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ABSTRACT 
 

 In a different area of life testing, designing experiments needs higher stress level than 

normal stress one. Also, the time to failure of experimental units is resulted by one of a 

fetal risk factors, only. In this paper, we consider the simple step-stress model with 

competing risks under Type-I censoring. The cumulative exposure model is assumed when 

the lifetime of test units follows Rayleigh distribution. Under this setup, we obtain the 

maximum likelihood estimates and the Bayes Estimators of the unknown parameters using 

Markov chain Monte Carlo (MCMC) method under various loss functions. Furthermore, 

to demonstrate the proposed methods, dataset is analyzed. Also, the confidence intervals 

are derived by using the asymptotic distributions of the maximum likelihood estimates. For 

comparison, we obtain the highest posterior density (HPD) credible intervals based on 

different prior distributions. Their performance is assessed through Monte Carlo 

simulations. 
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 Simple step-stress accelerated life testing; Type-I censoring; Competing risks; 

Rayleigh distribution; Cumulative exposure model; Maximum likelihood estimation; 

Bayesian estimation; linear exponential and Squared error loss functions. 

 

 Abbreviations and Notation that used in this paper 
  

ALT accelerated life test 

BEs Bayes estimates 

CDF cumulative distribution function 

CEM cumulative exposure model 

CIs confidence intervals 

HPD highest posterior density 

MCMC markov chain monte carlo method 

MH metropolis–hastings 

MLE maximum likelihood estimate (or estimator) 

MSE mean squared error 

PDF probability density function 

SEL squard error loss. 

𝜏 the total ideal test time. 
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𝜏′ the stress time changed. 

𝑇𝑖𝑗  the lifetime of the jth failure cause. 

𝛿𝑗 the indicator variable denote to cause of failure of the j-th unit. 

𝑠𝑖 i-th stress level for 𝑖 = 1,2 

𝐹𝑖(𝑡) cumulative exposure model for i-th level stress 

𝑓𝑇,𝛿(𝑡, 𝑗) the joint pdf of (𝑇, 𝛿) 

 

1. INTRODUCTION 
 

 In life testing and reliability studies, the experimenter may not always obtain complete 

information on failure times for all experimental units. Thus, censoring is common to be 

performed. A censoring scheme (CS), which can balance between total time spent for the 

experiment, number of units used in the experiment, and the efficiency of statistical 

inference based on the results of the experiment. Among different censoring schemes, the 

conventional Type-I right censoring corresponds to the situation when the experiment gets 

terminated at a pre-fixed time point. 
 

 The life testing experiments, which units failure with more than one causes of failure, 

to measure effect of one cause of failure respected to the other causes which defined by 

competing risks problem. For analyzing a competing risks model, each complete 

observation must be in a bi-variate format composed of the failure time and the 

corresponding cause of failure.The causes of failure can be assumed independent or 

dependent. In most situations, the analysis of competing risks data assumes s-independent 

causes of failure. Prentice et al. [17] summarized the two approaches of modeling the 

competing risks data: the cause-specific hazard functions and the latent failure times for 

each risk factor. Berkson and Elveback [6], Cox and David [7] and Crowder [8] have all 

investigated the competing risks models with each risk factor having some specific 

parametric lifetime distributions. 
 

 With today’s high technology, some life tests result in none or very few failures, by the 

end of the test. In such cases, an approach is to do life test at higher-than-usual stress 

conditions, in order to obtain failures quickly. This can be achieved by using accelerated 

life test (ALT). ALT is achieved by subjecting units and components to test conditions 

such that failure occurs sooner. Thus, prediction of the long-term reliability can be made 

within a short period of time. Results from the ALT are used to extrapolate the unit 

characteristics at any future time and given at normal operating conditions. so, the ALTs 

are widely used in reliability analysis. When the experiment running, firstly at normal 

conditions is called partially step-stress partially.This problem is discussed with different 

authors, for Burr-XII distribution under type-I censoring Abd-Elfattah et al. [1], for  

Burr-XII distribution under type-I and adaptive type-II progressively hybrid censored 

Nassar et al. [15], for Exponentiated Gamma with unified hybrid censored data Alrashidi 

et al. [4] and Yao and Gui [23] evaluated the parameters and the accelerating factor based 

on constant stress for partially accelerating life tests when the potential failure times have 

an exponentiated Rayleigh distribution. The problem of the competing risks model is 

discussed under accelerate life test model in Ganguly and Kundu [9]. Almarashia et al. [3] 

discussed the problem of partially step-stress ALTs (accelerated life tests) form Rayleigh 

competing risks model. Type-II censored scheme Shi et al. [19] considered a constant-

stress accelerated life test (CSALT) with competing risks for failure from exponential 
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distribution under progressive Type II hybrid censoring. The maximum likelihood 

estimator and Bayes estimator of the parameter were derived. Xu and Tang [22] and  

Wu et al. [21] considered different inferential issues regarding the constant-stress 

accelerated competing failure models when the lifetime of different risk factors follows 

Weibull distributions. Based on Nelson’s cumulative exposure (CE) model, Balakrishnan 

and Han [5], Han and Balakrishnan [11] developed the exact inference for a simple  

step-stress model with competing risks for failure from the exponential distribution under 

type-II and type-I censoring scheme, respectively. Liu and Shi [14] considered a simple 

step-stress model with progressively censored competing risks data from Weibull 

distribution.Abd-Elfattah et al. [2] considered the simple step-stress model with competing 

risks for failure from Weibull distribution under progressive Type-II censoring. Also, Han 

and Kundu [12] introduced a step-stress model with competing risks for failure from the 

generalized exponential distribution under type-I censoring. Nelson [16] introduced the 

step-stress ALTs that allows test conditions to change during testing. Among step stress 

experiments, the cumulative exposure model (CEM) is one of the most useful and used 

models. A simple step stress model starts with initial low stress and if it does not fail in a 

predetermined time point, 𝜏, the stress level is increased. Simple step stress models contain 

only one stress change point. The CEM defined by Nelson [16] for simple step-stress 

testing with stresses and is given as 
 

𝐹0(𝑡) = {
𝐹1(𝑡) if 𝑡 ≤ 𝜏

𝐹2(𝑡 − 𝜏 + 𝜏′) if 𝑡 ≥ 𝜏
 (1) 

 

where 𝜏′ (the equivalent start time) is the solution of 𝐹1(𝜏) = 𝐹2(𝜏′) 
 

 The Rayleigh distribution had played an important role in modeling the lifetime of 

random phenomena. It arises in many areas of applications, including reliability, life testing 

and survival analysis. It is frequently used to model wave heights in oceanography, and in 

communication theory to describe hourly median and instantaneous peak power of received 

radio signals. It has been used to model the frequency of different wind speeds over a year 

and a wind turbine sites. The distance from one individual to its nearest neighbor when  

the spatial pattern is generated by Poisson distribution follows a Rayleigh distribution. 

Gong et al. [10] discussed the statistical inference of the parameters, reliability function, 

and hazard function of the generalized Rayleigh distribution under progressive first-failure 

censoring samples. In communication theory, Rayleigh distribution is used to model 

scattered signals that reach a receiver by multiple paths. Depending on the density of 

scatter, the signal will display different fading characteristics. Rayleigh distribution is used 

to model dense scatter  
 

 The probability density function (p.d.f.) of Rayleigh distribution is given by  
 

𝑓(𝑡) =
𝑡

𝜃2
 𝑒
−
𝑡2

2𝜃2 , 0 < 𝑡 < ∞, 𝜃 > 0 (2) 

 

 Cumulative distribution function (c.d.f) is given by  
 

𝐹(𝑡) = 1 − 𝑒
−
𝑡2

2𝜃2 (3) 
 

 where is 𝜃 the scale parameter. The corresponding survival function is  
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𝑆(𝑡) = 𝑒
−
𝑡2

2𝜃2 
 

 The hazard function of 𝑡, denoted as ℎ(𝑡) = 𝑓(𝑡)/𝑆(𝑡) is obtained as  
 

ℎ(𝑡) =
𝑡

𝜃2
 

 

 This article is organized as follows, In Section 2, introduces the model formulation. 

The classical maximum likelihood estimation (MLEs) and The asymptotic confidence 

intervals (CIs) of the unknown parameters discussed In Section 3. In Section 4, the Bayes 

estimates (BEs) of model parameters using (MCMC) method are obtained. In Section 5, 

the performance of these confidence/credible intervals is evaluated in terms of probability 

coverages via Monte Carlo simulations. In Section 6, we present a real data analysis to 

prove the efficiency of the Rayleigh distribution in this article, and some concluding 

remarks are finally made in Section 7.  

 

2. MODEL DESCRIPTION AND TEST ASSUMPTIONS 
 

  Let 𝑛 independent units are put on a life test, and the ideal prefixed test time 𝜏 is 

considered. All 𝑛 units are initially put on lower stress 𝑠1 and run until time 𝜏 Then the 

stress is changed to the high level 𝑠2 The following assumptions are provided for a LBE 

distributed lifetime units  
 

1. The failure of a product occurs only due to one of the 2 independent competing 

failure causes with lifetimes 𝑇1 and 𝑇2. Then the lifetime of the product is  

𝑇 = 𝑚𝑖𝑛(𝑇1, 𝑇2).  
 

2. Test procedure is done at stresses 𝑠1 and 𝑠2 (𝑠1 < 𝑠2) levels.  
 

3. Scale parameter 𝜃𝑖𝑗 is the log-linear function of stresses as  
 

𝑙𝑜𝑔(𝜃𝑖𝑗) = 𝛽𝑗 + 𝛽0𝑗 𝜑(𝑠𝑖), 𝑖, 𝑗 = 1,2 (4) 
 

where 𝛽𝑗 , 𝛽0𝑗 are unknown parameters, 𝜑(𝑠𝑖) is a given decreasing function of 

stress level 𝑠. We adopt the Arrhenius model in this article, so 𝜑(𝑠𝑖) = 1/𝑠𝑖 .  
 

4. For any stress level 𝑠𝑖, the lifetime of the 𝑗𝑡ℎ failure cause 𝑇𝑖𝑗  (𝑖, 𝑗 = 1,2) are 

independently and identically distributed variables from the Rayleigh distribution 

with scale parameter 𝜃𝑖𝑗  
 

5. In this test, the cumulative exposure model which is defined by Nelson [14] for the 

simple step-stress testing with stresses 𝑠1 and 𝑠1 is used.  
 

 Based on the given assumptions above, Rayleigh cumulative exposure (RCE) model is 

given as follows. Firstly, the equivalent start time 𝜏′ for the RCE model which is the 

solution of 𝐹1(𝜏) = 𝐹2(𝜏′) is equal to  
 

𝜏′ = (
𝜃2𝑗

𝜃1𝑗
) 𝜏 

 

 Then, by replacing 𝜏′ in (1), the CDF of the lifetime 𝑇𝑖𝑗 under the simple step-stress 

ALT are given as  
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𝐺𝑗(𝑡) =

{
 
 

 
 
𝐹1(𝑡) = 1 − 𝑒

−
𝑡2

2𝜃1𝑗
2

if 0 < 𝑡 < 𝜏

𝐹2(𝑡 − 𝜏 + 𝜏′) = 1 − 𝑒
−

1

2𝜃2𝑗
2 [𝑡−𝜏(1−

𝜃2𝑗
𝜃1𝑗

)]

2

 if 

 (5) 

 

and the corresponding probability density function (PDF) of 𝑇𝑗 is given by  
 

𝑔𝑗(𝑡) =

{
 
 

 
 
𝑓1(𝑡) =

1

𝜃1𝑗
2  𝑡 𝑒

−
𝑡2

2𝜃1𝑗
2

 if 0 < 𝑡 < 𝜏

𝑓2(𝑡 − 𝜏 + 𝜏′) =
1

𝜃2𝑗
2 [𝑡 − 𝜏 (1 −

𝜃2𝑗

𝜃1𝑗
)] 𝑒

−
1

2𝜃2𝑗
2 [𝑡−𝜏(1−

𝜃2𝑗
𝜃1𝑗

)]

2

 if 𝜏 ≤ 𝑡 < ∞

 

 (6) 
 

for 𝑗 = 1,2. Since we will observe only the smaller of 𝑇1 and 𝑇2, let 𝑇 = 𝑚𝑖𝑛(𝑇1, 𝑇2) denote 

the overall failure time of a test unit. Then, its CDF and PDF are readily obtained to be 
 

𝐹𝑇(𝑡) = 1 − (1 − 𝐺1(𝑡))(1 − 𝐺2(𝑡)) 
 

𝐹𝑇(𝑡) = {
1 − 𝑒

−
1
2
(

1

𝜃11
2+

1

𝜃12
2)𝑡

2

 if 0 < 𝑡 < 𝜏

1 − 𝑒
−
1
2
{
1

𝜃21
2 {𝑡−𝜏(1−

𝜃21
𝜃11

)}
2

+
1

𝜃22
2 {𝑡−𝜏(1−

𝜃22
𝜃12

)}
2

}
 if 𝜏 ≤ 𝑡 < ∞

 (7) 

 

𝑓𝑇(𝑡) =

{
 
 
 
 

 
 
 
 (

1

𝜃11
2 +

1

𝜃12
2)  𝑡 𝑒

−
1
2
(

1

𝜃11
2+

1

𝜃12
2)𝑡

2

 if 0 < 𝑡 < 𝜏

{
1

𝜃21
2 {𝑡 − 𝜏 (1 −

𝜃21
𝜃11

)} +
1

𝜃22
2 {𝑡 − 𝜏 (1 −

𝜃22
𝜃12

)}}

× 𝑒
−
1
2
{
1

𝜃21
2 {𝑡−𝜏(1−

𝜃21
𝜃11

)}
2

+
1

𝜃22
2 {𝑡−𝜏(1−

𝜃22
𝜃12

)}
2

}
 if 𝜏 ≤ 𝑡 < ∞

 (8) 

 

 Let 𝛿 be the indicator of the failure cause, then we derive the joint PDF of (𝑇, 𝛿) as 

𝑓𝑇,𝛿(𝑡, 𝑗) = 𝑔𝑗(𝑡)(1 − 𝐺𝑗′(𝑡))  
 

𝑓𝑇,𝛿(𝑡) =

{
 
 
 

 
 
 1

𝜃1𝑗
2  𝑡 𝑒

−
1
2
(

1

𝜃11
2+

1

𝜃12
2)𝑡

2

 if 0 < 𝑡 < 𝜏

1

𝜃2𝑗
2 {𝑡 − 𝜏 (1 −

𝜃2𝑗

𝜃1𝑗
)}

× 𝑒
−
1
2
{
1

𝜃21
2 {𝑡−𝜏(1−

𝜃21
𝜃11

)}
2

+
1

𝜃22
2 {𝑡−𝜏(1−

𝜃22
𝜃12

)}
2

}
 if 𝜏 ≤ 𝑡 < ∞

 (9) 

 

for 𝑗, 𝑗′ = 1,2 and 𝑗 ≠ 𝑗′. 
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 Suppose there are 𝐷1 failures before the stress changing time 𝜏. If we denote 𝑑1𝑗 and 

𝑑2𝑗(𝑗 = 1,2) as the number of failures due to failure cause 𝑗 under stress level 𝑠1 and 𝑠2, 

respectively, then 𝐷1 = 𝑑11 + 𝑑12. Since each failure time is accompanied by the 

corresponding cause of failure.let 𝛿 = (𝛿1, 𝛿2, . . . , 𝛿𝑚) be the observed sequence of the 

cause of failure corresponding to the observed failure time 𝑡 = (𝑡1, 𝑡2, . . . , 𝑡𝑑).  
 

3. MAXIMUM LIKELIHOOD ESTIMATION 
 

 In this section, we discussed the point and asymptotic confidence intervals with MLE 

under the assumption of the cumulative exposure model, we formulate the likelihood 

function of Θ = (𝜃1𝑗 , 𝜃2𝑗) based on the type-I censored data as  
 

𝐿(Θ) ∝ ∏

2

𝑖,𝑗=1

𝜃
𝑖𝑗

−2𝑑𝑖𝑗
∑

𝑑1.

𝑖=1

𝑡 𝑒
−
1
2
(

1

𝜃11
2+

1

𝜃12
2)∑

𝑑1.
𝑖=1 𝑡

2

 ∑

𝑑..

𝑖=𝑑1.+1

{𝑡 − 𝜏 (1 −
𝜃2𝑗

𝜃1𝑗
)}

𝑒
−
1
2
{
1

𝜃21
2∑

𝑑..
𝑖=𝑑1.+1

{𝑡−𝜏(1−
𝜃21
𝜃11

)}
2

+
1

𝜃22
2∑

𝑑..
𝑖=𝑑1.+1

{𝑡−𝜏(1−
𝜃22
𝜃12

)}
2

}

𝑒
−
1
2
(𝑑−𝑑..){

1

𝜃21
2{𝜏𝜉−𝜏(1−

𝜃21
𝜃11

)}
2

+
1

𝜃22
2{𝜏𝜉−𝜏(1−

𝜃22
𝜃12

)}
2

}

 (10) 

 

for 0 < 𝑡1:𝑑 <. . . . . . < 𝑡𝑑1.:𝑑 < 𝜏 < 𝑡𝑑1.+1:𝑑 <. . . . < 𝑡𝑑..:𝑑 < 𝜏𝜉 , 
 

where 𝑑.. = 𝑑1. + 𝑑2. = (𝑑11 + 𝑑12) + (𝑑21 + 𝑑22)  
 

 Then, the log Likelihood function of Θ is obtained as 
 

𝜄(Θ) ∝ − ∑

2

𝑖,𝑗=1

2𝑑𝑖𝑗 log 𝜃𝑖𝑗 +∑

𝑑1.

𝑖=1

log 𝑡 −
1

2
(
1

𝜃11
2 +

1

𝜃12
2 )∑

𝑑1.

𝑖=1

𝑡2 

+ ∑

𝑑..

𝑖=𝑑1.+1

𝑙𝑜𝑔 {𝑡 − 𝜏 (1 −
𝜃2𝑗

𝜃1𝑗
)} 

−
1

2𝜃21
2 ∑

𝑑..

𝑖=𝑑1.+1

{𝑡 − 𝜏 (1 −
𝜃21
𝜃11

)}
2

−
1

2𝜃22
2 ∑

𝑑..

𝑖=𝑑1.+1

{𝑡 − 𝜏 (1 −
𝜃22
𝜃12

)}
2

  

−(𝑑 − 𝑑..)
1

2𝜃21
2 {𝜏𝜉 − 𝜏 (1 −

𝜃21
𝜃11

)}
2

− (𝑑 − 𝑑..)
1

2𝜃22
2 {𝜏𝜉 − 𝜏 (1 −

𝜃22
𝜃12

)}
2

 

 (11) 

 

3.1 Point Estimation 

 The MLEs of the parameters 𝜃1𝑗 and 𝜃2𝑗 can be obtained by setting the first partial 

derivative of logL about 𝜃1𝑗 and 𝜃2𝑗 to zero, namely  
 

𝜕𝜄(𝜃)

𝜕𝜃1𝑗
=
−2𝑑1𝑗

𝜃1𝑗
+
1

𝜃1𝑗
3 ∑

𝑑1.

𝑖=1

𝑡2 −
𝜃2𝑗

𝜃1𝑗
2 𝜏𝜔1

−1 +
1

𝜃1𝑗
2 𝜃2𝑗

𝜏𝜔1 + (𝑑 − 𝑑..)
1

𝜃1𝑗
2 𝜃2𝑗

𝜏𝜔2  

 (12) 
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𝜕𝜄(𝜃)

𝜕𝜃2𝑗
=
−2𝑑2𝑗

𝜃2𝑗
+
1

𝜃1𝑗
𝜏𝜔1

−1 −
1

𝜃2𝑗
2 𝜔1 {

1

𝜃1𝑗
𝜏 −

1

𝜃2𝑗
𝜔1} 

−(𝑑 − 𝑑..)
1

𝜃2𝑗
2 𝜔2 {

1

𝜃1𝑗
𝜏 − 

1

𝜃2𝑗
𝜔2} 

 

 

(13) 

 

where,  

𝜔1 = ∑

𝑑..

𝑖=𝑑1.+1

{𝑡 − 𝜏 (1 −
𝜃2𝑗

𝜃1𝑗
)} 

and  

𝜔2 = {𝜏𝜉 − 𝜏 (1 −
𝜃22
𝜃12

)}. 

 

 Now, we have a system of three nonlinear equations in three unknowns 𝜃1𝑗 and 𝜃2𝑗.  

It is obvious that a closed form solution is quite difficult to obtain. It is obvious that a closed 

form solution is quite difficult to obtain.  

 

3.2 Asymptotic Confidence Intervals 

 The asymptotic variance and covariance matrix of maximum likelihood estimates are 

given by the elements of the inverse of the Fisher information matrix as follows  
 

𝐼𝑖𝑗(𝜃) ≅ 𝐸 {−
𝜕2𝑙𝑜𝑔𝐿

𝜕𝜃𝑖𝜃𝑗
} 

 

 Unfortunately, the exact mathematical expressions for the previous expectation are 

complicated to obtain. Therefore, the Fisher information matrix is given by  
 

𝐼𝑖𝑗(𝜃) ≅ {−
𝜕2𝑙𝑜𝑔𝐿

𝜕𝜃𝑖𝜃𝑗
} 

 

which is obtained by approximating the expectation on operation 𝐸 and replacing 𝜃1𝑗 and 

𝜃2𝑗 with 𝜃̂1𝑗 and 𝜃̂2𝑗, respectively. The asymptotic variance and covariance matrix 𝐹 of the 

maximum likelihood estimates can be written as follows:  
 

𝐼−1(𝜃1𝑗, 𝜃2𝑗) =

[
 
 
 
 
𝜕2𝜄(Θ)

𝜕𝜃1𝑗
2

𝜕2𝜄(Θ)

𝜕𝜃1𝑗𝜕𝜃2𝑗

𝜕2𝜄(Θ)

𝜕𝜃1𝑗𝜕𝜃2𝑗

𝜕2𝜄(Θ)

𝜕𝜃2𝑗
2

]
 
 
 
 
−1

 (14) 

 

where,  
 

𝜕2𝜄(Θ)

𝜕𝜃1𝑗
2 =

2𝑑1𝑗

𝜃1𝑗
2 −

3

𝜃1𝑗
4 ∑

𝑑1.

𝑖=1

𝑡2 −
𝜃2𝑗

𝜃1𝑗
3 𝜏𝜔1

−1 {
𝜃2𝑗

𝜃1𝑗
𝜏𝜔1

−1 − 2} 

−
𝜏

𝜃1𝑗
3 {

𝜏

𝜃1𝑗
+
2

𝜃2𝑗
𝜔1} + (𝑑 − 𝑑..)

𝜏

𝜃1𝑗
3 {

𝜏

𝜃1𝑗
+
2

𝜃2𝑗
𝜔2}, 

 

 

(15) 
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𝜕2𝜄(Θ)

𝜕𝜃1𝑗𝜕𝜃2𝑗
=
𝜏𝜔1

−1

𝜃1𝑗
2 {

𝜃2𝑗

𝜃1𝑗
𝜏𝜔1

−1 − 1} +
𝜏

𝜃1𝑗
2 𝜃2𝑗

{
𝜏

𝜃1𝑗
−
1

𝜃2𝑗
𝜔1} 

+(𝑑 − 𝑑..)
𝜏

𝜃1𝑗
2 𝜃2𝑗

{
𝜏

𝜃1𝑗
−
1

𝜃2𝑗
𝜔2} 

 

 

(16) 

and  

𝜕2𝜄(Θ)

𝜕𝜃2𝑗
2 =

2𝑑𝑖𝑗

𝜃2𝑗
2 −

1

𝜃1𝑗
2 𝜏

2𝜔1
−2 −

1

𝜃1𝑗𝜃2𝑗
2 𝜏 {

1

𝜃1𝑗
𝜏 −

2

𝜃2𝑗
𝜔1} 

+
1

𝜃2𝑗
3 𝜔1 {

2

𝜃1𝑗
𝜏 −

3

𝜃2𝑗
𝜔1} − (𝑑 − 𝑑. . )

1

𝜃1𝑗𝜃2𝑗
2 𝜏 {

1

𝜃1𝑗
𝜏 −

2

𝜃2𝑗
𝜔2} 

+(𝑑 − 𝑑..)
1

𝜃2𝑗
3 𝜔2 {

2

𝜃1𝑗
𝜏 −

3

𝜃2𝑗
𝜔2} (17) 

 

 Upon inverting this matrix and denoting 𝑉̂𝑖𝑗 = 𝐼𝑖𝑗
−1 Therefore, the approximate  

100(1 − 𝑟)% confidence intervals for the parameters 𝜃1𝑗 and 𝜃2𝑗 are expressed, 

respectively:  
 

[𝑚𝑎𝑥 (0, 𝜃̂1𝑗 − 𝑍𝛾/2√𝑉̂𝑗(1,1), 𝜃̂1𝑗 + 𝑍𝛾/2√𝑉̂𝑗(1,1))] 

and  

[𝑚𝑎𝑥 (0, 𝜃̂2𝑗 − 𝑍𝛾/2√𝑉̂𝑗(2,2), 𝜃̂2𝑗 + 𝑍𝛾/2√𝑉̂𝑗(2,2))] 

 

where 𝑗 = 1,2 and 𝑧𝛾/2 is the (1 − 𝑧𝛾/2)𝑡ℎ quantile of a standard normal distribution.  

 

4. BAYES ESTIMATION 
 

 In this section, we calculate Bayes estimators of unknown parameters. Bayesian 

estimation approach has received a lot of attention for analysing failure time data.  

 

4.1 Posterior Distribution 

 In Bayesian approach, parameters are considered as a random variables. The 

formulation of posterior distribution depend on likelihood function and prior distribution. 

So, prior infromation of Lomax parameters are considered as non informative prior for 

accelerate factor. The prior distributions of parameters (𝜃1𝑗, 𝜃2𝑗) are formulated as  
 

𝜂(𝜃1𝑗) ∝
1

𝜃1𝑗
, 𝜃1𝑗 > 0, 𝑗 = 1,2 (18) 

and  

𝜂(𝜃2𝑗) ∝
1

𝜃2𝑗
, 𝜃2𝑗 > 0, 𝑗 = 1,2 (19) 

 

respectively.Then, the joint prior density of (𝜃1𝑗, 𝜃2𝑗) is given by  
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𝜂(𝜃1𝑗 , 𝜃2𝑗) ∝ ∏

2

𝑖,𝑗=1

𝜃𝑖𝑗
−1 (20) 

 

 Hence, under model assumption proposed in Section 2 and prior distribution given by 

(20) the posterior distribution is defined by  
 

𝜂∗(𝜃1𝑗 , 𝜃2𝑗) ∝ 𝐿((𝜃1𝑗 , 𝜃2𝑗) 𝜂(𝜃1𝑗 , 𝜃2𝑗) 
 

∝ ∏

2

𝑖,𝑗=1

𝜃
𝑖𝑗

−2𝑑𝑖𝑗−1
∑

𝑑1.

𝑖=1

𝑡 𝑒
−
1
2
(
1

𝜃11
2+

1

𝜃12
2) ∑

𝑑1.
𝑖=1 𝑡

2

 ∑

𝑑..

𝑖=𝑑1.+1

{𝑡 − 𝜏 (1 −
𝜃2𝑗

𝜃1𝑗
)} 

𝑒
−
1
2
{
1

𝜃21
2∑

𝑑..
𝑖=𝑑1.+1

{𝑡−𝜏(1−
𝜃21
𝜃11

)}
2

+
1

𝜃22
2∑

𝑑..
𝑖=𝑑1.+1

{𝑡−𝜏(1−
𝜃22
𝜃12

)}
2

}
 

𝑒
−
1
2
(𝑑−𝑑..){

1

𝜃21
2{𝜏𝜉−𝜏(1−

𝜃21
𝜃11

)}
2

+
1

𝜃22
2{𝜏𝜉−𝜏(1−

𝜃22
𝜃12

)}
2

}
 

(21) 

 

 Multiply the joint prior density (20) with likelihood equation in (10) of (𝜃1𝑗, 𝜃2𝑗), the 

joint posterior density is constructed as follows  
 

𝜂∗(𝜃1𝑗, 𝜃2𝑗|𝑡) = 𝜑𝐿((𝜃1𝑗, 𝜃2𝑗) 𝜂(𝜃1𝑗, 𝜃2𝑗) (22) 
 

where,  
 

𝜑 = 1/∫
∞

0

∫
∞

0

𝐿((𝜃1𝑗 , 𝜃2𝑗) 𝜂(𝜃1𝑗, 𝜃2𝑗)𝑑𝜃1𝑗𝑑𝜃2𝑗 

 

is normalized constant. 
 

 The square error (SE) loss function and linear exponential (LINEX) loss function are 

considered to obtain BEs of the model parameters (𝜃1𝑗 , 𝜃2𝑗) under type-I censoring.  

 

Under Squared Error Loss Function (SE)  

 The Bayes estimates of the unknown parameters 𝜃 = (𝜃1𝑗, 𝜃2𝑗), 𝑗 = 1,2 under (SE) 

denoted by 𝜃̃(𝐵𝑆𝐸); can be calculated through the following equations as follows  
 

𝜃̃(𝐵𝑆𝐸) = 𝐸(𝜃|𝑡) = ∫
∞

0

 𝜃𝜋∗(𝜃|𝑡)d𝜃 

 

Under Asymmetric LINEX Loss Function 

 Under the assumption that the minimal loss occurs at 𝜃 = (𝛼𝑗 , 𝛽1𝑗 , 𝛽2𝑗), 𝑗 = 1,2, the 

LINEX loss function can be expressed as  
 

𝐿𝐵𝐿(Δ) ∝ 𝑒
𝑐Δ − 𝑐Δ − 1, 𝑐 ≠ 1 (23) 

 

where Δ = (𝜃̂ − 𝜃) is an estimate of 𝜃.  
 

 The posterior expectation of the LINEX loss function is  
 

𝐸(𝐿𝐵𝐿(𝜃̂ − 𝜃)) ∝ 𝑒
𝑐𝜃̂ 𝐸[𝑒𝑐𝜃̂] − 𝑐(𝜃̂ − 𝐸[𝜃]) − 1 (24) 
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 The Bayes estimator of 𝜃, denoted by 𝜃̂ under LINEX loss function, is the value of  

𝜃̂ which minimizes (23). It is  
 

𝜃̂𝐵𝐿 = −
1

𝑐
𝑙𝑜𝑔 {𝐸[𝑒𝑐𝜃̂]} (25) 

 

 It may be noted here that the posterior distribution of (𝜃1𝑗 , 𝜃2𝑗) in equation (22) takes 

a ratio form that involves an integration in the denominator and cannot be reduced to a 

closed form. Hence, the evaluation of the posterior expectation for obtaining the Bayes 

estimator of (𝜃1𝑗, 𝜃2𝑗) will be tedious. 
 

 The solution of equation (22) can be discussed with different methods such as 

numerical integrations or by Lindly approximations. One of most important method 

employed in this case called MCMC which employed in this section to present Bayes 

estimators under squared error loss (SEL) function and LINEX loss function. In the 

following, we discuss the problem of generate samples from the posterior distribution. 

 

4.2 MCMC Approximation 

 One of the important MCMC approach called Metropolis-Hastings (M-H) algorithm. 

This is a special case of the Markov chain Monte Carlo (MCMC) approach, whose use has 

become widespread in the general statistical literature. The Metropolis-Hastings sampling 

need to conditional posterior PDF’s of (𝜃1𝑗 , 𝜃2𝑗), hence posterior distribution given by (12) 

is reduced to conditional distributions described respectively as follows 
 

𝜂∗(𝜃1𝑗|𝜃2𝑗) ∝∏

2

𝑗=1

𝜃
1𝑗

−2𝑑1𝑗−1
∑

𝑑1.

𝑖=1

𝑡 𝑒
−
1
2
(

1

𝜃11
2+

1

𝜃12
2)∑

𝑑1.
𝑖=1 𝑡

2

 ∑

𝑑..

𝑖=𝑑1.+1

{𝑡 − 𝜏 (1 −
𝜃2𝑗

𝜃1𝑗
)}

𝑒
−
1
2
{
1

𝜃2𝑗
2 ∑

𝑑..
𝑖=𝑑1.+1

{𝑡−𝜏(1−
𝜃2𝑗
𝜃1𝑗

)}

2

}

𝑒
−
1
2
(𝑑−𝑑..){

1

𝜃2𝑗
2 {𝜏𝜉−𝜏(1−

𝜃2𝑗
𝜃1𝑗

)}

2

}

 

 

𝜂∗(𝜃2𝑗|𝜃1𝑗) ∝∏

2

𝑗=1

𝜃
2𝑗

−2𝑑2𝑗−1
 ∑

𝑑..

𝑖=𝑑1.+1

{𝑡 − 𝜏 (1 −
𝜃2𝑗

𝜃1𝑗
)} 𝑒

−
1
2
{
1

𝜃2𝑗
2 ∑

𝑑..
𝑖=𝑑1.+1

{𝑡−𝜏(1−
𝜃2𝑗
𝜃1𝑗

)}

2

}

𝑒
−
1
2
(𝑑−𝑑..){

1

𝜃2𝑗
2 {𝜏𝜉−𝜏(1−

𝜃2𝑗
𝜃1𝑗

)}

2

}

 

 

 The conditional posterior distributions of (𝜃1𝑗, 𝜃2𝑗) in previous equations cannot be 

reduced analytically to well known distribution. The Metropolis-Hastings algorithm is used 

to generate random samples from these distributions, see Upadhyay and Gupta [20]. For 

more information concerning the application of M-H, readers may refer to Robert et al. 

[18]. The following algorithm is proposed to compute Bayes estimators of 𝑈 = 𝑈(𝜃1𝑗 , 𝜃1𝑗) 

under SE and LINEX loss functions.  

 

Algorithm (1)  

1. Start with 𝜃1𝑗
(0)
= 𝜃̂1𝑗𝑀𝐿𝐸 , 𝜃2𝑗

(0)
= 𝜃̂2𝑗𝑀𝐿𝐸  

 

2. Set 𝑖 = 1.  
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3. Generate 𝜃1𝑗
(𝑖)

 and 𝜃2𝑗
(𝑖)

 from equations (20)-(22) respectively  
 

4. Set 𝑖 = 𝑖 + 1.  
 

5. Repeat steps (3)–(4) K times.  
 

6. The approximate means of 𝑈 and 𝑒−𝑐𝑈 are given respectively by  
 

𝐸(𝑈) =
1

𝐾 −𝑀
∑

𝐾

𝑖=𝑀+1

𝑈(𝜃1𝑗
(𝑖)
, 𝜃2𝑗

(𝑖)
) (26) 

 

𝐸(𝑒−𝑐𝑈) =
1

𝐾 −𝑀
∑

𝐾

𝑖=𝑀+1

𝑒𝑥𝑝{−𝑐𝑈(𝜃1𝑗
(𝑖)
, 𝜃2𝑗

(𝑖)
)} (27) 

 

where 𝑀 is the burn-in period. Then, from equations (26) and (27), the Bayes 

estimators of 𝑈 under balanced SE and balanced LINEX loss functions are given 

respectively by: 
 

𝑈̂𝑆𝐸 = Ω𝑈̂𝑀𝐿 + (1 − Ω)𝐸(𝑈) (28) 
 

𝑈̂𝐿𝐼𝑁𝐾 = −
1

𝐶
𝐼𝑛[Ω𝑒−𝑐𝑈𝑀𝐿 + (1 − Ω)𝐸(𝑒−𝑐𝑈)] (29) 

 

 It is clear that the balanced loss functions are more general, which include the MLE 

and both symmetric and asymmetric BEs as special cases. 

 

5. REAL DATA ANALYSIS 
 

 In this section, we analyze a real-life data set from Lawless [13] for illustration 

purposes. The data comes from an experiment in which new models of a small electrical 

appliance were being tested. The appliances were operated repeatedly by an automatic 

testing machine. There are 18 different possible causes of failure for the appliance. We will 

focus on failure mode 9. Therefore, we denote 𝛿𝑖 = 1 if the failure occurs in mode 9 and 

𝛿𝑖 = 2 if the failure occurs in any other mode. []  

 

Data Set:  

(11,2) (35,2) (49,2) (170,2) (329,2) (381,2) (708,2) (958,2) (1062,2) 
(1167,1) (1594,2) (1925,1) (1990,1) (2223,1) (2327,2) (2400,1) (2451,2) 
(2471,1) (2551,1) (2568,1) (2694,1) (2702,2) (2761,2) (2831,2) (3034,1) 
(3059,2) (3112,1) (3214,1) (3478,1) (3504,1) (4329,1) (6976,1) (7846,1)  

 

 We will assume 𝜏 = 25 and time truncation 𝑇 = 30. Hence, we obtained Type-I 

censored data (1 for censored and 0 for non-censored) with level of stress (indictor by 1 

and 2) represented in the following Table 1. 
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Table 1 

Type-I Censored Data after Truncation and Level of Stress 

Observation Index Time Event Stress level Censored 

1 11.67 1 1 1 

2 19.25 1 1 1 

3 19.90 1 1 1 

4 22.23 1 1 1 

5 24.00 1 1 1 

6 24.71 1 1 1 

7 25.51 1 0 1 

8 25.68 1 0 1 

9 26.94 1 0 1 

10 30.34 1 0 0 

11 31.12 1 0 0 

12 32.14 1 0 0 

13 34.78 1 0 0 

14 35.04 1 0 0 

15 43.29 1 0 0 

16 69.76 1 0 0 

17 78.46 1 0 0 

18 0.11 2 1 1 

19 0.35 2 1 1 

20 0.49 2 1 1 

21 1.70 2 1 1 

22 3.29 2 1 1 

23 3.81 2 1 1 

24 7.08 2 1 1 

25 9.58 2 1 1 

26 10.62 2 1 1 

27 15.94 2 1 1 

28 23.27 2 1 1 

29 24.51 2 1 1 

30 27.02 2 0 1 

31 27.61 2 0 1 

32 28.31 2 0 1 

33 30.59 2 0 0 

 

 We divided all data by 100 for illustrative of convergence. To determine whether the 

data makes a good fit for the Rayleigh distribution, we made a Kolmogorov Smirnov 

goodness-of-fit test for the type-I censored data. The MLE of the parameter 𝜃 = 20.5160 

and K-S statistic is 0.1647 with p-value is 0.2983. The results of p-values for each stress 

level 𝑠𝑖 , 𝑖 = 1,2 shows us that the distributions provide an excellent fit to the given data 

because all p-values exceed 0.05.  
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 Also, the following figures; empirical cdf and histogram, shows that the data fit the 

given distribution. 

 

 
Figure 1: Plots of the Empirica CDF of Rayleigh Distribution from Dataset 

 

 

 
Figure 2: Histogram Density of Rayleigh Distribution from Dataset 

  

 Also,we compute the parameters of MLEs of 𝜃11, 𝜃12, 𝜃21, and 𝜃22. Bayes estimates  

is computed utilizing the MH algorithm with the informative prior. Note that the  

non-informative prior are assumed where 𝑎11 = 𝑏11 = 𝑎12 = 𝑏12 = 𝑎21 = 𝑏21 = 𝑎22 =
𝑏22 = 0. Eventually, 2000 burn-in samples are terminated from the entire 10000 samples 

generated by the posterior density, and adopted technique to produce Bayes estimates under 

SE and LINEX (with LN-1: 𝑐 = 0.5 and LN-2: 𝑐 = −0.5) loss function.The MLEs and 

BEs of 𝜃11, 𝜃12, 𝜃21 and 𝜃22 are introduced in Table 2. 
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Table 2 

MLE’s and BEs based on Type-I Censoring Scheme for the given Real Data Set 

 Parm MLE 
BE: Non-IF 

SE LN-1 LN-2 

𝜽𝟏𝟏 17.04133 16.92059 16.91672 16.92442 

𝜽𝟏𝟐 17.08704 16.94032 16.92745 16.95365 

𝜽𝟐𝟏 22.27253 23.09254 23.01561 23.18192 

𝜽𝟐𝟐 22.17453 22.39877 22.38491 22.41293 

  

6. SIMULATION STUDY 
 

 We will use a simulation study to estimate the unknown parameters of the Rayliegh 

distribution under Type-I censoring based on the SS-ALT model in order to assess the 

effectiveness of the proposed approach. For different sample combinations, the MLE and 

Bayesian estimation methods’ respective MSE, Average and coverage probability (CP) are 

evaluated Sample combinations:  

 The sample size 𝑛 has been taken as 30.60.90 and 120  

 Different values of parameters as actual values have been chosen as: 𝜃11 = 0.50,
𝜃12 = 0.51, 𝜃21 = 0.52 and 𝜃22 = 0.53  

 Time (Time censoring) has been taken as 𝑇 = 1.2, 1.5 and 1.75  

 Stress constant has been chosen as 𝜏 = 0.8  

 We replicate the number of replications 1000 times  

 To obtain the MLEs of the model parameters, the Newton-Raphson method is 

employed to simultaneously solve the nonlinear equations.  

 To obtain the Bayesian of the model parameters, the Metropolis-Hastings (M-H) 

algorithm is employed.  

 Number of MCMC: 10,000  

 Bayesian hyper-parameters:  

1. Informative (IF) prior case: 

𝑎11 = 2.5, 𝑏11 = 5.5, 𝑎12 = 2.5, 𝑏12 = 5.5𝑎21 = 2.5, 𝑏21 = 5.5, 𝑎22
= 2.5, 𝑏22 = 5.5, 

2. Non-informative (Non-IF) prior case: 

𝑎11 = 𝑏11 = 𝑎12 = 𝑏12 = 𝑎21 = 𝑏21 = 𝑎22 = 𝑏22  

 Linex constant values: 

𝐿𝑁 − 1: 𝐶 = 0.5, 𝐿𝑁 − 1: 𝐶 = −0.5  
 

 All the average estimates (Avg) and Mean Square Error (MSE) for methods are 

reported in Table 3 to Table 5 for different combinations of samples size 𝑛 and different 

time censoring 𝑇. Further, the first column donates the (Avg.) and in the second column, 

related (MSEs). 
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 For confidence intervals, we have asymptotic confidence interval for MLEs and HPD 

for Bayesian estimates based on MCMC which reported in Table 6 to Table 8 for different 

combinations of samples size 𝑛 and different time censoring 𝑇. Further, the first column 

represents lower bound confidence interval, the second column represents upper bound of 

CI, the third column represent the average interval lengths (AILs) and in the last column, 

related coverage probabilities (CPs) in prencetage (%) 

 

Table 3 

Point Estimates (Avg. and MPoint Estimates (Avg. and MSE) of MLE and BE  

for Simple Step Stress Rayleigh Model under Censoring Type-I given 𝑻 = 𝟏. 𝟐 

𝒏 Parm Estimate MLE 
BE: Non-IF BE: IF 

SE LN-1 LN-2 SE LN-1 LN-2 

30 

𝜽𝟏𝟏 
Avg. 0.61729 0.61822 0.61818 0.61826 0.61805 0.61801 0.61809 

MSE 0.01880 0.01965 0.01964 0.01966 0.01943 0.01942 0.01944 

𝜽𝟏𝟐 
Avg. 0.44328 0.44495 0.44493 0.44498 0.44409 0.44406 0.44411 

MSE 0.01155 0.01190 0.01190 0.01190 0.01179 0.01180 0.01179 

𝜽𝟐𝟏 
Avg. 0.90575 0.90564 0.90555 0.90573 0.90472 0.90462 0.90482 

MSE 0.18684 0.18643 0.18634 0.18653 0.18551 0.18541 0.18561 

𝜽𝟐𝟐 
Avg. 0.42171 0.42510 0.42508 0.42513 0.42612 0.42610 0.42615 

MSE 0.01676 0.01695 0.01695 0.01695 0.01688 0.01688 0.01688 

60 

𝜽𝟏𝟏 
Avg. 0.62202 0.62250 0.62246 0.62253 0.62231 0.62227 0.62234 

MSE 0.01895 0.01974 0.01973 0.01975 0.01950 0.01949 0.01951 

𝜽𝟏𝟐 
Avg. 0.44446 0.44496 0.44494 0.44498 0.44491 0.44489 0.44493 

MSE 0.01016 0.01038 0.01038 0.01038 0.01026 0.01026 0.01026 

𝜽𝟐𝟏 
Avg. 0.86686 0.86880 0.86871 0.86888 0.86885 0.86877 0.86894 

MSE 0.15314 0.15476 0.15468 0.15483 0.15349 0.15342 0.15357 

𝜽𝟐𝟐 
Avg. 0.42016 0.42413 0.42411 0.42416 0.42493 0.42490 0.42496 

MSE 0.01644 0.01650 0.01651 0.01650 0.01633 0.01633 0.01632 

90 

𝜽𝟏𝟏 
Avg. 0.61775 0.61868 0.61865 0.61872 0.61825 0.61822 0.61829 

MSE 0.01741 0.01828 0.01827 0.01829 0.01827 0.01826 0.01828 

𝜽𝟏𝟐 
Avg. 0.44271 0.44337 0.44335 0.44339 0.44295 0.44293 0.44297 

MSE 0.01023 0.01048 0.01048 0.01048 0.01048 0.01049 0.01048 

𝜽𝟐𝟏 
Avg. 0.84638 0.84925 0.84917 0.84934 0.84902 0.84894 0.84911 

MSE 0.13620 0.13902 0.13895 0.13910 0.13773 0.13765 0.13780 

𝜽𝟐𝟐 
Avg. 0.41895 0.42348 0.42345 0.42350 0.42270 0.42267 0.42272 

MSE 0.01627 0.01647 0.01648 0.01647 0.01633 0.01633 0.01633 

120 

𝜽𝟏𝟏 
Avg. 0.61877 0.61870 0.61867 0.61874 0.61902 0.61899 0.61906 

MSE 0.01757 0.01814 0.01813 0.01815 0.01828 0.01827 0.01829 

𝜽𝟏𝟐 
Avg. 0.44170 0.44313 0.44311 0.44314 0.44276 0.44274 0.44278 

MSE 0.01022 0.01054 0.01054 0.01053 0.01049 0.01049 0.01048 

𝜽𝟐𝟏 
Avg. 0.83872 0.84103 0.84095 0.84112 0.84093 0.84085 0.84101 

MSE 0.12981 0.13092 0.13085 0.13099 0.13049 0.13042 0.13056 

𝜽𝟐𝟐 
Avg. 0.41839 0.42257 0.42254 0.42260 0.42255 0.42252 0.42258 

MSE 0.01617 0.01620 0.01620 0.01620 0.01612 0.01612 0.01612 
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Table 4 

Point Estimates (Avg. and MSE) of MLE and BE for Simple Step  

Stress Rayleigh Model under Censoring Type-I given 𝑻 = 𝟏. 𝟓 

𝒏 Parm Estimate MLE 
BE: Non-IF BE: IF 

SE LN-1 LN-2 SE LN-1 LN-2 

30 

𝜽𝟏𝟏 
Avg. 0.61352 0.61346 0.61342 0.61350 0.61349 0.61345 0.61353 

MSE 0.01743 0.01793 0.01792 0.01794 0.01792 0.01791 0.01793 

𝜽𝟏𝟐 
Avg. 0.44053 0.44239 0.44237 0.44242 0.44205 0.44203 0.44208 

MSE 0.01227 0.01262 0.01262 0.01262 0.01255 0.01255 0.01255 

𝜽𝟐𝟏 
Avg. 0.90977 0.91618 0.91607 0.91629 0.91366 0.91355 0.91377 

MSE 0.19134 0.19634 0.19622 0.19646 0.19329 0.19318 0.19340 

𝜽𝟐𝟐 
Avg. 0.45064 0.45893 0.45889 0.45896 0.45869 0.45866 0.45873 

MSE 0.01281 0.01325 0.01325 0.01325 0.01317 0.01317 0.01317 

60 

𝜽𝟏𝟏 
Avg. 0.61531 0.61497 0.61493 0.61501 0.61624 0.61619 0.61628 

MSE 0.01738 0.01788 0.01787 0.01789 0.01831 0.01830 0.01832 

𝜽𝟏𝟐 
Avg. 0.43860 0.44060 0.44057 0.44062 0.44115 0.44113 0.44117 

MSE 0.01148 0.01168 0.01168 0.01168 0.01180 0.01180 0.01180 

𝜽𝟐𝟏 
Avg. 0.87205 0.88278 0.88266 0.88289 0.88185 0.88174 0.88195 

MSE 0.15846 0.16546 0.16536 0.16557 0.16415 0.16405 0.16425 

𝜽𝟐𝟐 
Avg. 0.44612 0.45564 0.45560 0.45568 0.45601 0.45597 0.45606 

MSE 0.01238 0.01307 0.01306 0.01307 0.01305 0.01305 0.01305 

90 

𝜽𝟏𝟏 
Avg. 0.61766 0.61909 0.61905 0.61913 0.61797 0.61793 0.61801 

MSE 0.01732 0.01848 0.01847 0.01849 0.01808 0.01807 0.01809 

𝜽𝟏𝟐 
Avg. 0.44196 0.44508 0.44506 0.44511 0.44517 0.44515 0.44519 

MSE 0.01049 0.01084 0.01084 0.01084 0.01059 0.01060 0.01059 

𝜽𝟐𝟏 
Avg. 0.84970 0.86515 0.86502 0.86527 0.86646 0.86633 0.86659 

MSE 0.14084 0.15004 0.14994 0.15015 0.15041 0.15030 0.15052 

𝜽𝟐𝟐 
Avg. 0.44953 0.46344 0.46338 0.46350 0.46309 0.46303 0.46314 

MSE 0.01110 0.01209 0.01209 0.01209 0.01216 0.01216 0.01217 

120 

𝜽𝟏𝟏 
Avg. 0.61981 0.62052 0.62048 0.62056 0.62078 0.62074 0.62082 

MSE 0.01789 0.01878 0.01877 0.01879 0.01902 0.01901 0.01903 

𝜽𝟏𝟐 
Avg. 0.44248 0.44543 0.44541 0.44545 0.44587 0.44585 0.44589 

MSE 0.01033 0.01061 0.01061 0.01061 0.01061 0.01061 0.01061 

𝜽𝟐𝟏 
Avg. 0.85649 0.87416 0.87402 0.87431 0.87549 0.87535 0.87564 

MSE 0.14832 0.15889 0.15876 0.15901 0.15915 0.15903 0.15927 

𝜽𝟐𝟐 
Avg. 0.44783 0.46323 0.46316 0.46330 0.46330 0.46323 0.46336 

MSE 0.01144 0.01269 0.01268 0.01269 0.01267 0.01267 0.01268 
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Table 5 

Point Estimates (Avg. and MSE) of MLE and BE for Simple Stress Strength 

Rayleigh Model under Censoring Type-I given 𝑻 = 𝟏. 𝟕𝟓 

 𝒏 Parm Estimate MLE 
BE: Non-IF BE: IF 

SE LN-1 LN-2 SE LN-1 LN-2 

30 

𝜽𝟏𝟏 
Avg. 0.61355 0.61483 0.61478 0.61487 0.61224 0.61219 0.61228 

MSE 0.01756 0.01870 0.01869 0.01871 0.01782 0.01781 0.01783 

𝜽𝟏𝟐 
Avg. 0.44059 0.44238 0.44235 0.44240 0.44287 0.44284 0.44290 

MSE 0.01272 0.01298 0.01298 0.01298 0.01307 0.01307 0.01307 

𝜽𝟐𝟏 
Avg. 0.92743 0.93780 0.93767 0.93793 0.93424 0.93412 0.93435 

MSE 0.21399 0.22235 0.22221 0.22249 0.21634 0.21621 0.21647 

𝜽𝟐𝟐 
Avg. 0.47277 0.48187 0.48184 0.48191 0.48263 0.48259 0.48267 

MSE 0.01054 0.01098 0.01098 0.01098 0.01103 0.01103 0.01103 

60 

𝜽𝟏𝟏 
Avg. 0.61532 0.61526 0.61521 0.61530 0.61572 0.61568 0.61577 

MSE 0.01714 0.01778 0.01777 0.01779 0.01795 0.01794 0.01797 

𝜽𝟏𝟐 
Avg. 0.43948 0.44220 0.44218 0.44223 0.44324 0.44321 0.44326 

MSE 0.01089 0.01123 0.01123 0.01122 0.01110 0.01110 0.01109 

𝜽𝟐𝟏 
Avg. 0.87356 0.89258 0.89246 0.89271 0.89167 0.89154 0.89180 

MSE 0.16295 0.17634 0.17622 0.17645 0.17269 0.17257 0.17281 

𝜽𝟐𝟐 
Avg. 0.46886 0.48316 0.48311 0.48321 0.48324 0.48319 0.48329 

MSE 0.00933 0.01039 0.01038 0.01039 0.01033 0.01032 0.01033 

90 

𝜽𝟏𝟏 
Avg. 0.61978 0.61944 0.61940 0.61948 0.61995 0.61991 0.61999 

MSE 0.01791 0.01839 0.01838 0.01840 0.01856 0.01855 0.01857 

𝜽𝟏𝟐 
Avg. 0.44134 0.44451 0.44449 0.44454 0.44517 0.44514 0.44519 

MSE 0.01064 0.01099 0.01099 0.01099 0.01087 0.01087 0.01086 

𝜽𝟐𝟏 
Avg. 0.86424 0.89169 0.89152 0.89185 0.89144 0.89128 0.89160 

MSE 0.15711 0.17382 0.17368 0.17396 0.17378 0.17365 0.17392 

𝜽𝟐𝟐 
Avg. 0.47069 0.49037 0.49029 0.49044 0.48959 0.48952 0.48966 

MSE 0.00878 0.01070 0.01069 0.01071 0.01048 0.01047 0.01048 

120 

𝜽𝟏𝟏 
Avg. 0.61840 0.61874 0.61870 0.61878 0.61794 0.61790 0.61798 

MSE 0.01727 0.01802 0.01801 0.01803 0.01798 0.01797 0.01799 

𝜽𝟏𝟐 
Avg. 0.44261 0.44686 0.44684 0.44688 0.44703 0.44700 0.44705 

MSE 0.00999 0.01038 0.01038 0.01038 0.01035 0.01035 0.01035 

𝜽𝟐𝟏 
Avg. 0.83418 0.86923 0.86904 0.86943 0.87148 0.87128 0.87167 

MSE 0.12603 0.14804 0.14788 0.14820 0.14983 0.14967 0.14999 

𝜽𝟐𝟐 
Avg. 0.47176 0.49600 0.49590 0.49610 0.49691 0.49680 0.49701 

MSE 0.00820 0.01098 0.01097 0.01100 0.01126 0.01124 0.01128 
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Table 6 

Interval Estimates (AIL and CP in %) of MLE and BE for Simple Stress  

Strength Rayleigh Model under Censoring Type-I given 𝑻 = 𝟏. 𝟐 

 𝒏 Parm 
Asy-CI HPD: Non-IF HPD: IF 

AIL CP AIL CP AIL CP 

30 

𝜽𝟏𝟏 0.27839 96.1 0.28599 96.3 0.28222 96.3 

𝜽𝟏𝟐 0.33046 98.4 0.34090 98.1 0.33800 98.3 

𝜽𝟐𝟏 0.76493 94.2 0.62378 95.4 0.64311 95.2 

𝜽𝟐𝟐 0.27812 98.9 0.30649 99.0 0.30531 98.6 

60 

𝜽𝟏𝟏 0.24986 96.2 0.26445 95.5 0.24832 96.7 

𝜽𝟏𝟐 0.30033 99.1 0.29594 98.3 0.28457 98.2 

𝜽𝟐𝟏 0.71053 93.3 0.60941 95.7 0.60313 96.3 

𝜽𝟐𝟐 0.25943 99.9 0.31045 99.0 0.31063 98.3 

90 

𝜽𝟏𝟏 0.23344 96.8 0.24322 96.9 0.24676 96.4 

𝜽𝟏𝟐 0.29627 99.3 0.29606 97.9 0.28995 99.0 

𝜽𝟐𝟏 0.67568 92.5 0.57697 95.3 0.55468 95.1 

𝜽𝟐𝟐 0.24601 99.9 0.31374 98.4 0.30005 98.7 

120 

𝜽𝟏𝟏 0.23070 96.3 0.23260 97.4 0.24209 96.8 

𝜽𝟏𝟐 0.29242 99.1 0.29101 98.6 0.28669 98.6 

𝜽𝟐𝟏 0.65895 92.4 0.55279 95.5 0.55771 95.4 

𝜽𝟐𝟐 0.23891 99.6 0.28834 98.4 0.29515 98.1 

  

Table 7 

Interval Estimates (AIL and CP in %) of MLE and BE for Simple Stress  

Strength Rayleigh Model under Censoring Type-I given 𝑻 = 𝟏. 𝟓 

𝒏 Parm 
Asy-CI HPD: Non-IF HPD: IF 

AIL CP AIL CP AIL CP 

30 

𝜽𝟏𝟏 0.26442 96.1 0.27012 95.8 0.27377 95.8 

𝜽𝟏𝟐 0.33827 98.5 0.36680 97.8 0.34531 98.6 

𝜽𝟐𝟏 0.77869 94.9 0.64609 95.4 0.63600 95.6 

𝜽𝟐𝟐 0.31641 99.0 0.35097 99.0 0.34854 99.2 

60 

𝜽𝟏𝟏 0.25057 97.0 0.24704 96.5 0.25845 96.4 

𝜽𝟏𝟐 0.31339 99.6 0.31089 98.4 0.32229 97.5 

𝜽𝟐𝟏 0.72871 92.7 0.61957 95.1 0.61939 95.4 

𝜽𝟐𝟐 0.28680 99.5 0.32868 99.2 0.32638 98.8 

90 

𝜽𝟏𝟏 0.23126 96.2 0.24733 96.1 0.24459 96.1 

𝜽𝟏𝟐 0.30019 99.0 0.30907 98.8 0.29942 98.6 

𝜽𝟐𝟏 0.70311 92.6 0.60954 95.3 0.59711 96.2 

𝜽𝟐𝟐 0.26656 99.1 0.33692 99.7 0.32044 98.8 

120 

𝜽𝟏𝟏 0.23318 96.8 0.24564 97.1 0.24342 96.9 

𝜽𝟏𝟐 0.29792 99.4 0.29547 99.5 0.29662 98.3 

𝜽𝟐𝟏 0.73473 92.1 0.60238 95.3 0.61090 95.4 

𝜽𝟐𝟐 0.26852 99.6 0.34720 99.2 0.33303 99.8 
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Table 8 

Interval Estimates (AIL and CP in %) of MLE and BE for Simple Step Stress 

Rayleigh Model under Censoring Type-I given 𝑻 = 𝟏. 𝟕𝟓 

𝒏 Parm 
Asy-CI HPD: Non-IF HPD: IF 

AIL CP AIL CP AIL CP 

30 

𝜽𝟏𝟏 0.26805 96.9 0.27614 97.1 0.27145 96.1 

𝜽𝟏𝟐 0.34861 98.9 0.36376 98.7 0.37772 98.0 

𝜽𝟐𝟏 0.85921 93.5 0.72401 95.9 0.68547 95.3 

𝜽𝟐𝟐 0.33418 99.2 0.34970 99.1 0.35845 97.9 

60 

𝜽𝟏𝟏 0.24301 96.7 0.25399 96.4 0.25015 97.4 

𝜽𝟏𝟐 0.30159 98.4 0.30884 99.2 0.31324 98.1 

𝜽𝟐𝟏 0.76398 92.6 0.65952 95.1 0.62183 95.2 

𝜽𝟐𝟐 0.29314 98.4 0.32988 99.0 0.31229 98.9 

90 

𝜽𝟏𝟏 0.23394 96.9 0.23364 97.2 0.24233 97.5 

𝜽𝟏𝟐 0.30178 99.1 0.30730 98.7 0.29314 98.9 

𝜽𝟐𝟏 0.77061 92.1 0.64326 95.5 0.63705 95.2 

𝜽𝟐𝟐 0.28450 98.7 0.32968 99.4 0.33397 99.1 

120 

𝜽𝟏𝟏 0.22375 96.3 0.23124 97.2 0.24122 97.1 

𝜽𝟏𝟐 0.28951 99.1 0.28320 98.4 0.27295 98.9 

𝜽𝟐𝟏 0.64823 92.0 0.55202 96.0 0.54440 95.2 

𝜽𝟐𝟐 0.27184 99.1 0.33112 98.8 0.33676 99.0 

 

 To show the MCMC convergence, using samples, trace plots of the posterior 

distributions of 𝜃11, 𝜃12, 𝜃21 and 𝜃22 are plotted in Figures (3-6). It displays 10,000 outputs 

for the unknown parameters 𝜃11, 𝜃12, 𝜃21 and 𝜃22 with their sample mean (represented  

by soled lines (—)) and two bounds BCIs (represented by dashed lines (- - -)). It indicates 

that the MCMC sampling procedure has converged well. It also shows that the burn-in 

sample has an appropriate size to erase the effect of the initial values. Also,the marginal 

posterior density estimates of 𝜃11, 𝜃12, 𝜃21 and 𝜃22 with their histograms and sample means 

(vertical dashed lines (:)), based on MCMC samples of size 10,000 are represented in 

Figures (3-6).Thus, the results of the proposed methods give a good explanation to our 

model. 
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Figure 3: Convergence of MCMC Estimates for 𝜽𝟏𝟏 

 

  
Figure 4: Convergence of MCMC Estimates for 𝜽𝟏𝟐 
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Figure 5: Convergence of MCMC Estimates for 𝜽𝟐𝟏 

  

 
Figure 6: Convergence of MCMC Estimates for 𝜽𝟐𝟐 
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7. CONCLUSION 
 

 In this paper, we studied a simple step-stress ALT model for the Rayleigh distribution 

under type-I censored data in presence of competing causes of risks. We have derived  

the MLEs and asymptotic confidence interval estimates for the unknown parameters.  

Also, we computed BEs and the corresponding HPD interval estimates under informative 

priors based on two different types of loss functions LINEX and squared error loss 

functions. We have then performed a simulation study to assess the performance of all 

these procedures and an explanatory instance has been offered to demonstrate all the 

methods of inference developed. The calculations have been made based on different 

sample sizes and different Time truncation (Time censoring) 𝑇 = 1.2, 1.5 and 1.75.  

Also, real data is analyzed. To determine whether the data makes a good fit for the  

Rayleigh distribution, we made a Kolmogorov Smirnov goodness-of-fit test for the type-I 

censored data.  
 

 From the results in Tables (1-6), we have observed the following:  
 

1. For the real data sets, the Rayleigh distribution gives a good fit for the real data. 
 

2. The Figures (1-2); empirical cdf and histogram, shows that the data fit the given 

distribution.  
 

3. The MSEs of MLEs of the considered parameters decrease as the sample size 

increases, except for a few cases. This may be due to fluctuations in data.  
 

4. The BEs of the considered parameters decrease as the sample size increases, except 

for a few cases. This may be due to fluctuations in data.  
 

5. The length of approximate and credible CIs decreases as the sample size increases  
 

6. The CP% of approximate CIs increases as the sample size increases and the CP% 

of the highest posterior density (HPD) credible intervals increases as the sample 

size increases.  
 

 Finally, the simulation results demonstrate that both the MLEs and Bayesian estimates 

become better in terms of MSEs as sample size increases. For future research, we will study 

a simple step-stress ALT model for the Rayleigh distribution under censored data in 

presence of dependent competing causes of risks and We will compare the results in the 

two cases. 
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