look at the generalization of the 

strong law of large numbers and the central limit theorem for these types of data. Then, it 

would be easy to show similar results to Theorem 1 above and to construct the local model 

selection criterion in these cases. It would also be interesting to look at other local statistical 
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inference problems, with censored data, such as local homogeneity tests and local 

independence tests. 
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APPENDIX-A 

Strong Law of Large Numbers under Right Censoring 

 

Theorem 2 (Stute and Wang (1993), Theorem 1.1) 

 Let be a Borel-measurable function on  such that    x dG x   

 

We have  

       lim n
n

x dG x x dG x


     

 

with probability 1 and in the mean. 
 

 Note that the limit is equal to    x dG x  since G is continuous and X RT T  (see 

Remark 3 of Stute and Wang (1993)). 

 

 

 
APPENDIX-B 

Central Limit Theorem under Right Censoring 

 

Theorem 3 (Zhou (2015), Lemma 21). 

 Let  1 2 3, ,...,     : 
d  be a function satisfying     0i x dG x  , for all 

 1,...,i d . We have 

     0,
D

nx dG x N   , as n  

where 
D

  denotes the convergence in distribution and  
1 ,

ij
i j d 

    with 

       
 

 
 , , 1,...,ij i i j j

R

dG x
x x x x i j d

S x
              
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APPENDIX-C 
 

The Acute Myelocytic Leukemia Dataset 

Observed 

time 

Censoring 

indicator 

Observed 

time 

Censoring 

indicator 

Observed 

time 

Censoring 

indicator 

Observed 

time 

Censoring 

indicator 

2081 0 1 1 162 1 2133 0 

1602 0 107 1 262 1 1238 0 

1496 0 269 1 1384 1 1631 0 

1462 0 350 0 414 1 2024 0 

1433 0 2569 0 2204 1 1345 0 

1377 0 2506 0 1063 1 1136 0 

1330 0 2409 0 481 1 845 1 

996 0 2218 0 105 1 491 1 

226 0 1857 0 641 1 162 1 

1199 0 1829 0 390 1 1298 1 

1111 0 1562 0 288 1 121 1 

530 0 1470 0 522 1 2 1 

1182 0 1363 0 79 1 62 1 

1167 0 1030 0 1156 1 265 1 

418 1 860 0 583 1 547 1 

417 1 1258 0 48 1 341 1 

276 1 2246 0 431 1 318 1 

156 1 1870 0 1074 1 195 1 

781 1 1799 0 393 1 469 1 

172 1 1709 0 10 1 93 1 

487 1 1674 0 53 1 515 1 

716 1 1568 0 80 1 183 1 

194 1 1527 0 35 0 105 1 

371 1 1324 0 1499 1 128 1 

526 1 957 0 704 1 164 1 

122 1 932 0 653 1 129 1 

1279 1 847 0 222 0 122 1 

110 1 848 0 1356 0 80 1 

243 1 1850 0 2640 0 677 1 

86 1 1843 0 2430 0 73 1 

466 1 1535 0 2252 0 168 1 

262 1 1447 0 2140 0 74 1 
 

Observed Time Censoring Indicator 

16 1 

248 1 

732 1 

105 1 

392 1 

63 1 

97 1 

153 1 

363 1 
 


