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ABSTRACT 
 

 Identifying outliers is a critical task in data analysis across various fields, financial, 

economics, healthcare and others. Outliers are indeed data points that differ significantly 

from the bulk of the data, it can have various implications depending on the context. 

Effective identification of outliers requires resistant statistical methods and a deep 

understanding of the context in which the data was generated. By accurately pinpointing 

outliers, analysts can make informed decisions, improve models, and gain deeper insights 

into the underlying processes driving the data. When the model contains multiple outliers 

and (or) high leverage points, the problem of masking and swamping arises. With this 

problem, the existing robust methods fail to identify outliers accurately and then make a 

big misdiagnosis. 
 

 In this article, we developed a new procedure with an efficient cut-off point to 

increase the correctly identification of high leverage points. The new procedure is depend 

on the Robust Mahalanobis Distance based on the "Minimum Regularized Covariance 

Determinant" with a new threshold term. To exam the performance of the developed 

method, simulation study in different scenarios are designed. 
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1. INTRODUCTION 
 

 Outliers play a pivotal role in data analysis across various fields by challenging the 

normative patterns observed within datasets, while often perceived as anomalies or 

errors, outliers can carry significant implications, potentially influencing the outcomes of 

statistical analyses and predictive models. Therefore, their timely detection and careful 

handling are critical steps in ensuring the reliability and validity of data-driven insights 

[Habshah, et al., (2009), Hadi (1992) and Saleem, Aslam and Shaukat (2021)]. 
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 The identification of outliers involves distinguish observations that significantly 

deviate from the bulk of points within a dataset (Hubert, Debruyne and Rousseeuw, 

2018). This process is guided by specific definitions and detection techniques tailored to 

the characteristics of the data and the objectives of the analysis. Different disciplines and 

applications may employ distinct methods for outlier detection, reflecting the diverse 

contexts in which outliers can manifest and their potential impact on analytical outcomes. 

In the multivariate regression model, outliers may located in the explanatory variable and 

then defined as a high leverage points (HLP) (Habshah, et al., 2009). 
 

 In literature, many good approaches have been suggested to identify outliers and 

HLPs, such as the hat matrix, cooks distance and mahalanobis distance. Unfortunately, 

the classical methods are not robust due to the sensitivity to distribution assumptions. 

Where, the classical diagnostic methods often assume that the data follow a specific 

distribution, such as normality [Alguraibawi, Midi and Imon (2015) and Imon (2005)]. If 

these underlying assumptions are violated (e.g., they are highly skewed or exhibit heavy 

tails), the classical methods may completely destroyed. In addition, the thresholds used to 

isolate outliers or HLPs may not be appropriate or not enough efficient, leading to 

incorrect diagnoses 
 

 The one of significant problems that diagnostic methods suffer from is the masking 

and swamping impact. Masking occurs when outliers are hidden or suppressed by other 

data points, while swamping happens when some inlier observations are detected 

wrongly as outliers, skewing the results. The most diagnostic classical method that 

commonly used to detect outliers and HLP is the Mahalanobis Distance (MD) approach 

[Alguraibawi, Midi and Imon (2015) and Leroy and Rousseeuw (1987)]. The MD 

approach is an Euclidean distance between two points in multivariate space. When the 

normal assumptions are met, the MD is a powerful tool in multivariate analysis for 

measuring distances and identifying outliers and HLP based on the correlation structure 

of the data [Leroy and Rousseeuw (1987) and Rousseeuw and Yohai (1984)]. 
 

 For multivariate regression model, let 𝑋 be a (𝑛 × 𝑝) design matrix, where, 𝑝 is a 

number of variables and 𝑛 is a size of sample. The multivariate regression model in is 

given by,  
 

𝑦 = 𝑋𝛽 + 𝜀 (1) 
 

where 𝑦 be an 𝑛 × 1 vector of response variable, 𝛽 be an 𝑝 × 1 vector of the unknown 

regression coefficients to be estimated and 𝜀 be an 𝑛 × 1 random vector assumed to be 

independently identically distributed normal with mean zero and constant variance.  
 

 Let 𝑋𝑖 = (𝑥i1,, 𝑥𝑖2, … , 𝑥𝑖𝑝)𝑡 be the ith vector of 𝑋, then the estimated of location (𝜇̂𝑥) 

and scale (Σ̂𝑥) parameters of 𝑋 are given as [Habshah, et al., (2009), Hadi (1992) and 

Mamun et al., (2012)];  
 

𝜇̂𝑥 =
1

𝑛
∑ 𝑥𝑖  ;  𝑖 = 1,2, … , 𝑛 

𝑛

𝑖=1

 (2) 

 

Σ̂𝑥 =
1

𝑛 − 1
∑(𝑥𝑖 − 𝜇̂𝑥)𝑡(𝑥𝑖 − 𝜇̂𝑥)

𝑛

𝑖=1

 (3) 
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 Then the classical 𝑀𝐷 for the ith case is given as follows 
 

𝑀𝐷𝑥 = 𝑑(𝑥, 𝜇̂, 𝛴̂) = [(𝑥 − 𝜇̂𝑥)𝑡Σ̂−1(𝑥 − 𝜇̂𝑥)]
1
2 (4) 

 

 The 𝑀𝐷𝑥  can also be expressed depend on the hat values as 
 

𝑀𝐷𝑥 = [(𝑛 − 1) (ℎ𝑖𝑖 −
1

𝑛
)]

1/2

 (5) 

 

where, ℎ𝑖𝑖 = 𝑥𝑖
𝑡(𝑋𝑇𝑋)−1𝑥𝑖  

 

 The ℎ𝑖𝑖  is depend on the actual observations, so it sensitive to outliers points. Since 

the MD values depend on the ℎ𝑖𝑖  as shown in Equation 5, it also is sensitive to outliers 

that can affect the estimation of location and scale parameters (Alguraibawi, Midi and 

Imon, 2015). The classical MD has another limitation, where the multivariate normal 

distribution is may not always be appropriate for real-world datasets. Many robust 

mahalanobis distance techniques are developed to overcome the drawbacks of classical 

MD, however, most of these techniques are suffered from swamping effect [Alguraibawi, 

Midi and Imon (2015) and Imon (2005)].  
 

 The threshold term of MD values is distributed as (√𝝌𝒑,   𝟎.𝟗𝟓
𝟐 ). MD value exceeds 

threshold term is considered as high leverage point (Rousseeuw and Yohai, 1984). 

 

2. ROBUST MAHALANOBIS DISTANCE TECHNIQUES 
 

 Rousseeuw (1990) pointed that the classical MD suffer from the masking effect. In 

masking, the presence of one or a few outliers hides the presence of other outliers. Where 

the multiple outliers may be no have large value of MD (Rousseeuw and Leroy, 1987). 

This drawback is due to that the classical MD is depends on the traditional mean vector 

and variance covariance matrix those are not resistant for outliers. Rousseeuw suggested 

using robust estimators for location and scale parameters rather than classical mean and 

covariance for computing MD. The Robust MD (RMD) is defined as [Rousseeuw and 

Van Zomeren (1990) and Saleem, Aslam and Shaukat (2021)]; 
 

𝑅𝑀𝐷𝑥 = 𝑑(𝑥, 𝜇̂𝑟𝑜𝑏𝑢𝑠𝑡 , Σ̂𝑟𝑜𝑏𝑢𝑠𝑡) (6) 
 

where, 𝜇̂𝑟𝑜𝑏𝑢𝑠𝑡 and 𝛴̂𝑟𝑜𝑏𝑢𝑠𝑡 are the robust estimate of locations and scale coefficients, 

respectively. Many approaches are used to find robust location and scale coefficients such 

as, MCD, MVE, M-estimator, MM-estimator and newly the MRCD estimate [Ghapor et 

al., (2015), Rousseeuw and Yohai (1984) and Rousseeuw and Van Zomeren (1990)]. 
 

 Leroy and Rousseeuw (1987) suggested using the term √𝜒𝑝,0.95
2  as cut-off point for 

𝑅𝑀𝐷, the using of this cut-off point is based on the assumption that the p-dimensional 

variables follow a multivariate normal distribution (Rousseeuw and Yohai, 1984). Since 

in real practice, there is no guarantee that this assumption be met, Imon and Khan (2003) 

suggested a cut-off point value as Imon (2005); 
 

median(RMDi) + c mad(RMDi), 𝑖 = 1,2, … , 𝑛 (7) 
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 Imon and Khan (2003) showed that the new cut-off point is more effective in 

diagnosing HLP than the cut-off point proposed by Leroy and Rousseeuw (1987).  

 

3. ROBUST ESTIMATES OF LOCATION  

AND SCATTER PARAMETERS 
 

 The classical location and scale parameters have optimal properties under the 

normality assumptions. However, presence of small fraction of contamination in a sample 

data can make a big meaningless influence on the mean and variance of the sample due to  

these estimators are highly sensitive to outlying observations in a data. As an alternative 

method, robust statistical techniques are developed to be more resistant to unusual  

data. In literature, many robust estimates have been suggested such as MCD, MVE,  

M-estimator, MM-estimator OGK-estimator and recently, the MRCD [Ghapor et al., 

(2015), Imon and Khan (2003), Rousseeuw and Yohai (1984), Rousseeuw and Van 

Zomeren (1990) and Rousseeuw and Leroy (1987)]. 
 

 In this study we will apply some of these robust estimator to robustify the MD to be 

more resistant to high leverage points. 

 

3.1 The Minimum Covariance Determinant (MCD) 

 The "minimum covariance determinant" (MCD) proposed by Rousseeuw and Yohai 

(1984) is a robust estimator of a multivariate location and scale that has high breakdown 

point. The MCD aims to find ℎ points (out of 𝑛) of dataset that gives the minimum 

determination of the scale matrix. The resampling technique is using to find ℎ subset, 

where 
𝑛

2
≤ ℎ ≤ 𝑛. The robust location estimator 𝜇̂𝑥 is determine as the average of ℎ 

subset. Whereas, the robust scatter parameter Σ̂𝑥 is the corresponding covariance matrix 

multiplied by a consistency factor such as 𝐶𝛼, where 𝛼 =
𝑛−ℎ

ℎ
. The MCD estimator has 

high break down point around 0.50, but unfortunately, it has low efficiency at the normal 

model. Hubert et al., showed that the MCD estimator has only 6% relative efficiency with  

𝛼 = 0.50 when 𝑝 = 2 and 20.5% if 𝑝 = 10. Another drawback for MCD estimator, the 

scatter matrix will be singular if 𝑝 > 𝑛 leading to the determination value equal zero 

[Imon and Khan (2003), Rousseeuw and Yohai (1984) and Rousseeuw and Van Zomeren 

(1990)]. 

 

3.2 Minimum Volume Ellipsoid Estimator (MVE) 

 The "Minimum Volume Ellipsoid Estimator" (MVE) is the one of most popular 

robust estimator technique which suggested by Rousseeuw and Yohai (1984). The MVE 

estimator depend on finding the smallest ellipsoid that covers at least half points ℎ (out of 

𝑛) of observations. The algorithm of MVE has two steps. The first step is to identify the 

ℎ subset that should be greater than half of data and the second step is to determine the 

minimum volume ellipsoid that covers at least the half of data. This technique lead to 

achieve a high break down point (around 50%), whereas, the efficiency of MVE is 

increasing by increase of ℎ subset [Rousseeuw and Yohai (1984), Rousseeuw and Van 

Zomeren (1990) and Yohai (1987)]. 
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3.3 M-Estimation 

 The M-estimators proposed by Huber (1964, 1973). It is a generalization of maximum-

likelihood estimator aims to find estimators by reducing the effect of unusual data throw 

minimizing the sum of a less rapidly increasing function of residuals, as follows  
 

min
𝛽

∑ 𝛾(𝑟𝑖)

𝑛

𝑖=1

= min
𝛽

∑ 𝛾 (𝑦𝑖 − ∑ 𝑥𝑖𝑗𝛽̂𝑗

𝑛

𝑖=1

)

𝑛

𝑖=1

 (8) 

 

where, 𝑟𝑖 is the residual for 𝑖 = 1,2, … , 𝑛 and 𝛽̂ is an unknown coefficients should be 

estimated. The objective 𝛾 is a particular function determines the contributions of each 

residuals in the objective function. The 𝛾 function must be positive definite, symmetric, 

unique minimum at zero and monotone in |𝑟𝑖|. Under main assumptions, the M-estimates 

has about 95% relative efficiency with high breakdown points equal to 0.50. Although 

the M-estimator is robust for outlying observation in response variable but it is sensitive 

to high leverage points and the breakdown point will decreases if there is there is an 

outlier in the predictor variables [Alguraibawi, Midi and Imon (2015), Mamun et al., 

(2012) and Rousseeuw and Yohai (1984). 

 

3.4 MM-Estimator 

 The MM-estimator is proposed by Yohai (1987). It is one of the most widely used 

robust estimation methods due to its many good features. It combines an elevated 

breakdown point 0.5 and supreme relative efficiency (95%). The Iterative reweighted least 

square (RWLS) approach is employed to obtain the MM-estimator. The "MM" computed 

throw using more than one M-estimation process to find the final estimates. The MM-

estimates procedure is summarized as follows [Mamun et al., (2012) and Yohai (1987)]; 
 

1. Finding the initial estimates of the coefficients and the corresponding residuals 

𝑒𝑖 , 𝑖 = 1,2, … , 𝑛 depend on a high BP estimator such as S-estimators. 

2. Computing the M-estimation of the scale of residuals 𝜎̂𝑒 using the results from  

Step 1. 

3. By using the residuals 𝑒𝑖 and the scale 𝜎̂𝑒  that obtained from previous steps and 

employed the first iteration of RWLS to find the M-estimates of the regression 

parameters based on Huber or bisquare weights 𝜑𝑖  

∑ 𝜑𝑖(𝑒𝑖
(1)

/𝜎̂𝑒)

𝑛

𝑖=1

𝑥𝑖 = 0 (9) 

 

4. Finding a new weights 𝜑 by using 𝑒𝑖  from Step 3. 

5. The 𝜎̂𝑒  is kept fixed from Step 2, Steps 3 and 4 are reiterated until convergence. 

 

3.5 Minimum Regularized Covariance Determinant (MRCD) 

 We mentioned previously that the MCD estimators have essential restrictions that is 

of low efficiency and not available in high dimensional data when 𝑝 > 𝑛. Boudt, K. 

(2020) proposed a new approach as an amendment for the MCD namely the "Minimum 

Regularized Covariance Determinant" (MRCD) estimator to avoid the MCD estimators 

drawbacks (Boudt et al., 2020). The main idea for MRCD is by replacing the subset 

based variance with a regularized variance estimate, which is specified as a weight 
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average of the sample variance of the ℎ subset and a pre-determined positive definite 

target matrix. The regularize variance based on the h subset, which results in the smallest 

overall determinant, is then the MRCD estimator (Imon and Khan, 2003). The minimum 

regularized covariance determinant is typically associated with robust covariance 

estimation, specifically in the context of robust statistics and outlier detection. The 

regularized covariance determinant can be formulated as [Boudt et al., (2020) and Zahariah 

and Midi (2023)]: 
 

𝑚𝑖𝑛Σ>0|Σ|
1
𝑛

 
 (10) 

 

where, |Σ| represents the determinant of Σ, which is a measure of the volume or spread 

captured by the covariance matrix. 
 

 The objective |Σ|1/𝑛 is the regularized version of the covariance determinant. 

Regularization is often introduced to stabilize the estimation process, especially when 

dealing with high-dimensional data or when the sample size is relatively small compared 

to the number of variables 
 

 The MRCD estimator is formulated as [Boudt et al., (2020) and Zahariah and Midi 

(2023)]: 
 

𝑚𝑖𝑛Σ>0[|Σ|1/𝑛 + 𝜆. 𝑡𝑟(Σ)] (11) 
 

where: 

 Σ > 0 denotes that Σ is positive definite, ensuring it is a valid covariance matrix. 

 𝜆 is a regularization parameter that balances the regularization term with the 

determinant term. 

 𝑡𝑟(Σ) is the trace of Σ, which is the sum of its diagonal elements (the sum of 

variances). 
 

 The objective function |Σ|1/𝑛 + 𝜆. 𝑡𝑟(Σ) aims to find a covariance matrix Σ that 

minimizes the regularized determinant |Σ|1/𝑛 while also penalizing the trace of Σ. This 

penalty term helps to control the complexity of the covariance matrix and can improve 

the stability and robustness of the estimator, particularly in the presence of outliers or when 

p > n. The MRCD estimator is typically computed using optimization techniques such as 

convex optimization methods [Boudt et al., (2020) and Zahariah and Midi (2023)]. 

 

4. A NEW "ROBUST MAHALANOBIS DISTANCE" BASED ON "MINIMUM 

REGULARIZED COVARIANCE DETERMINANT" 
 

 Boudt et al. (2020) proposed A RMD based on the bust covariance matrix of 

"Minimum Regularized Covariance Determinant". Then the robust location and scale of 

MRCD are used to calculate RMD values as outliers identification technique (Boudt et 

al., 2020). Boudt et al. suggested using (√𝜒𝑝,   0.99
2 ) as a cutoff point for RMD values to 

diagnose outliers (Hubert (2022). Siti Zahariah and Habshah Zahariah and Midi, 2023 

pointed out that the Robust MD based on MRCD has high effective for the identification 

of high leverage point in high dimensional sparse dataset (Boudt et al., 2020). While the 

performance of the method deteriorates with increasing the number of predictor variables. 

In this study we suggested a cutoff point for RMD based on MRCD to overcome the 
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drawback of Boudt et al. The new cutoff point depend on Imon's (2003) cutoff that 

mentioned in Equation (7) as follows (Imon 2005); 
 

median(RMDMRCD) + 𝑐 mad(RMD𝑀𝑅𝐶𝐷), 𝑖 = 1,2, … , 𝑛 (12) 
 

where; RMDMRCD is a mahalanobis distance based on covariance of MRCD. 
 

 The proposed method are applying to identify outliers in both cases, for 𝑛 > 𝑝 and for 

high dimensional data when 𝑝 > 𝑛. 
 

 To assess the new suggested method, simulation study with different scenarios are 

designed and comparing it performance with some existing method. 

 

5. MONTE CARLO SIMULATION STUDY 
 

 In order to verify the performance of the proposed method and to know its 

effectiveness in diagnosing the HLPs in the linear model, a Monte Carlo simulation study 

will be used. The suggested method namely MRMD based on MRCD is compared with 

some of existing diagnostic method such as RMD based on MCD, RMD based on MVE, 

RMD based on M- estimator, RMD based on MM- estimator and RMD based on MRCD. 
 

 A good diagnostic method is one that accurately diagnoses high leverage points with 

the least percentage of masking and swamping. The regular observations of variables of 

simulation study are generated as a normal distribution according the following formula 

in R language; 
 

𝑥𝑖𝑗 =  𝑟𝑛𝑜𝑟𝑚 (𝑛, 𝑝), 𝑖 = 1,2, … , 𝑛, 𝑗 = 1,2, … , 𝑝 … (13) 
 

where, 𝑛 is a size of sample and 𝑝 is a number of variables  
 

 In addition, different size of samples, number of variables and percentage of 

contamination (𝛼) are considered.  
 

 In the first simulation study, we consider two variable with 𝑛 = 100. To generating 

high leverage points in dataset, the 5% and 10% points of the regular data in both 

variables being replaced with relative large fixed values equal to 5. Tables 1 and 2 

showed that all of robust diagnostic method are correctly identification of HLPs without 

any masking or swamping point except the RMD_MRCD that which tends to swamp 

some low leverage points as shown in Figures 1 and 2. 

 

Table 1 

The First Scenario of Simulation Study for Diagnose HLPs  

with 𝒏 = 100, 𝒑 = 2 and 𝜶 = 5%. 

Methods 
Right Diagnosis  

Rate for HLPs 

Number of  

Masking Points 

Number of  

Swamping Points 

RMD_MCD 100% 0 0 

RMD_MVE 100% 0 0 

RMD_Mest. 100% 0 0 

RMD_MMest. 100% 0 0 

RMD_MRCD 100% 0 1 

MRMD_MRCD 100% 0 0 
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Table 2 

The First Scenario of Simulation Study for Diagnose HLPs  

with 𝒏 = 100, 𝒑 = 2 and 𝜶 = 10% 

Methods 
Right Diagnosis  

Rate for HLPs 

Number of  

Masking Points 

Number of  

Swamping Points 

RMD_MCD 100% 0 0 

RMD_MVE 100% 0 0 

RMD_Mest. 100% 0 0 

RMD_MMest. 100% 0 0 

RMD_MRCD 100% 0 2 

MRMD_MRCD 100% 0 0 

 

 
Figure 1: Plots of Robust Diagnostic Methods for Simulation Data  

with 𝒏 = 100, 𝒑 = 2 and 𝜶 = 5% 
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Figure 2: Plots of Robust Diagnostic Methods for Simulation Data  

with 𝒏 = 100, 𝒑 = 2 and 𝜶 = 10% 

 

 In the second simulation study, we generate high dimension model with 𝑛 = 200 and 

𝑝 = 30 with percentage of contamination 𝛼 = 5% and 10%. The high leverage points are 

generated by replacing the first α% regular values in the variables 1, 5 and 10 by large 

fixed value equal to 10. The results are summarized in Tables 3 and 4. It is clearly to see 

that the suggested method MRMD_MRCD has the supreme performance with 100% 

correctly identification followed by RMD_MMest which swamp just one points (point 

number 98) with 𝛼 = 5%. Conversely, the RMD_MRCD has worst performance with 64 

swamping points. Surprisingly, the RMD_MMest method completely collapse on high-

dimensional data at 10% contamination. Figures 3 and 4 confirmed the obtained results. 

 

Table 3 

The Second Scenario of Simulation Study for Diagnose HLPs  

with 𝒏 = 200, 𝒑 = 30 and 𝜶 = 5% 

Methods 
Right Diagnosis  

Rate for HLPs 

Number of  

Masking Points 

Number of  

Swamping Points 

RMD_MCD 100% 0 8 

RMD_MVE 100% 0 3 

RMD_Mest. 100% 0 7 

RMD_MMest. 100% 0 1 

RMD_MRCD 100% 0 64 

MRMD_MRCD 100% 0 0 
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Table 4 

The Second Scenario of Simulation Study for Diagnose HLPs  

with 𝒏 = 200, 𝒑 = 30 and 𝜶 = 10% 

Methods 
Right Diagnosis  

Rate for HLPs 

Number of  

Masking Points 

Number of  

Swamping Points 

RMD_MCD 100% 0 6 

RMD_MVE 100% 0 3 

RMD_Mest. 100% 0 3 

RMD_MMest. 10% 18 1 

RMD_MRCD 100% 0 178 

MRMD_MRCD 100% 0 0 

 

 

 
Figure 3: Plots of Robust Diagnostic Methods for Simulation Data  

with 𝒏 = 200, 𝒑 = 30 and 𝜶 = 5% 
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Figure 4: Plots of Robust Diagnostic Methods for Simulation Data  

with 𝒏 = 200, 𝒑 = 30 and 𝜶 = 10% 

 

 In the third simulation study, we generate high dimension model with 𝑛 = 400 and  

𝑝 = 60 with percentage of contamination 𝛼 = 5% and 10%. The high leverage points are 

generated by replacing the first α% regular values in the variables 1, 10, 20, 30 and 40 by 

large fixed value equal to 10. The results in Tables 5 and 6 and Figures 5 and 6 confirm 

that the proposed method MRMD_MRCD is still the best diagnostic method with stable 

performance with variations in the performance of the rest of the methods. We can also 

notice that the RMD_MMest method breakdown completely at a contamination of 10%. 

 

Table 5 

The Third Scenario of Simulation Study for Diagnose HLPs  

with 𝒏 = 400, 𝒑 = 60 and 𝜶 = 5% 

Methods 
Right Diagnosis  

Rate for HLPs 

Number of  

Masking Points 

Number of  

Swamping Points 

RMD_MCD 100% 0 19 

RMD_MVE 100% 0 8 

RMD_Mest. 100% 18 15 

RMD_MMest. 100% 0 1 

RMD_MRCD 100% 0 162 

MRMD_MRCD 100% 0 0 

 

  

0 50 100 200
5

1
0

1
5

2
0

RMD Based CovMve

Index

R
M

D
 b

a
s
e
d
 C

o
v
M

v
e

0 50 100 200

5
1
0

1
5

2
0

RMD Based CovMcd

Index

R
M

D
 b

a
s
e
d
 C

o
v
M

c
d

0 50 100 200

5
1
0

1
5

2
0

RMD Based CovMest

Index

R
M

D
 b

a
s
e
d
 C

o
v
M

e
s
t

0 50 100 200

4
5

6
7

8

RMD Based CovMMest

Index

R
M

D
 b

a
s
e
d
 C

o
v
M

M
e
s
t

0 50 100 200

5
1
0

1
5

2
0

2
5

RMD Based CovMrcd

Index

R
M

D
 b

a
s
e
d
 C

o
v
M

rc
d

0 50 100 200

5
1
0

1
5

2
0

2
5

MRMD Based CovMrcd

Index

M
R

M
D

 b
a
s
e
d
 C

o
v
M

rc
d



A New Modified Robust Mahalanobis Distance…… 46 

Table 6 

The Third Scenario of Simulation Study for Diagnose HLPs  

with 𝒏 = 400, 𝒑 = 60 and 𝜶 = 10% 

Methods 
Right Diagnosis  

Rate for HLPs 

Number of  

Masking Points 

Number of  

Swamping Points 

RMD_MCD 100% 0 17 

RMD_MVE 100% 2 7 

RMD_Mest. 100% 18 8 

RMD_MMest. 2.5% 19 2 

RMD_MRCD 100% 0 146 

MRMD_MRCD 100% 0 0 

 

 
Figure 5: Plots of Robust Diagnostic Methods for Simulation Data 

with 𝒏 = 400, 𝒑 = 60 and 𝜶 = 5% 
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Figure 6: Plots of Robust Diagnostic Methods for Simulation Data  

with 𝒏 = 400, 𝒑 = 60 and 𝜶 = 10% 

 

 In the last simulation study, we generate high dimension data when the number of 

variables are greater than the size of sample (𝑝 > 𝑛) with 𝑛 = 200 and 𝑝 = 400. Two 

percentage of contamination 𝛼 = 5% and 10% are considered. The high leverage points 

are generated by replacing the first α% regular values in the first 10 variables with fixed 

value equal to 20. Its interested to show that all of existing method are breakdown when 

(𝑝 > 𝑛), whereas MRMD_MRCD and MRMD_MRCD still working under this 

constriction. This issue is because that the MCD, MVE, M_estimator and MM_estimator 

are an efficient covariance estimator methods when the number of observations are 

smaller than number of variables, whereas, MRCD is efficient approach under this 

constriction. The results in Tables 7 and 8 and Figures 7 show that the proposed method 

MRMD_MRCD is the best diagnostic method with stable performance for all of 

contamination rates. Although the RMD_MRCD is identify all of HLPs, but it swamp a 

large number of regular points (more than 175 point). 

 

Table 7 

The Forth Scenario of Simulation Study for Diagnose HLPs  

with 𝒏 = 200, 𝒑 = 400 and 𝜶 = 5% 

Methods 
Right Diagnosis  

Rate for HLPs 

Number of  

Masking Points 

Number of  

Swamping Points 

RMD_MRCD 100% 0 190 

MRMD_MRCD 100% 0 0 
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Table 8 

The Forth Scenario of Simulation Study for Diagnose HLPs  

with 𝒏 = 200, 𝒑 = 400 and 𝜶 = 10% 

Methods 
Right Diagnosis  

Rate for HLPs 

Number of  

Masking Points 

Number of  

Swamping Points 

RMD_MRCD 100% 0 175 

MRMD_MRCD 100% 0 0 

 

 
Figure 7: Plots of Robust Diagnostic Methods for Simulation Data  

with 𝒏 = 200, 𝒑 = 400 and 𝜶 = 10% 

 

7. CONCLUSIONS 
 

 The main target of this study is to suggest a new diagnostics method to identify high 

leverage points. The proposed method is a modification of robust mahalanobis distance 

based on MRCD with a new cut of point, named shortly MRMD_MRD. From the results 

of simulation study, we can conclude the following; 

1. With low dimensions data, when 𝑝 = 2 and different percentage of 

contaminations, we find that all of the robust diagnostic method are correctly 

identification of HLPs without any masking or swamping point except the 

RMD_MRCD that which tends to swamp some low leverage points. 

2. With high dimensional data, when 𝑝 = 30 and 60 with different sizes of samples, 

the proposed method has a supreme performance compared with existing methods 

that suffer from swamping problem 
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3. At 5% of contamination, the RMD_MRCD has the worst performance due to it 

has a high swamping points percentage. 

4. At a contamination of 10%, the RMD_MMest method breakdown completely with 

unstable performance 

5. When (𝑝 > 𝑛), all diagnostic methods are destroyed, except the MRMD_MRCD 

and RMD_MRCD.  
 

 Finally, the proposed method of MRMD_MRCD has a perfect performance of 

diagnostic of high leverage points with reducing of masking and swamping effects for 

high dimensional data. 
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