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ABSTRACT 
 

 Measurement error frequently distorts outcomes in real-world applications, affecting 

process results. This paper explores how measurement error affects the detection 

capabilities of a new adaptive control chart with variable sample size in identifying out-of-

control conditions. The analysis is based on a model incorporating linear covariates, 

focusing specifically on the variable sample size with the EWMA chart's ability to detect 

shifts in the mean. Our findings demonstrate that measurement error considerably 

influences the chart's performance concerning mean detection. Additionally, we show that 

the proposed variable sample size strategy outperforms traditional methods under these 

conditions. 
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1. INTRODUCTION 
 

 Control charts are widely recognized tools in modern industries, with Shewhart (1924) 

control charts being among the most prominent. Despite their popularity, they are unable 

to detect small shifts in a process quickly enough. The control limits (CL) for monitoring 

the process mean in this chart are set at 𝜇 ± 3𝜎. While effective, this method does not 

perform well with small shifts. To enhance the capability of control charts, adaptive control 

charts have been introduced. These charts are considered adaptive when at least one design 

parameter changes based on process data Costa and De Magalhaes (2007). A significant 

portion of research on adaptive control charts has focused on improving their sensitivity to 

small shifts in process parameters through methods like variable sampling intervals (VSI) 

and variable sample size (VSS). There is often a problem with control charts regarding the 

variability of measurement errors (ME). This problem arises when the variable of interest 

𝑋, cannot be measured accurately. Using imprecise measurement tools affects the control 

charts ability to detect situations where the process is out-of-control (OC). Additionally, 

the variable of interest may be associated with the ME system used through a covariate. 

Mittag and Stemann (1998) studied how ME impact the X  and 𝑆 control charts. They 

looked at a model where Y represents the measured value due to random errors in the actual 

value 𝑋. Linna and Woodall (2001) extended previous studies by examining models that 

incorporate additional factors, known as covariates, which influence measurements. They 

investigated how these covariate-based models affect the performance of various control 
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charts. Later, Linna, Woodall and Busby (2001) specifically analyzed the effect of 

including covariates in a multivariate Shewhart chart for monitoring the mean. Earlier in 

this field of research, Prabhu, Runger and Keats (1993) and Costa (1994) pioneered the 

application of the Variable Sample Size (VSS) technique to control charts. 
 

 Later, De Magalhaes et al. (2009) conducted a statistical analysis of a two-state 

hierarchy with adaptive parameters for X  charts. Their study evaluated and compared 

seven different adaptive control chart methods, with a particular focus on VSS. Several 

optimization techniques exist for determining the optimal sample sizes in VSS control 

charts. For instance, Wu and Luo (2002) formulated an algorithm to identify sample sizes 

for NP-control charts. The concept of Exponentially Weighted Moving Average (EWMA) 

control charts was first proposed by Roberts (1959) and has since become a staple in 

statistical process control (SPC) for detecting small shifts in process parameters. Amjad  

et al. (2020) discussed the ME significantly impacts monitoring mean and variance shifts 

in industrial production. Quality control techniques, particularly Max-EMWA control 

charts, incorporate covariate models and multiple measurements to mitigate these effects, 

as evidenced by Monte Carlo simulations and real-life data examples. Afshan and 

Muhammad Noor-ul-Amin et al. (2021) studied ME impact joint monitoring schemes for 

mean and coefficient of variation (CV) in control charts, highlighting reduced detection 

capability. Multiple measurements are suggested to mitigate these effects, based on 

simulations and real data findings. Wang et al. (2023) analyzed the effects of measurement 

error on the Bayesian EWMA control chart by integrating various ranked set sampling 

designs and loss functions. Their study used performance metrics, such as Average Run 

Length (ARL) and Standard Deviation of Run Length (SDRL), evaluated through Monte 

Carlo simulations and real data. The results showed that median Ranked Set Sampling 

(RSS) outperformed other sampling methods under measurement error, enhancing the 

control chart’s performance in accurately detecting shifts. This research demonstrates the 

advantages of RSS in quality control applications affected by measurement errors. 
 

 In industrial and quality control processes, precise detection of shifts in process 

parameters is crucial for maintaining product quality and minimizing production costs. 

Traditional control charts, while widely used, often struggle to detect small shifts 

effectively, especially in the presence of ME. The inclusion of additional factors, such as 

covariates and multiple measurements, has shown promise in mitigating the impact of ME 

on control chart performance. However, there remains a need for an adaptive approach that 

can dynamically adjust to varying process conditions, particularly when errors and 

variability are high. This study aims to develop an enhanced VSS EWMA control chart 

that incorporates covariates and multiple measurements. By exploring the effects of 

measurement errors in a controlled environment and proposing adaptive strategies, this 

research seeks to advance the efficiency and robustness of control charts, offering a 

practical solution for real-time quality monitoring in complex industrial processes. The 

article is structured as follows: Section 2 introduces an Adaptive Control Chart utilizing 

VSS. Section 3 discusses VSS in the context of a model incorporating covariates. Section 4 

presents methods for evaluating VSS performance and examines the impact of the ME 

model on VSS. Lastly, Section 5 compares the performance of these charts, followed by 

the conclusion in the final section. 
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2. EWMA BASED ON VARIABLE SAMPLE SIZE 
 

 The EWMA control charts were initially introduced by Roberts in 1959. Suppose a 

quality characteristic is normally distributed with a mean ( )  and a standard deviation 

( ) . The EWMA statistic for the ith sample is defined as follows: 
 

  (1 ) 1i i iZ X Z     ; 0 1                (1) 
 

 To create an EWMA control chart with VSS EWMA, we utilize specific statistics and 

CL, along with two warning Limits. These limits are the Upper Warning Limit (UWL) and 

the Lower Warning Limit (LWL), which are defined as follows:  
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where λ is smoothing parameter or exponential weight constant. For 𝑖 = 0, 𝑍𝑖=𝑍0 is 

starting value and is often taken equal to the process target value. 
 

 The region between the LWL and the UWL is designated as the safety zone. The regions 

situated between the Lower control limit (LCL) and LWL, as well as between UWL and the 

Upper control limit (UCL), are referred to as warning zones. For the ith sample, a smaller 

sample size ( 1n ) is used if the previous sample statistic ( 1iZ  ) lies within the safety zone, 

whereas a larger sample size (𝑛2) is employed if ( 1)iZ   falls within either of the warning 

zones. 
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 The EWMA statistic, when considering variable sample sizes, remains consistent with 

the EWMA statistic as described in Equation (1), with the initial value 0Z   . The CL for 

VSS EWMA are adjusted as follows: 
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 For 𝑖 = 0, let 0 0Z    and the initial CL, 0UCL  and 0LCL , can be determined by using 

the following method: 
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 In the traditional VSS control charts, 0 0Z    serves as the initial point, with the 

centerline   located in the safe zone. Consequently, a 1n  is utilized for the initial set of 

samples. This is why 1n  is employed as the starting sample size in (6). Furthermore, several 

articles in the VSS control chart literature, including Flaig (1991), also advocate for 

selecting a 1n . Subsequent in  for (𝑖 = 2,3, …) are then determined using (4). 

 

3. PROPOSED ADAPTİVE EWMA CONTROL CHART  

UNDER MEASUREMENT ERROR 
 

 In this section, we present a new VSS strategy aimed at enhancing the effectiveness of 

the EWMA control chart by using ME. While this approach can be applied to various control 

charts, this article specifically focuses on its application in the context of ME.  
 

 Consider a process that follows to normal distributions. We can state that the  

process is in-control (IC) if 𝑋𝑖 ∼ 𝑁(0, 𝜎2). Conversely, the process is deemed OC  

if 𝑋𝑖 ∼ 𝑁(𝛿, 𝜎2). This discussion primarily centers on changes in the  , so we  

assume 0  . According to the description, 1n  are assigned when the current 𝑍 value  

is closer to the centerline, whereas 2n  are assigned when the 𝑍 value is closer to the UCL 

or LCL.  
 

 Let 1n  denote the minimum sample size and 2n  denote the maximum sample size. The 

1n  occurs when the current Z value equals centerline, indicating the smallest necessary 

sample. Conversely, the 2n  occurs when the current 𝑍 value reaches UCL or LCL, 

signifying a 2n  is needed. Thus, the function defining the relationship between in  and 𝑍 

value can be understood as varying between 1n  and 2n , depending on how far the current 

𝑍 value deviates from the centerline and approaches the CL. 
 

 The in  function can be defined as follows:  
 

   1| |i in f Z                   (7) 
 

 The UCL and LCL of this chart can be presented as follows: 
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 Now, the values of CL can be determined as follows; 
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 For every sample, it is necessary to compute several key metrics: in , iUCL , iLCL ,  

and iZ . 

 

3.1 Covariate Model 

 Consider a scenario where the true value of characteristic 𝑋, when the process is in 

control (IC), is normally distributed with a specific variance 
2( ) . However, we cannot 

directly observe this true value. Instead, we observe a related value 𝑌, which is linked to 𝑋 

by the formula Y A BX   . Here, A and B are constants, and   represents a random 

error term that is independent of 𝑋 and is normally distributed with a 0   and 
2
m . 

Assuming that all the model parameters are provided. 
 

 The relationship between 𝑋 and 𝑌 clearly indicates that 𝑌 is normally distributed  

with a mean of A B   and a variance of 
2 2 2

mB   . For each sampling occasion, we 

collect 𝑛 observations of 𝑌, compute their average iY , and then use this to calculate the 

CL are; 
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 We can utilize their limiting values, as demonstrated by Lucas and Saccucci (1990).  
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 In this context, the asymptotic standard deviation of tZ . 

 

3.2 Multiple Measurements 

 According to Linna and Woodall (2001), one effective way to minimize the impact of 

ME is to increase the number of measurements taken per sampled unit. By conducting 

multiple measurements and calculating their average, the precision of the measurement 
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improves significantly. This approach also reduces the variability caused by ME, 

particularly as the number of measurements increases, especially if an infinite number were 

taken in theory, the variability due to ME would approach zero. However, it's important to 

balance this with the additional costs and time required for conducting multiple 

observations. It's crucial to note that when ME are absent, taking multiple measurements 

does not enhance the effectiveness of control charting methods; instead, it merely adds to 

the cost associated with extra measurements. 
 

 When enough measurements are taken, it becomes feasible to consider that our process 

operates effectively without significant ME. However, it's crucial to weigh the costs in 

terms of both time and resources associated with conducting additional measurements. 

These factors cannot be underestimated and must be carefully evaluated in the context of 

our specific application. It's important to note that the 
2
m  due to ME should be sufficiently 

large, and the impact of additional observations on these factors should be minimal, to 

justify the practical value of conducting extra measurements. 
 

 To calculate the VSS EWMA statistic, initially, we collect 𝑘 measurements for each of 

𝑛 instances of Y during each sampling period. We then compute the average of these 

observed values, denoted as Y . Now, we proceed to compute the VSS EWMA statistic using 

its defined formula. 
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 Let iY  represent the average of the observations gathered at time 𝑖, where  

(𝑖 = 1,2,3, … ).The parameter   is a smoothing factor that falls within the range of 0 to 1, 

and iZ  denotes the initial value. 
 

 According to Linna and Woodall (2001), demonstrating that the 
2
m  of the overall  

mean is; 
 

  

22 2
mB

n nk


  

 

 Therefore, the CL are 
 

𝑈𝐶𝐿0 = 𝜇 + 𝐿3√
𝜆

(2 − 𝜆)
(
𝐵2𝜎2

𝑛1
+
𝜎𝑚
2

𝑛1𝑘
) (13) 

 

𝐿𝐶𝐿0 = 𝜇 − 𝐿3√
𝜆

(2 − 𝜆)
(
𝐵2𝜎2

𝑛1
+
𝜎𝑚
2

𝑛1𝑘
) (14) 

 

  



Nevine M. Gunaime 81 

4. PERFORMANCE EVALUATION 
 

 In a control chart, we aim to achieve two primary goals. Firstly, the process is stabilizes, 
we aim for our chart to indicate an OC condition (false alarm) at a specified frequency. 
Statistically, we desire the probability of the mean exceeding the CL to correspond to our 
intended rate when the process is IC. Secondly, when the process is unstable, we want the 
chart to detect this change as quickly as possible. In statistical terms, we seek to minimize 
the probability of the mean remaining within CL when the process is OC. Several methods 
have been suggested for assessing the effectiveness of a chart about the mentioned 
objectives. The most commonly recognized metric is ARL, which relies on the distribution 
of RL. The RL signifies the number of observations required for a control chart to indicate 
a deviation or a single observation from the RL distribution. In the realm of statistical 
quality control, the mean of the RL distribution represents the ARL. This metric represents 
the average number of observations needed for a control chart to indicate a signal. When it 
comes to evaluating performance measures within the ME, the primary method is 
commonly used: Monte Carlo simulation. In this study, we exclusively utilize the Monte 
Carlo simulation uses repeated random sampling to estimate statistical properties. The ARL 
measures the average number of samples taken before a control chart signals a process 
shift. However, it typically requires discretization of the process's continuity into multiple 
steps to enhance accuracy. 

 

Table 1 

ARL (SDRL) for the VSS with a Covariate Model across Different Values of 
2

2

m

  
Shift No Error 0.1 0.2 0.3 0.5 1 

0 
500.80 

(500.01) 
503.37 

(495.518) 
506.32 

(505.70) 
499.62 

(489.34) 
500.02 

(493.37) 
500.84 

(489.60) 

0.1 
135.86 

(129.63) 
147.29 

(143.35) 
155.80 

(150.56) 
164.87 

(161.36) 
182.81 

(176.83) 
223.65 

(217.16) 

0.2 
35.27 

(29.88) 
38.93 

(33.85) 
42.59 

(37.13) 
46.76 

(42.12) 
55.11 

(49.39) 
73.06 

(67.48) 

0.4 
8.90 

(4.93) 
9.66 

(5.49) 
10.27 

(6.048) 
11.21 
(6.95) 

12.87 
(8.30) 

17.05 
(12.40) 

0.6 
4.918 

(1.900) 
5.24 

(2.15) 
5.52 

(2.33) 
5.824 

(2.571) 
6.49 

(2.92) 
8.12 

(4.34) 

0.75 
3.76 

(1.231) 
3.97 

(1.309) 
4.15 

(1.430) 
4.384 

(1.582) 
4.78 

(1.850) 
5.78 

(2.55) 

1 
2.824 
(0.73) 

2.958 
(0.812) 

3.05 
(0.846) 

3.187 
(0.90) 

3.406 
(1.037) 

4.012 
(1.37) 

1.25 
2.32 

(0.517) 
2.419 

(0.565) 
2.49 

(0.601) 
2.576 

(0.643) 
2.761 

(0.715) 
3.176 

(90.911) 

1.5 
2.06 

(0.324) 
2.122 

(0.3748) 
2.182 

(0.424) 
2.241 

(0.464) 
2.357 

(0.532) 
2.658 

(0.676) 

2 
1.822 

(0.387) 
1.881 

(0.334) 
1.911 

(0.307) 
1.945 

(0.287) 
1.992 

(0.279) 
2.136 

(0.386) 

3 
1.093 

(0.291) 
1.161 

(0.368) 
1.228 

(0.419) 
1.314 

(0.464) 
1.453 

(0.497) 
1.741 

(0.438) 
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 In Table 1 shows the ARL for the VSS with a covariate model across different values of 
2

2

m


 where 𝐵 = 1. The IC ARL value remains consistent across all combinations to  

ensure an equitable basis for comparison. The impact on the OC ARL rises as the ratio  
2

2

m


increases. This outcome corresponds with the conclusions drawn in the study by Linna 

and Woodall (2001). In Table 2, we present the ARL for the VSS with a covariate model 

across different values of B. The parameters used are consistent with those in Table 1, 

under the condition where 
2

2
1m 


. It's evident that as B values increase, their impact on 

ARL decreases. This finding is consistent with the observations made by Linna & Woodall 

(2001). In addition, both Tables 1 and 2 demonstrate that as the size of the shift increases, 

the impact of ME on ARL diminishes. Notably, variable a shows no significant effect on 

ARL performance in this particular study. 

 

Table 2 

ARL (SDRL) for the VSS with a Covariate Model across Different Values of 𝑩 

Shift No Error 1 2 3 5 

0 
500.06 

(496.90) 

500.16 

(500.04) 

500.33 

(496.50) 

500.35 

(524.20) 

500.07 

(495.02) 

0.1 
135.97 

(130.87) 

225.89 

(221.39) 

335.97 

(335.73) 

410.24 

(405.01) 

461.08 

(452.56) 

0.2 
35.30 

(29.842) 

73.13 

(67.91) 

165.72 

(159.99) 

249.19 

(241.13) 

367.90 

(362.40) 

0.4 
8.92 

(4.94) 

16.86 

(12.08) 

44.80 

(39.59) 

89.24 

(84.84) 

195.70 

(191.07) 

0.6 
4.83 

(1.866) 

8.073 

(4.217) 

19.137 

(13.979) 

40.37 

(34.99) 

102.199 

(95.57) 

0.75 
3.781 

(1.24) 

5.80 

(2.550) 

12.27 

(7.911) 

24.503 

(19.66) 

67.123 

(60.93) 

1 
2.811 

(0.743) 

4.002 

(1.33) 

7.434 

(3.751) 

13.543 

(8.944) 

36.302 

(30.69) 

1.25 
2.317 

(0.512) 

3.153 

(0.896) 

5.372 

(2.21) 

9.034 

(5.024) 

22.58 

(17.56) 

1.5 
2.072 

(0.328) 

2.667 

(0.674) 

4.226 

(1.487) 

6.842 

(3.274) 

15.801 

(11.088) 

2 
1.821 

(0.385) 

2.136 

(0.384) 

3.139 

(0.892) 

4.562 

(1.670) 

9.185 

(5.138) 

3 
1.092 

(0.290) 

1.749 

(0.433) 

2.215 

(0.441) 

2.952 

(0.805) 

5.051 

(2.016) 
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 In Table 3, you can find the ARL results for the covariate model, which includes 

multiple measurements across various ratios
2

2

m


 of a specified variable. This data pertains 

specifically to cases where the number of measurements k is less than 5 and the B exceeds 

1. It's evident that when five measurements per unit are feasible, for 
2

2

m


 ratios below 0.3, 

we can infer that the process operates practically free from ME. However, for ratios 

exceeding 0.3, the impact is significantly diminished compared to the case with 𝑘 equal  

to 1, as shown in Table 1, even when 
2

2
1m 


. 

 

Table 3 

ARL (SDRL) for the VSS with Multiple Measurements  

using 𝒌 = 𝟓, 𝑩 = 𝟏 Across Different Values of 
2

2

m


 

Shift No Error 0.1 0.2 0.3 0.5 1 

0 
500.66 

(500.23) 

500.12 

(500.56) 

500.59 

(500.52) 

500.69 

(491.18) 

500.17 

(490.41) 

500.27 

(485.28) 

0.1 
136.915 

(131.57) 

138.18 

(133.15) 

141.98 

(138.75) 

146.66 

(138.60) 

147.93 

(143.64) 

159.76 

(155.19) 

0.2 
34.92 

(29.69) 

35.83 

(30.38) 

37.08 

(31.22) 

37.61 

(32.12) 

39.18 

(33.71) 

42.79 

(36.95) 

0.4 
8.940 

(4.89) 

9.095 

(5.032) 

9.278 

(5.239) 

9.338 

(5.297) 

9.705 

(5.605) 

10.415 

(6.203) 

0.6 
4.873 

(1.901) 

5.006 

(1.949) 

4.997 

(1.938) 

5.096 

(2.045) 

5.185 

(2.087) 

5.539 

(2.323) 

0.75 
3.767 

(1.220) 

3.807 

(1.249) 

3.837 

(1.257) 

3.872 

(1.287) 

3.954 

(1.335) 

4.164 

(1.455) 

1 
2.825 

(0.747) 

2.835 

(0.755) 

2.865 

(0.773) 

2.888 

(0.7687) 

2.942 

(0.796) 

3.066 

(0.845) 

1.25 
2.323 

(0.5128) 

2.350 

(0.533) 

2.361 

(0.535) 

2.377 

(0.545) 

2.416 

(0.567) 

2.502 

(0.595) 

1.5 
2.071 

(0.333) 

2.082 

(0.341) 

2.090 

(0.339) 

2.1048 

(0.365) 

2.127 

(0.3793) 

2.176 

(0.411) 

2 
1.823 

(0.385) 

1.8427 

(0.369) 

1.8485 

(0.363) 

1.8523 

(0.3617) 

1.8714 

(0.349) 

1.913 

(0.3082) 

3 
1.0947 

(0.2928) 

1.1089 

(0.3115) 

1.1187 

(0.3234) 

1.129 

(0.335) 

1.1598 

(0.3664) 

1.2307 

(0.4213) 

 

 In Table 4, the outcomes are displayed for various measurements corresponding to 

different values of B. It is evident that as B increases, the impact on the ARL decreases. 

This finding aligns with the conclusions drawn from the data presented in Table 2. 
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Table 4 

ARL (SDRL) for the VSS with a Multiple Measurements 𝒌 = 𝟓, 
2

2
1m 


  

across Different Values of 𝑩 

Shift No Error 1 2 3 5 

0 
500.84 

(489.17) 

500.07 

(494.85) 

500.55 

(487.756) 

500.52 

(496.68) 

500.23 

(496.79) 

0.1 
27.79 

(22.66) 

156.67 

(152.86) 

320.12 

(312.06) 

395.07 

(383.56) 

456.91 

(447.22) 

0.2 
7.409 

(3.713) 

42.49 

(36.65) 

143.95 

(139.87) 

239.90 

(238.11) 

364.98 

(359.89) 

0.4 
3.133 

(0.896) 

10.38 

(6.127) 

37.34 

(31.679) 

84.534 

(78.76) 

191.03 

(185.27) 

0.6 
2.203 

(0.439) 

5.537 

(2.339) 

16.173 

(11.52) 

35.534 

(30.265) 

101.15 

(95.410) 

0.75 
1.979 

(0.279) 

4.169 

(1.447) 

10.28 

(5.993) 

22.411 

(17.23) 

66.219 

(59.73) 

1 
1.650 

(0.477) 

3.062 

(0.8497) 

6.547 

(3.054) 

12.484 

(7.889) 

35.57 

(30.63) 

1.25 
1.195 

(0.396) 

2.512 

(0.609) 

4.831 

(1.875) 

8.392 

(4.477) 

21.95 

(16.65) 

1.5 
1.0187 

(0.1354) 

2.183 

(0.4228) 

3.867 

(1.290) 

6.417 

(2.983) 

15.277 

(10.634) 

2 
1 

(0) 

1.909 

(0.311) 

2.882 

(0.775) 

4.339 

(1.553) 

8.976 

(4.951) 

3 
1 

(0) 

1.226 

(0.418) 

2.0977 

(0.352) 

2.851 

(0.753) 

4.915 

(1.913) 
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Table 5 

ARL (SDRL) for the VSS with Multiple Measurements across Different Values of 𝒌 

Shift No Error 5 10 20 50 

0 
500.19 

(495.39) 

500.87 

(510.03) 

500.17 

(494.38) 

500.37 

(496.20) 

500.29 

(499.63) 

0.1 
135.35 

(128.76) 

148.35 

(143.39) 

142.16 

(136.524) 

137.55 

(130.87) 

138.03 

(134.23) 

0.2 
35.904 

(30.59) 

39.13 

(33.48) 

36.922 

(31.823) 

36.44 

(30.906) 

35.312 

(29.803) 

0.4 
8.911 

(4.858) 

9.607 

(5.454) 

9.311 

(5.242) 

9.056 

(5.0254) 

9.051 

(5.093) 

0.6 
4.864 

(1.894) 

5.200 

(2.093) 

5.0306 

(2.0393) 

4.956 

(1.917) 

4.914 

(1.937) 

0.75 
3.755 

(1.2028) 

3.976 

(1.337) 

3.842 

(1.259) 

3.789 

(1.232) 

3.785 

(1.2277) 

1 
2.8058 

(0.734) 

2.931 

(0.798) 

2.878 

(0.7808) 

2.8432 

(0.7548) 

2.839 

(0.7605) 

1.25 
2.322 

(0.514) 

2.4078 

(0.5629) 

2.356 

(0.533) 

2.346 

(0.5293) 

2.3358 

(0.5163) 

1.5 
2.0688 

(0.3332) 

2.122 

(0.3762) 

2.0916 

(0.344) 

2.0809 

(0.3387) 

2.0739 

(0.3305) 

2 
1.8178 

(0.3901) 

1.875 

(0.3413) 

1.8538 

(0.3600) 

1.8367 

(0.3742) 

1.8247 

(0.384) 

3 
1.0917 

(0.2886) 

1.156 

(0.362) 

1.1284 

(0.3345) 

1.1145 

(0.3184) 

1.1033 

(0.3043) 

 

 Furthermore, Table 5 presents findings for the VSS with a multiple measurements 

across various 𝑘 values. Notably, 𝑘 increases, the impact of ME diminishes. However,  

it's crucial to consider the trade-off between the increased cost and time associated  

with additional measurements and the tolerable level of ME. It's important to note that  

the results presented reflect the worst-case scenario, as we selected 𝐵 = 1 and 
2

2
1m 


, 

representing the most affected combination. Thus, it's reasonable to expect even better 

outcomes in other scenarios. 
 

 In all the computations we used the Markov Chain method. Moreover, the values of  

the constants are 𝐿 = 3.234. Note also that in all instances the CL utilized are those 

associated with the limiting values. Some of the results from the Tables are presented in 

Figures 1-3. 
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Figure 1 : ARLs at Different Values of Error Ratio with 0.1   

 

 

 
Figure 2 : ARLs at Different Values of 𝑩 with 0.1   
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Figure 3 : ARL at Different Values of 𝑲 with 0.1   

 

5. APPLICATION 
 

 In this section, we utilize a real dataset to illustrate the application of the proposed 

control chart with ME. The dataset pertains to a hard-bake process used in conjunction  

with photolithography in semiconductor manufacturing. Our objective is to establish 

statistical control over the flow width of the resist using both existing and proposed control 

charts. The dataset, sourced from Montgomery (2007), includes 45 samples, each 

consisting of measurements from 5 wafers, with measurements taken at 1-hour intervals. 

Flow width measurements are in microns. The first 25 samples are treated as the Phase I 

dataset, assuming the process is 𝐼𝐶. The subsequent 20 samples (from sample 26 to 45) 

constitute the Phase II dataset, where each observation is incremented by 0.1 microns to 

simulate an 𝑂𝐶 process. We apply competing control charts with an 𝐼𝐶 ARL of 500 and a 

sample size of 5, using parameters 𝜆 = 0.2, 𝐴 = 0, 𝐵 = 1. Figures 4, 5, and 6 illustrate the 

performance of the proposed control chart under different error conditions (0, 0.1, and 

0.25). These figures plot the control statistics against the sample number, showcasing the 

𝐶𝐿 and indicating when the process is considered 𝑂𝐶.  
 

 Figure 4: The proposed control chart with error = 0. The chart remains stable for the 

first 25 samples, indicating an 𝐼𝐶 process. From sample 26 onwards, the chart signals an 

𝑂𝐶 process, reflecting the introduced shift. 
 

 Figure 5: Proposed control chart with error = 0.1. Similar to Figure 4, the chart remains 

stable for the first 25 samples and indicates an OC process starting from sample 26, but 

with a slight delay compared to the error-free scenario.  
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 Figure 6: Proposed control chart with error = 0.25. The chart shows stability for the 

first 25 samples and signals an 𝑂𝐶 process starting from sample 26. The higher error rate 

results in a more pronounced deviation from 𝐶𝐿. 
 

 
Figure 4: Proposed Control Chart with Error Ratio = 0 

 

 
Figure 5: Proposed Control Chart with Error Ratio = 0.1 
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Figure 6: Proposed Control Chart with Error Ratio = 0.25 

 

6. CONCLUSIONS 
 

 In this article, we introduced a new VSS approach for ME using EWMA statistics. We 

assessed the effectiveness of the of the VSS EWMA control chart for monitoring the  

mean, taking into account ME and incorporating a model that includes covariates. Our 

findings indicated that ME can adversely affect the ARL of the control chart. One potential 

solution to mitigate this issue is to take multiple measurements; however, this approach 

incurs additional costs and time. An economic analysis tailored to the specific context  

may help determine the feasibility of this solution. Nonetheless, the additional time  

may not be a significant concern, as modern industrial processes often involve automated 

measurement systems. To enhance the robustness of control charts in the presence of 

measurement error, further studies should explore hybrid models that integrate additional 

adaptive features, such as dynamically adjusting sample intervals alongside sample  

sizes. Additionally, economic considerations should be factored into the selection of 

control chart parameters to balance the trade-off between increased sampling costs and 

improved detection accuracy. 

 

Data Availability 

 The datasets used and/or analyzed during the current study are available from the 

corresponding author upon reasonable request.  
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