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ABSTRACT 
 

 Premiums are sums of money stipulated by insurance or reinsurance companies and 

agreed upon by policyholders; they are payable according to the terms of insurance or 

reinsurance agreements. When calculating premium rates, insurance companies typically 

consider the risk exposure of the insured vehicle, which is crucial in estimating the number 

of claims. While the duration of the insurance contract is a primary factor in assessing risk 

exposure, other elements, such as the distance traveled, also significantly impact accident 

risk. This study aims to enhance the computation of risk exposure for vehicles by 

incorporating both the distance traveled and the duration of the insurance contract. The 

objective is to evaluate the combined effect of mileage and insurance contract duration on 

the number of claims via a generalized additive model (GAM). The GAM is chosen for its 

ability to capture potential nonlinear relationships between covariates and response 

variables. In this research, the GAM is constructed via cubic splines, and model 

coefficients are estimated via the penalized iteratively reweighted least squares (PIRLS) 

method. Upon estimating the model coefficients, the GAM is used to predict claim 

frequency, which can subsequently inform the relativity of premium rates compared with 

a reference premium. This methodology is then applied to vehicle insurance claim data to 

establish more accurate premium rates, considering both distance traveled and contract 

duration. 
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1. INTRODUCTION 
 

 A premium is a sum of money stipulated by an insurance company or reinsurance 

company and agreed upon by the policyholder to be payable based on the insurance 

agreement or reinsurance agreement or a sum of money stipulated based on the provisions 

of laws and regulations that govern compulsory insurance programs for benefits [1]. In 

general, vehicle insurance companies assume that the risk exposure of an insured individual 

is proportional. For example, consider two cars, car a and car b, with the same brand, type, 
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year of production, and engine capacity. Car a is insured for a duration of 6 months, 

whereas car b is insured for 1 year. The insurance company perceives the risk exposure of 

car b to be greater than that of car a. However, in practice, the risk exposure associated 

with vehicle usage is influenced not only by the duration of the insurance policy but also 

by other factors, such as the distance traveled. Therefore, this paper calculates the risk 

exposure of vehicles by considering the distance traveled and the duration of the insurance 

contract. 
 

 Several studies have indicated a significant relationship between the distance traveled 

in kilometers and the risk of car accidents [2,3,4,5]. Litman concluded that there is a 

positive and nonlinear relationship between the number of accidents and the distance 

traveled within one year. The curve representing this relationship shows a positive but  

non-constant association, increasing during the first 35,000 kilometers but decreasing in 

the interval between 35,000 and 37,500 kilometers. The curve subsequently rises again but 

not as sharply as it initially increases. Moreover, the relationship between the distance 

traveled and the number of accidents in a year is not proportional. For example, a vehicle 

covering an annual distance between 25,000- and 30,000-kilometers experiences six times 

more journeys than a vehicle covering less than 5,000 kilometers. However, the accident 

rate is only approximately 2.4 times higher [2]. 
 

 Boucher, Côté, and Guillen undertook a study to examine the joint effects of distance 

traveled and duration as covariates on claim frequency via generalized additive models 

(GAMs) [6]. GAMs are a class of generalized linear models (GLMs) [7] that incorporate 

smoothing functions of covariates into linear predictors, allowing for more flexible 

modeling of nonlinear relationships between the response variable and covariates [8,9]. In 

the GAM, smoothing functions are constructed via various techniques, such as kernel 

smoothing, smoothing splines, and locally estimated scatterplot smoothing (Loess). One 

common smoothing technique is splines, which employ continuous piecewise polynomial 

functions at specified knot points [10]. Cubic splines, used by Boucher, Côté, and Guillen, 

are cubic polynomial basis functions that are continuous up to the second derivative at the 

knots, making them suitable for capturing nonlinear relationships in GAMs [6,8]. 
 

 This paper discusses the development of a GAM on the basis of research by Boucher, 

Côté, and Guillen [6], who explored the relationships among distance traveled, insurance 

contract duration, and claim frequency. On the basis of the GAM, it is possible to estimate 

the smoothing function for each covariate to determine the premium price relativity on the 

basis of the policyholder's risk profile. Each policyholder's risk profile is represented as a 

rating variable. The resulting premium rates reflect the relative premium price of 

policyholders compared with a reference premium. For the analysis in this study, insurance 

data from research by [12] on automobile insurance are utilized. The dataset comprises 

information from 10,000 policies, including covariates such as distance traveled, insurance 

contract duration, claim frequency, and the duration of insurance coverage during 

observation periods. 

 

  



Novkaniza, Wijaya and Devila 19 

2. MATERIALS AND METHODS 
 

2.1 Pay-As-You Drive Pricing System 

 The pay-as-you drive (PAYD) pricing system is an insurance premium pricing structure 

for vehicle insurance that is based on the amount of time a vehicle is driven during the 

insurance contract period [2,12]. The exposure unit is changed from vehicle-year to 

vehicle-mile, vehicle-kilometer, or vehicle-minute. The system is supported by the advent 

of new technology, namely, GPS, which can be installed in vehicles to generate accurate 

data on the distance traveled by the insured. This premium pricing structure is typically 

offered as an option for policyholders, allowing them to choose between the current 

insurance premium structure or PAYD. The PAYD pricing structure is designed to enable 

more accurate insurance premiums, as premiums vary on the basis of the distance traveled. 

Other rating factors can also be included so that lower-risk drivers pay lower premiums 

than higher-risk drivers do. 

 

2.2 Reference Premium Rating Factors and Key Ratios 

 For each policy, the premium is determined by the values of several variables known 

as rating factors or rating variables, which represent the characteristics or traits of the 

policyholder. The premium value applied under the assumption that there is no influence 

from the rating factors is called the base premium or reference premium. The following are 

examples of characteristics or variables based on categories [13]: 
 

a. Policyholder: Age or gender of an individual, type of business of a company, etc. 

b. Insured Object: age or model of the car, type of building, etc. 

c. Geographic region: per capita income or population density of the policyholder's 

residence, etc. 
 

 Moreover, the key ratio denoted by 𝑌  is the ratio between the response variable (𝑋) 
and the exposure (𝑤) [13]  with the following formula: 
 

𝑌 =
𝑋

𝑤
 (1) 

 

 Suppose that the variable 𝑋 denotes the number of claims from policyholders in a 

period (duration) 𝑤. The key ratio is the claim frequency, which is the ratio or average 

number of claims in a period. Table 1 contains several other important and frequently used 

key ratios. 

 

Table 1 

Important key ratios 

Exposure (𝒘) Response Variable (𝑿) Key Ratio (𝒀 =
𝑿

𝒘
) 

Duration Number of claims Claims frequency 

Duration Claim cost Pure premium 

Number of claims Claim cost (Average) Claim severity 

Earned premium Claim cost Loss ratio 

Number of claims Number of large claims Proportion of large claims 
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2.3 Chi-Squared Test 

 The chi-square test [14] is a statistical test used to evaluate the fit between the observed 

distribution in the data and the expected distribution. This test is commonly used to test 

whether data come from a specific distribution, such as the normal, binomial, and Poisson 

distributions. The hypotheses tested in the chi-square test are as follows: 
 

𝐻0: The distribution is suitable for modeling the data (there is no significant 

difference between the observed and expected distributions). 

𝐻1: The distribution is not suitable for modeling the data (there is a significant 

difference between the observed and expected distributions). 
 

 In the goodness-of-fit test via the chi-square test, the chi-square test statistic is 

calculated via the following equation: 
 

𝑋𝑡𝑒𝑠𝑡𝑒𝑑
2 =∑

(𝑒𝑖 − 𝑜𝑖)
2

𝑒𝑖

𝑘

𝑖=1

 (2) 

 

where 𝑜𝑖   represents the number of observations or values in the 𝑖-th category, 𝑒𝑖 represents 

the expected count for each value in the 𝑖-th category, and 𝑘 represents the number of 

categories of observation values. The expected count or frequency can be calculated via 

the following formula: 
 

𝑒𝑖 = 𝑛𝑃𝑟(𝑌 = 𝑗) (3) 
 

where 𝑛 is the number of observations and where 𝑃𝑟(𝑌 = 𝑗)  is the probability density 

function at  𝑗 from the model distribution, with 𝑗 = 0,1, …𝑝. The decision rule for this test 

depends on the critical value derived from the chi-square distribution with the 

corresponding degrees of freedom and significance level 𝛼. The degrees of freedom in the 

goodness-of-fit test are determined by the number of categories (𝑘) and the number of 

estimated parameters from the data, i.e., 𝑑𝑓 = 𝑘 − 𝑙 − 1. The decision-making rule is as 

follows: if 𝑋𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
2 > 𝑋𝑡𝑒𝑠𝑡𝑒𝑑

2 , then 𝐻0 is not rejected; otherwise, if 𝑋𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
2 < 𝑋𝑡𝑒𝑠𝑡𝑒𝑑

2 ,  

then  𝐻0 is rejected. 

 

2.4 Generalized Additive Model 

 The generalized additive model (GAM) is an extension of the generalized linear model 

(GLM) that involves the summation of smoothing functions of the covariates on the linear 

predictor [8,9]. Several smoothing techniques can be used, such as kernel smoothing, 

smoothing splines, and the locally estimated scatterplot smoothing (Loess) method. 

Generally, for each observation 𝑖, with 𝑖 = 1,… , 𝑛, the structure of the GAM is as follows: 
 

𝜂𝑖 = 𝑔(𝜇𝑖) = 𝑠0 +∑𝑓𝑗(𝑥𝑗(𝑖))

𝑝

𝑗=1

 (4) 

 

where 𝑥𝑗 denotes the covariate with 𝑗 = 1,… , 𝑝 and where 𝑥𝑗𝑖  represents the value of 

covariate 𝑥𝑗 for the 𝑖 −th observation. The function 𝑓𝑗(𝑥𝑗(𝑖)) is a smoothing function for 
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covariate 𝑥𝑗. In equation (4), 𝜇𝑖 ≡ 𝐸(𝑌𝑖) is the expected value of the response variable 𝑌𝑖, 

where the distribution of the response variable is a member of the exponential family 

(𝜇𝑖, 𝜙). 
 

2.5 Cubic Spline 

 Suppose a covariate 𝑋 with observation values 𝑥(𝑖), 𝑖 = 1, … , 𝑛 and a response variable 

𝑌 with observation values 𝑦(𝑖), 𝑖 = 1, …𝑛, resulting in pairs of points (𝑥(𝑖), 𝑦(𝑖)). The  

values of the covariate 𝑋 are sorted in ascending order, with 𝑥𝑗   , 𝑗 = 1, … , 𝑛 denoting the 

𝑗-th ordered statistic of 𝑥(𝑖) within the interval [𝑎, 𝑏]. A cubic spline 𝑓 that interpolates the 

data points{(𝑥0, 𝑣(𝑥0 )), (𝑥1, 𝑣(𝑥1)), … , (𝑥𝑛, 𝑣(𝑥𝑛))} with 𝑣(𝑥𝑗) = 𝑦𝑗 is defined as 

follows. 

 

Definition 1.  

 Given a function 𝑔 defined on [𝑎, 𝑏] and a set of knots 𝑎 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑛 = 𝑏, a 

cubic spline interpolant 𝑓 for 𝑔 is a function that satisfies the following conditions [15]: 
 

(a) 𝑓(𝑥) is a cubic polynomial, denoted as 𝑓𝑗(𝑥) on the subinterval [𝑥𝑗 , 𝑥𝑗+1]  

for each 𝑗 = 0,1, … , 𝑛 − 1; 
 

(b) 𝑓𝑗(𝑥𝑗) = 𝑣(𝑥𝑗) and 𝑓𝑗(𝑥𝑗+1) = 𝑣(𝑥𝑗+1), ∀𝑗 = 0,1, … , 𝑛 − 1; 
 

(c) 𝑓𝑗+1(𝑥𝑗+1) = 𝑓𝑗(𝑥𝑗+1) , ∀𝑗 = 0,1, … , 𝑛 − 2; 
 

(d) 𝑓𝑗+1
′ (𝑥𝑗+1) = 𝑓𝑗

′(𝑥𝑗+1) , ∀𝑗 = 0,1, … , 𝑛 − 2; 
 

(e) 𝑓𝑗+1
′′ (𝑥𝑗+1) = 𝑓𝑗

′′(𝑥𝑗+1) , ∀𝑗 = 0,1, … , 𝑛 − 2; 
 

(f) One of the following sets of boundary conditions is satisfied: 

(i) 𝑓′′(𝑥0) = 𝑓
′′(𝑥𝑛) = 0 , (natural boundary) 

(ii) 𝑓′(𝑥0) = 𝑣′(𝑥0) dan 𝑓′(𝑥𝑛) = 𝑣
′(𝑥𝑛) (clamped boundary) 

 

 We use a natural boundary because it produces the smoothest interpolation [9]. In 

statistical work, 𝑦𝑖  is usually measured with noise. Therefore, it is better to treat 𝑓(𝑥𝑖) as a 

parameter to be estimated rather than assume that 𝑓(𝑥𝑖) = 𝑦𝑖  and interpolating it. The 

estimation of 𝑓(𝑥𝑖) is performed by minimizing 
 

𝜂𝑖 = 𝑔(𝜇𝑖) = 𝑠0 +∑𝑓𝑗(𝑥𝑗(𝑖))

𝑝

𝑗=1

 (5) 

 

where the first term is the residual sum of squares (RSS) and the second term is a penalty, 

with 𝜆 denotes a smoothing parameter that can be adjusted and is nonnegative. If 𝜆 = 0, 

then no penalty is applied. On the other hand, if 𝜆 = ∞, the resulting function approaches 

linearity [16]. 
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2.6 Iteratively Reweighted Least Squares (IRLS) 

 Iteratively reweighted least squares (IRLS) [8,9] is a method that can be used to 

estimate generalized linear model (GLM) parameters. Iterate the steps below until the 

sequence �̂�[𝑡] converges. 
 

1. Estimate the values of �̂�𝑖
[0] = 𝑦𝑖

[0] + 𝛿𝑖 and �̂�𝑖
[0] = 𝑔(𝜇𝑖

[0]), where 𝛿𝑖 is typically 

zero. Then, the following two steps are repeated until convergence. 

2. Calculate the pseudodata 𝑧𝑖 = 𝑔′(�̂�𝑖)(𝑦𝑖 − �̂�𝑖
[𝑡]) + �̂�𝑖 and the iterative weights 

𝑤𝑖 =
1

𝑉(�̂�𝑖
[𝑡]
)𝑔′(𝜇𝑖

[𝑡]
)
2 

3. Minimize the objective function: 
 

∑𝑤𝑖(𝑧𝑖 − 𝑿𝑖𝜷)
2

𝐼

𝑖=1

 

 

 Then, update �̂�[𝑡+1] = 𝑿�̂�[𝑡] and �̂�𝑖
[𝑡+1] = 𝑔−1(�̂�𝑖

[𝑡+1]). 
 

 Convergence can be based on the change in deviation from iteration to iteration. 

Iteration stops when the deviation approaches zero or by testing if the derivative of the log-

likelihood is sufficiently close to zero. 

 

2.7 Penalized Iteratively Reweighted Least Squares (PIRLS) 

 The PIRLS method is a modification of the iterative reweighted least squares (IRLS) 

method [9]. In PIRLS, a penalty term is considered in the objective function. Suppose that 

there are 𝑝 covariates with 𝐼 observations, the model matrix of  𝑝 covariates is denoted  

as 𝑿 = [𝑋1  𝑋2   …  𝑋𝑝], where each 𝑋𝑗 represent the 𝑗-th covariate where 𝑗 = 1,2, … , 𝑝,  

a column vector of length 𝐼, and the vector of parameters or model coefficients is  

𝜷 = [𝛽1, … , 𝛽𝑝]. The objective function of PIRLS that needs to be maximized is shown by 

the following equation. 
 

𝑙𝑝(𝜷) = 𝑙(𝜷) −
1

2𝜙
∑𝜆𝑒𝜷𝒆

𝑻𝑺𝒆𝜷𝒆

𝑝

𝑒=1

 (6) 

 

where the first term is the log-likelihood and the second term is a penalty, with 𝐒 being the 

penalty matrix and 𝜆 denoting a nonnegative adjustable smoothing parameter. By adapting 

the objective function of IRLS as described in section 2.6, the following are the iteration 

steps for PIRLS. The following iterative steps are performed until the sequence of �̂�[𝑘]  
converges. 
 

1. Estimate the values of 𝜇𝑖
[0]  = 𝑦𝑖

[0]  + 𝛿𝑖  𝑎𝑛𝑑 𝜂𝑖
[0]  = 𝑔(𝜇𝑖

[0]), where 𝛿𝑖 is  

generally 0. The following two steps are then repeated until convergence is reached. 

2. Calculate the pseudodata 𝑧𝑖 = 𝑔′(�̂�𝑖
[𝑘])(𝑦_𝑖 − �̂�𝑖

[𝑘]) + �̂�𝑖
[𝑘]

 and iteration weights 

𝑤𝑖 = 1/ {𝑔
′(�̂�𝑖

[𝑘])
2

𝑉(�̂�𝑖
[𝑘])} 
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 We find �̂�[𝑘] to minimize the weighted least squares objective function and penalty. 
 

𝑆𝑝 = ‖𝒛[𝒌] − 𝑿𝜷‖
𝑊

2
+∑𝜆𝒆𝜷𝒆

𝑻𝑺𝒆𝜷𝒆

𝑝

𝑒=1

 (7) 

 

where ‖𝑎‖𝑊
2 = 𝒂T𝑾𝒂, the value of 𝜆 can be chosen arbitrarily with 0 ≤ 𝜆 < ∞. Then, 

update �̂�[𝒌+𝟏]  = 𝑿�̂�[𝒌] and �̂�𝑖
[𝑘+1]  = 𝑔−1(�̂�𝑖

[𝑘+1]). Convergence can be based on 

observing the change in deviance from iteration to iteration. Iterations stop when the 

deviance approaches zero or by testing whether the derivative of the log-likelihood is close 

enough to zero. 

 

2.8 Generalized Cross-Validation 

 Generalized cross-validation (GCV) is a modification of cross-validation that replaces 

𝐴𝑖𝑖 with its mean value, which is 𝑡𝑟(𝑨)/𝑛, resulting in the following GCV formula [9]: 
 

𝒱𝑔(𝝀) =
𝐼 ∑ (𝑦𝑖 − 𝜇�̂�)

2𝐼
𝑖=1

[𝐼 − 𝑡𝑟(𝑨)]2
 (8) 

 

where: 

 𝐼 is the number of observations, 

 𝑋 is the (𝐼 × 𝑝) covariate matrix, 

 𝑝 is the number of covariates, 

 𝑦𝑖  is the actual observed value at the 𝑖 − 𝑡ℎ observation, 

 �̂�𝑖 is the predicted value from the model at the 𝑖 − 𝑡ℎ observation, 

 𝐴 = [𝑋(𝑋𝑇 𝑋)−1 𝑋𝑇]  
 

 For cases where the response variable follows a non-normal distribution, the residual 

sum of squares is replaced with the residual deviance, so the GCV formula can be written 

as: 
 

𝒱𝑔(𝝀) =
𝐼 × 𝐷(�̂�)

(𝐼 − 𝛾𝜏)2
 (9) 

 

where 𝐷(�̂�) is the residual deviance, 𝜏 is the effective degree of freedom of the model, and 

𝛾  is usually 1. 

 

3.  GENERALIZED ADDITIVE MODEL 
 

 The construction process of the generalized additive model (GAM) was based on the 

following three assumptions: 
 

1. The response variable, which is the number of claims, is assumed to be a discrete 

random variable distributed according to a Poisson distribution. These variables are 

independent and identically distributed (i.i.d.). 

2. The covariates are assumed to be independent of each other. 

3. The link function used is the logarithmic link function because the response variable 

is assumed to follow a Poisson distribution. 
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3.1 Generalized Additive Model with One Covariate 

 Let 𝑌𝑖 denote a random variable representing the number of claims from an insured 

individual 𝑖 during one year of observation, where 𝑖 = 1, … , 𝐼. We assume that 𝑌𝑖 follows 

a Poisson distribution with the following expectation: 
 

𝐸[𝑌𝑖] = 𝜇𝑖 (10) 
 

 Suppose that we are given a covariate 𝑋 for the 𝑖-th insured individual with observed 

value 𝑥𝑖, where 𝑖 = 1,… , 𝐼. The representation of the GAM with one covariate can be 

expressed by the following equation: 
 

𝑔(𝜇𝑖) = 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑓(𝑥𝑖) (11) 
 

where 𝑔(⋅) is the link function and 𝑓(𝑥) is the smoothing function of covariate 𝑋 constructed 

via a cubic spline. This formulation establishes the framework for analyzing the 

relationship between covariate 𝑋 and the expected number of claims 𝜇𝑖 via the generalized 

additive model (GAM) approach. The link function 𝑔(⋅) transforms the expected value of 

the response variable (number of claims) to ensure that it aligns with the linear predictor, 

which includes the intercept and the smoothed effect of the covariate 𝑋. The smoothing 

function 𝑓(𝑥) captures potential nonlinear relationships between the covariate 𝑋 and the 

response variable within the GAM framework, employing cubic splines to achieve 

flexibility and accuracy in modeling. 

 

3.2 Determination of the Number and Location of Knots 

 Before splines are constructed, it is necessary to first determine the number and location 

of knots in the point set. According to the findings of Stone [17], several knots greater than 

5 is rarely required in natural cubic spline models. The main choice of the number of knots 

that can be used is between 3, 4, or 5. After the number of knots is determined, it is also 

necessary to determine the locations of the knots. According to the authors in [18,19], knots 

can be placed at quantile points (percentiles) of the covariate data distribution. This 

approach is good enough for most datasets, as it ensures that there are enough data points 

for each interval. Suppose that we are given a covariate 𝑋 from the 𝑖-th insured individual 

with observed values 𝑥𝑖, where 𝑖= 1,… , 𝐼. Then, values of 𝑥 that appear more than once in 

the set of observations are considered only once. Let these values be sorted in ascending 

order, denoted as 𝑥(𝑟)
∗ , for 𝑟 = 1,… , 𝐼∗, where 𝐼 ∗≤ 𝐼, representing the 𝑟-th ordered statistic 

of unique values 𝑥(𝑖) within the interval [𝑎, 𝑏]. Next, the interval [𝑎, 𝑏] is divided into 

several subintervals based on quantiles with 𝑎 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑛 = 𝑏 knots, where 

(𝑛 + 1) is the number of knots predetermined initially. Thus, the sequence of knots is 

denoted by {𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑛−1, 𝑥𝑛}. These knots are then used to construct a cubic spline. 

 

3.3 Construction of the Covariate Smoothing Function via Cubic Splines 

 This section discusses the process of constructing the cubic spline function 𝑓 by 

applying the conditions outlined in Definition 1. After all these conditions are applied, the 

cubic spline function can be expressed in equation form as follows: 
 

𝑓𝑗(𝑥) = 𝑎𝑗
−(𝑥)𝛽𝑗 + 𝑎𝑗

+(𝑥)𝛽𝑗+1 + 𝑐𝑗
−(𝑥)𝛿𝑗 + 𝑐𝑗

+(𝑥)𝛿𝑗+1 (12) 
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for 𝑥𝑗 ≤ 𝑥 ≤ 𝑥𝑗+1, where: 
 

𝛽𝑗 = 𝑓𝑗(𝑥𝑗)  
 

𝛿𝑗 = 𝑓𝑗′′(𝑥𝑗)  
 

ℎ𝑗 = 𝑥𝑗+1 − 𝑥𝑗  
 

𝑎𝑗
−(𝑥) = (𝑥𝑗+1 − 𝑥)/ℎ𝑗  

 

𝑎𝑗
+(𝑥) = (𝑥 − 𝑥𝑗)/ℎ𝑗   

 

𝑐𝑗
−(𝑥) = [

(𝑥𝑗+1−𝑥)
3

ℎ𝑗
− ℎ𝑗(𝑥𝑗+1 − 𝑥)] /6  

 

𝑐𝑗
+(𝑥) = [

(𝑥−𝑥𝑗)
3

ℎ𝑗
− ℎ𝑗(𝑥 − 𝑥𝑗)] /6.  

 

 Cubic splines 𝑓(𝑥) for the interval [𝑎, 𝑏] can be represented by the following piecewise 

function: 

𝑓(𝑥) =

{
 
 

 
 
𝑓0(𝑥), 𝑥0 ≤ 𝑥 < 𝑥1
𝑓1(𝑥), 𝑥1 ≤ 𝑥 < 𝑥2
𝑓2(𝑥), 𝑥2 ≤ 𝑥 < 𝑥3

⋮
𝑓𝑛−1(𝑥),    𝑥𝑛−1 ≤ 𝑥 ≤ 𝑥𝑛

 (13) 

 

 Furthermore, adjusting the condition that the second derivative of the smoothing 

function must be continuous at each knot implies that 
 

ℎ𝑗−1

6
𝛿𝑗−1 +

(ℎ𝑗−1 + ℎ𝑗)

3
𝛿𝑗 +

ℎ𝑗

6
𝛿𝑗+1 = (

1

ℎ𝑗−1
)𝛽𝑗−1 + (−

1

ℎ𝑗−1
−
1

ℎ𝑗
)𝛽𝑗 +

1

ℎ𝑗
𝛽𝑗+1, 

 (14) 
 

 ∀𝑗, 𝑗 = 1,… , 𝑛 − 1. Suppose that the vector 𝛅− is defined as 𝛅− = (𝛿1, 𝛿2, … , 𝛿𝑛−1)
T 

with 𝛿0 = 𝛿𝑛 = 0  and that 𝜷 = (𝛽0, 𝛽1, … , 𝛽𝑛)
T is the vector of unknown coefficients. 

Then, the equation above can be expressed in matrix form as 
 

 𝐀𝛅− = 𝐁𝜷 (15) 
 

where 𝐀 is an (𝑛 − 1) × (𝑛 − 1) matrix and 𝐁 is an (𝑛 − 1) × (𝑛 + 1) matrix with the 

following elements: 
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𝐀 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
(ℎ0 + ℎ1)

3

ℎ1
6

0 0 ⋯ 0 0

ℎ1
6

(ℎ1 + ℎ2)

3
 

ℎ2
6

0 ⋯ 0 0

0
ℎ2
6

(ℎ2 + ℎ3)

3

ℎ3
6

⋯ 0 0

0 0
ℎ3
6

(ℎ3 + ℎ4)

3
⋯ 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 0 ⋯
(ℎ𝑛−3 + ℎ𝑛−2)

3

ℎ𝑛−2
6

0 0 0 0 ⋯
ℎ𝑛−2
6

(ℎ𝑛−2 + ℎ𝑛−1)

3 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
(16) 

 
 

𝐁 =

[
 
 
 
 
 
 
 
 
 
1

ℎ0
 −

1

ℎ0
−
1

ℎ1

1

ℎ1
0 ⋯ 0 0

0
1

ℎ1
−
1

ℎ1
−
1

ℎ2

1

ℎ2
⋯ 0 0

⋮ ⋮ ⋱ ⋱ ⋱ ⋮ ⋮

0 0 0
1

ℎ𝑛−3
−

1

ℎ𝑛−3
−

1

ℎ𝑛−2

1

ℎ𝑛−2
0

0 0 0 0
1

ℎ𝑛−2
−

1

ℎ𝑛−2
−

1

ℎ𝑛−1

1

ℎ𝑛−1]
 
 
 
 
 
 
 
 
 

 

 (17) 
 

 Let us denote 𝐅− = 𝐀−𝟏𝐁 as a (𝑛 − 1) × (𝑛 + 1) matrix and 𝐅 = [
𝟎
𝐅−

𝟎
] as a (𝑛 + 1) ×

(𝑛 + 1) matrix, where 𝟎 = (0,0, … ,0) is an (𝑛 + 1) row vector; then, 𝜹 = 𝐅𝜷. Therefore, 

the cubic spline for all 𝑗, 𝑗 = 1,… , 𝑛 − 1 can be restated as follows: 
 

𝑓𝑗(𝑥(𝑖)) = 𝑎𝑗
−(𝑥(𝑖))𝛽𝑗 + 𝑎𝑗

+(𝑥(𝑖))𝛽𝑗+1 + 𝑐𝑗
−(𝑥(𝑖))𝐅𝑗𝜷 + 𝑐𝑗

+(𝑥(𝑖))𝐅𝑗+1𝜷, 
 

for all 𝑖, 𝑖 = 1, … , 𝐼 where 𝑥𝑗 ≤ 𝑥(𝑖) ≤ 𝑥𝑗+1, 𝜷 = (𝛽0, 𝛽1, … , 𝛽𝑛)
T, and 𝐅𝑗 is the (𝑗 + 1)-th 

row of the matrix 𝐅. 

 

3.3. Penalty for the Covariate Smoothing Function 

 Before the coefficients of the GAM are estimated via PIRLS, a penalty on the 

smoothing function is required to control the smoothness level of the curve. Fitting the 

model in the GAM with cubic splines aims to minimize the following expression [8,9]: 
 

∑{𝑦𝑖 − 𝑓(𝑥(𝑖))}
2
+ 𝜆∫[𝑓′′(𝑥)]2𝑑𝑥

𝑛

𝑖=1

, 
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 The first term is the residual sum of squares (RSS), whereas the second term is the 

penalty that measures the level of curve fluctuation. Let us denote the above penalty as a 

function 𝑃(𝑓𝑥) defined as follows: 
 

𝑃(𝑓𝑥) = 𝜆∫ [𝑓′′(𝑥)]2
𝑏

𝑎

𝑑𝑥 (18) 

 

where 𝜆 with 𝜆 ≥ 0  is a tunable smoothing parameter that serves to control the curve 

adaptation to the data and the level of smoothing. Given 𝐀𝛅− = 𝐁𝜷 →  𝛅− = 𝐀−1𝐁𝜷, the 

equation above can be restated as follows. 
 

∫ 𝑓′′(𝑥)2
𝑏

𝑎

𝑑𝑥 = 𝜷T𝐁T𝐀−𝟏
𝐓
𝐀𝐀−1𝐁𝜷 

= 𝜷T𝐁T𝐀−𝟏
𝐓
𝑰𝐁𝜷 

= 𝜷T𝐁T𝐀−𝟏𝐁𝜷 

(19) 

 

with 𝐀−𝟏
𝐓
= 𝐀−1 since A is a symmetric matrix. Therefore, the final form of the penalty 

for the smoothing function of covariate 𝑋 is as follows: 
 

𝑃(𝑓𝑥) = 𝜆𝜷
T𝐁T𝐀−𝟏𝐁𝜷 (20) 

 

3.4 Estimating GAM Coefficients with PIRLS 

 The response variables, 𝑌, follow a Poisson distribution. 
 

1. Estimate the initial values 𝜇𝑖
[0] = 𝑦𝑖

[0] + 𝛿𝑖 and 𝜂𝑖
[0] = 𝑔(𝜇𝑖

[0]), where 𝛿𝑖 is  

usually 0. Then, the following two-step iteration is performed until convergence. 

2. Calculate the pseudodata 𝑧𝑖 = (
1

𝜇𝑖
[𝑡]) (𝑦𝑖 − 𝜇𝑖

[𝑡]) + 𝐗𝑖𝜷
[𝑡] and the iterative weights 

𝑤𝑖 = (𝜇𝑖
[𝑡]). 

3. Find �̂�[𝑡] that minimizes the following weighted least squares objective function: 
 

𝑆𝑝 = ‖𝒛[𝑡] − 𝑿𝜷‖
𝑊

2
+ 𝜆𝜷𝑻𝑺𝜷 

 

where ‖𝑎‖𝑊
2 = 𝐚T𝐖𝐚, and 𝜆 can be chosen arbitrarily with 0 ≤ 𝜆 < ∞.  Then, 

update �̂�[𝑡+1] = 𝐗�̂�[𝑡] and �̂�𝑖
[𝑡+1] = 𝑔−1(�̂�𝑖

[𝑡+1]). 
 

 After the GAM coefficients are obtained, the generalized cross-validation (GCV) value 

is calculated as described in subsection 2.6: 
 

𝒱𝑔(𝝀) =
𝐼 × 𝐷(�̂�)

(𝐼 − 𝛾𝜏)2
 (21) 

 

where 𝐷(�̂�) is the residual deviance, 𝜏 is the effective degree of freedom of the model, and 

𝛾 is usually 1. To obtain the optimal smoothing parameter, the GAM coefficients are 

iteratively estimated with different 𝜆 values until the smallest GCV value is achieved. 
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3.5 GAM Construction with Two Covariates 

 This subsection discusses the construction and estimation of the GAM coefficients with 

two covariates. Consider the 𝑋1 representing the distance traveled by the 𝑖-th policyholder, 

with observation values 𝑥1(𝑖), 𝑖 = 1, … , 𝐼. Additionally, consider the covariate 𝑋2, which 

represents the duration of the insurance contract for the 𝑖-th policyholder, with observation 

values 𝑥2(𝑖), 𝑖 = 1, … , 𝐼. Slightly different from the representation of a GAM with one 

covariate, the representation of a GAM with two covariates is as follows: 
 

𝑔(𝜇𝑖) = 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑓1(𝑥1(𝑖)) + 𝑓2(𝑥2(𝑖)), (22) 
 

where 𝑓1(𝑥1) is the smoothing function for covariate 𝑋1 (distance traveled) and where 

𝑓2(𝑥2) is the smoothing function for covariate 𝑋2 (duration of the insurance contract). 
 

 The steps or process for constructing a GAM with two covariates are the same as those 

for constructing a GAM with one covariate. The determination of the number and 

placement of knots for two covariates is analogous to what has been explained in the 

previous subsections. 

 

3.6 Determining Pay-As-You-Drive Premium Rates 

 The form of the GAM in this case is as follows: 
 

log(�̂�) = 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑓1(𝑥1) + 𝑓2̂(𝑥2). (23) 
 

�̂� = exp(𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡) × exp (𝑓1(𝑥1)) × exp (𝑓2(𝑥1)) (24) 
 

where �̂� is the estimated average number of claims and where the intercept is the model 

constant. Since the model has been estimated, the price relativity for the premium rate can 

be obtained as follows: 

1. The reference premium or base value is equal to exp(𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡); 

2. The price relativity for the distance traveled is equal to exp (𝑓1(𝑥1)); 

3. The price relativity for the duration of the insurance contract is equal to 

exp (𝑓2(𝑥2 )). 
 

 Therefore, the formula for calculating the premium rate is 
 

𝑝𝑟𝑒𝑚𝑖𝑢𝑚 𝑟𝑎𝑡𝑒 = 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑟𝑒𝑚𝑖𝑢𝑚 × exp (𝑓1(𝑥1)) × exp (𝑓2(𝑥2 )) (25) 

 

4. APPLICATION 
 

4.1 Dataset  

 The dataset used for the application of the Generalized Additive Model (GAM) is a 

motor vehicle insurance dataset obtained from the study by So, Boucher, and Valdez 

(2021). It contains information on 10,000 car insurance policyholders over a one-year 

observation period, comprising 52 variables relevant to telematics, such as the duration of 

the insurance contract within the observation period, the total distance traveled by the car, 

the car’s age, and the number of claims. However, for this discussion, only two covariates 

are included in the model: mileage and the duration of the insurance contract. 
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4.2 Determination of Knot Placement and Number 

 Denote covariates 𝑋1 as mileage and 𝑋2 as the insurance contract duration. For the 𝑖-th 

policyholder, the observed value of distance traveled is denoted by 𝑥1(𝑖), 𝑖 = 1,… ,10,000, 

and the observed value of insurance contract duration is denoted by 𝑥2(𝑖), 𝑖 = 1,… ,10,000. 

We use the smallest number of knots, 3, to construct the cubic spline for both covariates. 

The knots are placed at quantiles 0, 0, 5, and 1 of the unique observed values of the distance 

traveled covariate. Let 𝑥1,𝑘, 𝑘 = 0,1,2 denote the first knot to the third knot for covariate 

𝑋1, and let 𝑥2,𝑙 , 𝑙 = 0,1,2 denote the first knot to the third knot for covariate 𝑋2; then, the 

knots can be written as follows: 
 

𝑥1,0 = 0.193 

𝑥1,1 =  5,681.247 

𝑥1,2 = 72,725.53 

𝑥2,0 = 0.2049 

𝑥2,1 = 0.689 

𝑥2,2 =  1 

 

4.3 Smoothing Function Construction 

 The cubic spline function for the covariate distance traveled is expressed by the 

following equation: 
 

𝑓1,𝑘(𝑥1) = 𝑎1,𝑘
− (𝑥1)𝛽1,𝑘 + 𝑎1,𝑘

+ (𝑥1)𝛽1,𝑘+1 + 𝑐1,𝑘
− (𝑥1)F1(𝑘+1),1𝛽1,0

+ 𝑐1,𝑘
− (𝑥1)𝐅𝟏(𝑘+1),2𝛽1,1

+ 𝑐1,𝑘
+ (𝑥1)F1(𝑘+2),1𝛽1,0+𝑐1,𝑘

+ (𝑥1)F1(𝑘+2),2𝛽1,1

+⋯+𝑐𝑘
+(𝑥1)F1(𝑘+2),5𝛽1,4 

 

 On the basis of this equation, the functions for each subinterval are as follows: 
 

𝑓1,0(𝑥1) =
(5,681.247 − 𝑥1)

5,681.055  
𝛽1,0 +

(𝑥1 − 0.193)

5,681.055
𝛽1,1 

+
[
(𝑥1 − 0.193)

3

5,681.055 
− 5,681.055 (𝑥1 − 0.193)]

6
 

((7.261 × 10−9)𝛽1,0 + (−7.877 × 10
−9)𝛽1,1 + (6.153 × 10

−10 )𝛽1,2)) 
 

if 0.193 ≤ 𝑥1 < 5,681.247. 
 

𝑓1,1(𝑥1) =
(72,725.53 − 𝑥1)

67,044.287 
𝛽1,1 +

(𝑥1 − 5,681.247)

67,044.287
𝛽1,2 

+
[
(72,725.53 − 𝑥)3

67,044.287
− 67.044,287(72,725.53 − 𝑥)]

6
    

((7.261 × 10−9)𝛽1,0 + (−7.877 × 10
−9)𝛽1,1 + (6.153 × 10

−10)𝛽1,2) 
 

if 5,681.247 ≤ 𝑥1 ≤ 72,725.53. The cubic spline function for the covariate insurance 

contract duration is expressed by the following equation: 
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𝑓2,𝑙(𝑥2) = 𝑎2,𝑙
− (𝑥2)𝛽2,𝑙 + 𝑎2,𝑙

+ (𝑥2)𝛽2,𝑙+1 + 𝑐2,𝑙
− (𝑥2)F2(2+1),1𝛽2,0

+ 𝑐2,𝑙
− (𝑥2)F2(𝑙+1),2𝛽2,1 + 𝑐2,𝑙

+ (𝑥2)F2(𝑙+2),1𝛽2,0+𝑐2,𝑙
+ (𝑥2)F2(𝑙+2),2𝛽2,1

+⋯+𝑐𝑙
+(𝑥2)F2(𝑙+2),5𝛽2,4 

 

 Based on this equation, the functions for each subinterval are as follows. 
 

𝑓2,0(𝑥2) =
(0.689 − 𝑥2)

0.485  
𝛽2,0 +

(𝑥2 − 0.205)

0.485
𝛽2,1

+
[
(𝑥2 − 0.205)

3

0.485 
− 0.485 (𝑥2 − 0.205)]

6
  

(7.78𝛽2,0 − 19.947𝛽2,1 + 12.167𝛽22) 
 

if 0.205 ≤ 𝑥1 < 0.689 and 
 

𝑓2,1(𝑥2) =
(1 − 𝑥2)

0.31  
𝛽2,1 +

(𝑥2 − 0.689)

0.31
𝛽2,2

+
[
(𝑥2 − 0.689)

3

0.31 
− 0.31 (𝑥2 − 0.689)]

6
  

(7.78𝛽2,0 − 19.947𝛽2,1 + 12.167𝛽2,2) 
 

if 0.689 ≤ 𝑥2 < 1. 

 

4.4 Penalty 

 The penalty smoothing function of the travel distance covariate can be expressed as 

follows. 
 

𝑃(𝑓1) = 𝜆1𝜷𝟏
T𝐁𝟏

T𝐀−𝟏𝐁𝜷 
 

𝑃(𝑓1) = 𝜆1[𝛽1,0  𝛽1,1  𝛽1,2] [
1.278 × 10−12 −1.386 × 10−12 1.083 × 10−13

−1.386 × 10−12 1.504 × 10−12 −1.175 × 10−13

1.083 × 10−13 −1.175 × 10−13 9.177 × 10−15
] [

𝛽1,0
𝛽1,1
𝛽1,2

] 

 

 By the same method, the penalty function for smoothing the covariate of insurance 

contract duration can be expressed by the following equation: 
 

𝑃(𝑓2) = 𝜆2𝜷𝟐
T𝐁𝟐

T𝐀𝟐
−𝟏𝐁𝟐𝜷𝟐  

 

It can then be rewritten as the following equation: 

𝑃(𝑓2) = 𝜆2[𝛽2,0 𝛽2,1 𝛽2,2] [
16.042 −41.131 25.088
−41.131 105.455 −64.324
25.088 −64.324 39.235

] [

𝛽2,0
𝛽2,1
𝛽2,2

] 

 

4.5 Estimation of the GAM Coefficients 

 Upon obtaining the smoothing basis functions and penalties for both covariates, the 

estimation of the coefficient basis functions is conducted via the penalized iterative 

reweighted least squares (PIRLS) method, as explained in subsection 3.1.5. The selection 

of smoothing parameter values (𝜆) is performed via generalized cross validation (GCV). 
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Leveraging the "mgcv" package within the R software environment, the fitted GAM results 

against the dataset are obtained as follows: 

 

Table 2 

GAM Fitting Results with Number of Knots 𝑿𝟏 = 𝟑 and 𝑿𝟐 = 𝟑 

Parametric Estimate t value p value 

𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 −3.508 −53.07 < 2 × 10−16 

Nonparametric EDF 𝜆 F Value p Value 

𝑓1(𝑥1) 1.993 0.0307 128.859 < 2 × 10−16 

𝑓2(𝑥2) 1.965 0.0834 6.519 0.00129 

GCV 0.24793   

 

 Table 2 shows that the p value for both smoothing functions is less than 0.05, meaning 

that both covariates are significant to the model. The minimum GCV value is obtained 

when the value of the smoothing parameter (λ) for the travel distance covariate smoothing 

function is 0.0307 and the insurance contract duration is 0.0834. According to the findings 

of Stone [17], several knots greater than 5 is rarely required in natural cubic spline models. 

The main choice of the number of knots that can be used is between 3, 4, or 5. Therefore, 

a GCV comparison of different possible pairs of knots was conducted. Based on the results 

of the smallest GCV calculation, the selected pair of knots is 5 for each covariate. 

 

4.6 Premium Rates 

 In this subsection, the calculation of the reference premium and the relativity of 

premium prices based on the characteristics of the policyholder's risk are discussed. The 

form of the generalized additive model (GAM) in this case is as follows. 
 

�̂� = exp(𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡) × exp (𝑓1(𝑥1)) × exp (𝑓2(𝑥2)) 
 

where �̂� is the estimated average claim amount and the intercept is the model constant. 

Since the model has been estimated, the relative price for the premium rate is obtained as 

follows: 

 The reference premium is equal to exp(𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡) = exp(−3.6402) ; 

 The price relativity for the distance traveled is equal to exp (𝑓1(𝑥1)); 

 The price relativity for the insurance contract duration is equal to exp (𝑓2(𝑥2 )). 
 

 Some 5 examples of policyholder risk profiles along with their estimated premium rates 

are shown in Table 3 as follows: 
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Table 3 

Example of Simple pay-as-you-drive Premium Rates 

(𝐱𝟏; 𝒙𝟐) 
Relativity  

for 𝒙𝟏 

(a) 

Relativity 

for 𝒙𝟐 

(b) 

Total relativity 

(𝒄) = (𝒂) × (𝒃) 
Premium 

𝐞𝐱𝐩(−𝟑. 𝟔𝟒𝟎𝟐) × (𝒄) 

(𝟕, 𝟎𝟎𝟎; 𝟎. 𝟓) 𝟎. 𝟕𝟗𝟓𝟒 𝟎. 𝟓𝟔𝟐𝟗 𝟎. 𝟖𝟒𝟗 𝟎. 𝟎𝟐𝟐𝟐𝟖 

(𝟑𝟎, 𝟎𝟎𝟎; 𝟎. 𝟓) 𝟓. 𝟒𝟐𝟗𝟓 𝟎. 𝟓𝟔𝟐𝟗 𝟑. 𝟎𝟓𝟔𝟐 𝟎. 𝟎𝟖𝟎𝟐 

(𝟑𝟎, 𝟎𝟎𝟎; 𝟏) 𝟓. 𝟒𝟐𝟗𝟓 𝟏. 𝟏𝟕𝟎𝟒 𝟔. 𝟑𝟓𝟒𝟒 𝟎. 𝟏𝟔𝟔𝟖 

(𝟐𝟎, 𝟎𝟎𝟎; 𝟎. 𝟓) 𝟑. 𝟖𝟖𝟔𝟐 𝟎. 𝟓𝟔𝟐𝟗 𝟐. 𝟏𝟖𝟕𝟓 𝟎. 𝟎𝟓𝟕𝟒 

(𝟒𝟎, 𝟎𝟎𝟎; 𝟎. 𝟓) 𝟔. 𝟐𝟑𝟓𝟏 𝟎. 𝟓𝟔𝟐𝟗 𝟑. 𝟓𝟎𝟗𝟕 𝟎. 𝟎𝟗𝟐𝟏 

 

 In Table 3, the price premium relativity of each policy characteristic to the reference 

premium (base value) is shown. The reference premium is the premium when there is no 

influence from covariates or when it is considered to be 0. When the reference premium is 

exp(−3.689787) =  0.02498,, then for a policy with an insurance contract duration of 0.5 

years and a distance traveled of 20,000 km, the premium is 2.1875 times the reference 

premium or equal to 0.0546. Based on the dataset used, increasing the insurance contract 

duration does not always increase the premium rate. Since the dataset used, increasing the 

insurance contract duration does not always increase the premium rate. Below, a plot of 

the predicted premium rates when the insurance contract duration is 0.6 years and 1 year 

is presented. 

 

a) 0.6 year b) 1 year 

Figure 1: Predicted Premiums with Constant Insurance Contract Duration 

 

 Figure 1 shows that the predicted premium value for an insurance contract duration  

of 0.6 years is greater than the predicted premium for an insurance contract duration of  

1 year. Therefore, the longer the insurance contract duration is, the greater the claim 

frequency. 
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5. CONCLUSION 
 

 The process of constructing a generalized additive model (GAM) to determine vehicle 

insurance premium rates, using distance traveled and the duration of the insurance  

contract as covariates, starts with creating a smoothing function via cubic splines. The 

determination of the number and location of knots for each covariate is essential for 

generating the basis functions of cubic splines. GAM coefficients are estimated via the 

penalized iterative reweighted least squares (PIRLS) method, with the optimal smoothing 

parameter (𝜆) determined since the smallest generalized cross-validation (GCV) value. 

Upon successful construction of the GAM, the model can be utilized to forecast  

claim frequencies and subsequently utilized as the relative premium rate against the 

reference premium. Based on vehicle insurance claim data obtained from the study 

conducted by [12], a simplified premium rate for Pay-As-You-Drive Insurance is  

derived. Assuming a reference premium value of 𝑒𝑥𝑝(−3.689787) = 0.02498, for a 

policy with an insurance contract duration of 0.5 years and a distance traveled of  

20,000 km, the premium is calculated to be 2.1875 times the reference premium, which is 

equivalent to 0.0546. According to this dataset, the premium for a 1-year insurance  

contract duration is lower than the premium for a 0.6-year contract duration. Therefore, it 

can be inferred that longer insurance contract durations do not necessarily entail greater 

risks than shorter contract durations do. 
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