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ABSTRACT 
 

 The global economy is strongly influenced by the production of crude oil, a major 

nonrenewable energy source. Businesses and economies all over the world are challenged 

by a greater degree of unpredictability due to the volatility and dynamics of crude oil prices. 

Several decomposition techniques, including empirical mode decomposition (EMD) and 

its different variants, are seamlessly incorporated. These decomposition techniques are also 

integrated with various machine-learning algorithms, which include the support vector 

machine (SVM), random forest, decision tree and artificial neural network (ANN), to build 

the hybrid model for crude oil prediction with intrinsic mode functions (IMF’s) and residue 

generated from the actual West Texas Intermediate (WTI). Since the proposed hybrid 

model is based on the data-decomposition and supervised machine-learning algorithm, 

therefore the IMFs and residue component extracted from the daily closing prices of WTI 

are given as input features to these supervised learning techniques. Three important 

statistical metrics including the mean absolute error (MAE), mean absolute percentage 

error (MAPE), and root mean square error (RMSE) are utilized to check the prediction 

performance of the proposed model. The results such as the RMSE, MAE, and MAPE 

values of 1.446, 1.259, and 2.194 confirm that the complementary ensemble empirical 

mode decomposition with adaptive noise (CEEMDAN) integrated with SVM technique as 

a dependable and effective crude oil price forecast tool and demonstrate its improved 

precision. The results ensure profitability in an unpredictable economy and fosters 

commodity stability in prices, both of which assist firms decrease their risks. 
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1. INTRODUCTION 
 

  One of the important commodity that shapes the globe's structure is petroleum, or crude 

oil. The production of goods and commodities as well as the status of the global economy 

generally can be impacted by fluctuations in the market value of crude oil (Hu, 2021). It is 

frequently challenging to foresee crude oil prices having the lowest possible prediction 

error. Several industries eagerly await the falling of crude oil prices, which is particularly 

true for the countries that import and export this essential good (Gupta and Pandey, 2018).  
 

 Numerous distinct variables influence the complicated and unexpected trend of crude 

oil prices (Herawati and Djunaidy, 2020). The energy sector is constantly shifting, both 

internally and externally, as a result of such intricate and multifaceted parameters. It is 

widely accepted that such factors are getting more and more complicated, taking into 

account both theoretical and practical elements. Forecasting oil prices effectively is 

consequently very difficult due to the extremely volatile nature of the oil market (Lu et al., 

2021). 
 

 It is noteworthy to mention here that both the reliable prediction techniques as well as 

the authenticity of the crude oil price time series data are two major segments that will lead 

to precise projection and will directly influence the global economy (Busari and Lim, 

2021).  
 

 Experts in the field of financial time series utilized different univariate time series as 

well as econometric models to forecast the crude oil prices precisely. The most common 

of these methods are generalized autoregressive conditional heteroscedasticity (GARCH) 

(Hou and Suardi, 2012), error correction models (ECM) (He, Wang and Lai, 2010), random 

walks (RW) (Chikobvu and Chinhamu, 2013), vector autoregressive regressive models 

(VAR) (Zhou et al., 2023), and autoregressive integrated moving averages (ARIMA)  

(Zhao and Wang, 2014).  
 

 These traditional time series and econometric models undoubtedly produce reliable 

forecast, but their practicality is usually limited because of their dependence on certain 

parameters that is why failed to capture these changes and therefore, produces poor 

prediction results (Wu, Wu and Zhu, 2019). 
 

 In order to address these issues in the classical methods and enhance the prediction 

accuracy, experts in the financial time series focused on the hybrid models, which are based 

on different data decomposition (Looney and Mandic, 2008) and machine learning 

techniques.  
 

 Several researchers have shown in their studies that among other machine learning 

techniques the most widely used are SVM and ANN, which produces promising results as 

compared to classical methods that requires some assumptions [Deng, Ma and Zeng 

(2021), Srijiranon, Lertratanakham and Tanantong (2022) and Qiu, Suganthan and 

Amaratunga (2018)]. 
 

 Over time, ANN have gained popularity as a potent computational framework that 

resembles the way the human brain works (Hamdi and Aloui, 2015). Complex time series 

data with a nonlinear nature can be efficiently modeled and predicted using ANN 

techniques. These techniques work well when dealing with noisy, dynamic data sets in 
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enormous numbers (Shabri and Samsudin, 2014). One benefit of this method is that it 

produces useful data, which are comparable to real-world scenarios while also decreasing 

inaccuracies. It is a rapidly expanding machine learning method for making predictions 

about data (Kareem, Hamad and Askar, 2021). 
 

 In order to forecast the WTI crude oil prices, a unique hybrid approach is suggested 

that depends on the data decomposition method called CEEMDAN which is combined with 

SVM. The main goal of the CEEMDAN technique is to separate the time series into 

discrete monotonous residues and IMFs. This is accomplished by means of an iterative 

sifting procedure that separates the prominent oscillatory modes until a monotone residue 

is found, meticulously dissecting the fluctuations present in the data (Liu et al. (2012) and 

Ali et al. (2023)). 
 

 The main objective of this research work is to propose an improved hybrid model that 

is based on the data decomposition and supervised machine learning technique to forecast 

the daily closing prices of WTI. This research work utilized not only the benchmark mark 

EMD to decompose the data but also used its different variants such as ensemble empirical 

mode decomposition (EEMD), and CEEMDAN. The most popular supervised machine 

learning techniques including the SVM, decision tree, random forest, and ANN are trained 

by providing the extracted IMFs and residue as input features.  
 

 The remainder of this paper is organized as follows. The related work is presented in 

section 2. Methods and materials are given in section 3. The proposed hybrid model is 

studied in section 4. The accuracy measures are presented in section 5. Section 6 provides 

the results and discussion. Finally, conclusion of the paper in section 7.  

 

2. RELATED WORK 
 

 Recently, financial time series experts and analysts have found forecasting of crude oil 

prices to be an intriguing and appealing area of study. The daily price of crude oil is 

predicted using a variety of methods, including hybrid models, machine learning 

approaches (especially SVM and ANN), and traditional time-series forecasting methods. 

This part will address research articles that predominantly use these hybrid versions of soft 

computing models, which are widely used to forecast crude oil prices. Nevertheless, ANN 

and its hybrid forms have been used in a large number of researches, a few of which are 

covered here, in the literature. 
 

 Ding (2018) addressed the challenge of forecasting international crude oil prices 

through a hybrid modeling approach that combines different methods to enhance prediction 

accuracy. The suggested technique is referred to as EEMD-ANN-ADD, which combines 

the ANN along with EEMD by adding a decompose-ensemble component to a single AI 

model. Using Akaike's information criterion (AIC) to select a model, the EEMD for data 

breakdown, ANN for individual forecasting, and adding ensemble technique for ensemble 

predictions are the four steps in the methodology. The "decomposed-ensemble" algorithms 

outperform conventional composite algorithms in terms of forecasting precision, according 

to the Diebold-Mariano test, which has been adjusted to account for both level and 

directional measurements.  
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 Song et al. (2021) utilized three different decomposition methods such as time  

varying filtering based empirical mode decomposition (TV-EMD), wavelet transform 

(WT), and complementary empirical mode decomposition (CEEMD). After decomposing, 

the series the Elman neural network (ENN) were used to build the model. It is evident from 

this study the TVF-EMD-ENN model outperforms the other models in terms of prediction 

accuracy. 
 

 Shambora and Rossiter (2007) used a model based on ANN using moving average 

crossover as inputs. These forecasts serve as the foundation for the financial indicators that 

are produced for both purchases and sales. According to the ANN model, the crude oil 

futures market is currently exhibiting remarkable profits, highlighting a question about the 

system effectiveness. 
 

 A novel method known as the EEMD-SBL-ADD was proposed by Li et al. (2018) for 

predicting nonlinear and nonstationary crude oil prices. The individual forecasts are 

combined by adding them in the last stage. Several assessment metrics are taken into 

account, such as the runtime duration, Diebold-Marino (DM) test, RMSE, Dstat, MAPE, 

and model confidence set (MCS) test, all of which show greater accuracy than the current 

forecasting techniques.  
 

 As part of metrological research, Ruiz-Aguilar et al. (2021) suggested a hybrid model, 

which is capable of forecasting wind speed. The investigation analyzes data gathered from 

the Bay of Algeciras, Bay of Algeciras, and Spain, using ANNs and ensemble learning 

techniques. There are several hourly prediction horizons, each with its own set of benefits 

and drawbacks. In terms of short-term (1h) and medium-term (24h) predictions with  

good correlation coefficients, the EMD-PE-ANN technique surpasses individual ANN 

algorithms.  
 

 A novel method called the WANN is proposed by Shabri and Samsudin (2014) to 

forecast crude oil prices on a daily basis in which ANN is used in conjunction with discrete 

wavelet transforms. The authors has demonstrated that when a single day lead time is given 

for the forecast, the WANN model outperforms a normal ANN model in predicting crude 

oil prices.  
 

 Shabri and Samsudin (2014) proposed the use of hybrid models in which one is based 

on EMD and the other on ANNs. In contrast to SVR and standalone ANN models without 

decomposition, short-term Nifty stock index forecasts produced by this hybrid EMD-ANN 

model are significantly better.  
 

 Although a considerable amount of research has been done on the use of several 

models, including machine learning methods, to forecast crude oil prices, there is  

a clear lack of research on the CEEMDAN-SVM model in particular. Although the 

CEEMDAN-SVM model is known to be beneficial in managing nonlinear and 

nonstationary data, there is not much research that thoroughly assesses its efficacy, 

resilience, and applicability in various market scenarios and time periods. Moreover,  

earlier research did not provided a comparison analysis of the CEEMDAN-SVM model 

and other hybrid methods. It is critical to fill this research gap in order to assess the 

reliability and effectiveness of the CEEMDAN-SVM model as a crude oil price prediction 

technique. 
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3. METHODS AND MATERIAL 
 

 The segmentation techniques employed in this research, such as EMD and CEEMDAN, 

which successfully simplify the complex structure of the data to independent IMFs and a 

single monotone residue is briefly reviewed in this part of the manuscript. We also discuss 

how SVM is used as a key component of the suggested model. Thus, we examine the SVM 

approach after explaining the decomposition strategies. 

 

3.1 Empirical Mode Decomposition (EMD) 

 As a signal preprocessing procedure, Huang et al. (1998) first presented the EMD 

approach in 1998. This method is commonly used for decomposing dynamic signals, 

enabling the division of time series into several IMFs and a monotonic residue by applying 

the Hilbert-Huang transform (HHT) technique [Kong and Zhang (2020), Agana and 

Homaifar (2018) and Yu, Dai and Tang (2016)]. The complex signal is deconstructed into 

discrete oscillatory segments with varying frequencies, resulting in the isolation of a 

monotonic residue. The determination of the IMF components is predicated on the 

satisfaction of two conditions: (i) The extrema and zero-crossing points are either the same 

or differ by only one point, and (ii) Both the mean value of the upper envelope and the 

mean value of the lower envelope must be zero at any given point. The step-by-step 

procedure of the EMD technique is outlined as follows: 
 

i. Identify all the data {𝑦𝑖  (𝑡)} localized extrema, or localized maxima and minima.  
 

ii. Determine the data upper and lower envelope denoted by {𝑈(𝑡)} and {𝐿(𝑡)}. 
 

iii. Connect each of the minima and maxima using the cubic spline interpolation method 

to get the average of the upper and lower envelope, or 𝑀(𝑡): 
 

𝑀𝑒𝑎𝑛(𝑡) =
𝑈(𝑡) + 𝐿(𝑡)

2
 (1) 

 

iv. Subtract the mean envelope calculated in Step 3 from the original signal to obtain 

the first component, i.e. 
 

𝑘1(𝑡) = 𝑦(𝑡) − 𝑀𝑒𝑎𝑛(𝑡) (2) 
 

The first IMF can be regarded as 𝑘1(𝑡) if it satisfies the two requirements for the IMF 

as stated above; if not, Steps 1 through 4 will be repeated, treating 𝑘1(𝑡) as a new 

data. 
 

v. To obtain 𝑟1(𝑡), the initial IMF identified in Step 4, is removed from the actual data 

𝑦(𝑡), i.e. 
 

𝑟1(𝑡) = 𝑦(𝑡) − 𝑘1(𝑡) (3) 
 

vi. Here, 𝑟1(𝑡) is viewed as a fresh signal, and the filtering process from Step 1 is 

repeated. The real signal, 𝑦(𝑡), will be decomposed as follows after the last EMD 

phase, and the overall signal trend will be a smooth monotonic residue: 
 

𝑦(𝑡) = ∑ 𝑘𝑖(𝑡) + 𝑟𝑛

𝑛

𝑖=1

 (4) 
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 It is important to note that 𝑟𝑛 is the residue and 𝑘1(𝑡), 𝑘2(𝑡), … . , 𝑘𝑛(𝑡) are all different 

IMFs with varying frequencies ranging from high to low. Where 𝑟𝑛 is the residue and 

𝑘1(𝑡), 𝑘2(𝑡), … . , 𝑘𝑛(𝑡) are different IMFs with different frequencies that vary from high to 

low. The detailed decomposition is presented in the following flowchart given in Figure 1. 

 

 
Figure 1: Schematic View of the EMD Algorithm 

 

3.2 Complementary Ensemble Empirical Mode Decomposition  

with Adaptive Noise (CEEMDAN) 

 By adding Gaussian white noise to the signal, the mode-mixing issue in the EMD 

method can be resolved. This new variant of EMD is known as EEMD (Wu and Huang, 

2009). Reconstruction errors may result from the EEMD technique inability to eliminate 

Gaussian white noise following signal reconstruction. The full ensemble empirical mode 

decomposition with adaptive noise (CEEMDAN) was introduced by Torres et al. (2011) 

as a solution to this problem. 
 

 It effectively resolves the mode mixing issue, drastically reduces computation costs, 

and makes reconstruction mistakes insignificant. Give an account of the function 𝐸𝑗(∙), 

which allows the jth mode to be reached by EMD and let 𝑤𝑗(∙) be the standard normal 

distribution white noise. The subsequent steps outline the CEEMDAN technique: 
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i. By applying the EMD approach, the Gaussian white noise added signal  

𝑦𝑖(𝑡) = 𝑦(𝑡) + 𝛾0𝑤𝑖(𝑡) (where 𝛾0 is a noise coefficient, 𝑖 = 1,2, … , 𝐿) can be 

decomposed to produce the very first IMF. Next, we define the first mode as 

follows: 
 

𝐼𝑀𝐹̅̅ ̅̅ ̅̅
1 =

1

𝐿
∑ 𝐼𝑀𝐹𝑖1

𝐿

𝑖=1

 (5) 

 

ii. Calculate the first residue  
 

𝑟1(𝑡) = 𝑦(𝑡) − 𝐼𝑀𝐹̅̅ ̅̅ ̅̅
1 (6) 

 

iii. Decompose residue 𝑟1(𝑡) + 𝛾1𝐸(𝑤𝑖(𝑡)) to obtain the 2nd mode as 
 

𝐼𝑀𝐹̅̅ ̅̅ ̅̅
2 =

1

𝐿
∑ 𝐸1[𝑟1(𝑡) + 𝛾1𝐸1(𝑤𝑖(𝑡))]

𝐿

𝑖=1

 (7) 

 

iv.  The residue that results can be acquired by mathematically replicating a similar 

procedure for every IMF. 
 

𝑅𝑚(𝑡) = 𝑦(𝑡) − ∑ 𝐼𝑀𝐹̅̅ ̅̅ ̅̅
𝑗

𝑚

𝑗=1

 (8) 

 

 The symbol "𝑚" stands for the total number of IMFs. At different intervals, the IMFs 

collectively deconstruct the original signal attributes. The residue effectively reduces the 

predicted error and captures the flatter trend of the actual data. 

 

3.3 Support Vector Machine (SVM)  

 Vapnik (1995) introduced the SVM method, which is currently the most used 

supervised machine learning approach that utilizes structured risk reduction criterion and 

statistical theory. The SVM approach can be applied to regression as well as classification 

tasks in real-world scenarios. It is usually applied to categorization difficulties, though. 

Unlike previous machine learning algorithms as BPN, which operate on the premise of 

minimizing the empirical error, the fundamental idea behind SVM is to contract the upper 

bound of generalization error (Lin et al., 2008). SVM in general is formulated as a 

minimization problem, mathematically: 
 

𝑚𝑖𝑛
1

2
‖𝜔‖2 + 𝐶 ∑ 𝜉𝑖

𝑛

𝑖=1

 Subject to 𝑦𝑖((𝜔. 𝜙(𝑥𝑖)) + 𝑏) ≥ 1 − 𝜉𝑖  with 𝜉𝑖  ≥ 0 

 (9) 
 

 The parameter C is a regularization factor and it is one of the SVM hyperparameters: 

this constant must be set before solving the minimization problem, 𝜙(𝑥𝑖) is a nonlinear 

transformation that takes the data into a high dimensional space, which is called 

reproducing kernel Hilbert space also known as the feature space. Fortunately, 𝜙(𝑥𝑖) does 

not need to be computed explicitly. The dual formulation of the SVM minimization does 

not need 𝜙(𝑥𝑖) but only the inner product of the transformation of two data points 

𝜙(𝑥𝑖)𝑇𝜙(𝑥𝑗). The dual form of the SVM minimization is: 
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min
1

2
∑ 𝑦𝑖𝛼𝑖𝑦𝑗𝛼𝑗𝐾(𝑥𝑖 , 𝑥𝑗) − ∑ 𝛼𝑖

𝑖𝑖𝑗

 

subject to ∑ 𝑦𝑖𝛼𝑖 = 0

𝑖

 with 0 ≤ 𝛼𝑖 ≤ 𝐶 

(10) 

 

where 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝜙(𝑥𝑖)
𝑇𝜙(𝑥𝑗) is a kernel function that represents the 𝜙 mapping.  

 

 The SVM kernel is a function that changes non-separable problems into separate ones 

by taking a low dimensional input space and transforming it into a higher dimensional 

space. It is most helpful in cases with non-linear separation. In nonlinear separation 

problems, a kernel function 𝐾(𝑥𝑖 , 𝑥𝑗) is utilized to carry out the mapping and construct a 

hyperplane. There is a trade-off between the misclassification error and maximizing the 

margin that can be controlled by the parameter ‘C’, technically known as the regularization 

parameter. The most well-known and widely used kernels for SVM are linear, polynomial, 

and radial basis. The mathematical structure of these kernels are defined in the following 

equations (11-13).  
 

Linear Kernel: 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑎 + ∑ 𝑏𝑖  . (𝑥, 𝑥𝑖)

𝑛

𝑖=1

 (11) 

 

RBF Kernel: 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝 (−𝜎‖𝑥𝑖 − 𝑥𝑗‖
2

)  (12) 
 

Polynomial kernel: 𝐾(𝑥𝑖 , 𝑥𝑗) = ( 𝜎𝑥𝑖 ∙ 𝑥𝑗 + 𝐶)𝑑 , (13) 
 

 Just "C" which is a needs to be optimized as a hyperparameter for the linear kernel. 

However, for the polynomial kernel, there are three parameters to tune: 𝐶, 𝑑, and 𝜎. In 

contrast, for the RBF kernel, both the regularization parameter 𝐶 and the kernel parameter 

𝜎 need to be optimized simultaneously with the use of the grid search method. 

 

4. THE PROPOSED HYBRID MODEL 
 

 The proposed methodology unfolds in two pivotal stages. Initially, leveraging advanced 

techniques like EMD, EEMD, SEMD, and CEMDAN, it adeptly decomposes the nonlinear 

and nonstationary time series data of oil prices into a set of distinct IMF components 

alongside a singular monotone residue. Following this, in the subsequent stage, these 

precisely derived IMF components and the residue are harnessed as input features for the 

development of hybrid models, encompassing ANN, SVM, Random Forest, and Decision 

Tree. The culmination involves a rigorous comparison of these hybrid models through 

accuracy metrics such as RMSE, MAPE, and MAE. The subsequent paragraphs provide 

an overview of every step details. 
 

 Step 1: The historical data for the price of crude oil was meticulously collected from 

the Yahoo Finance website. The obtained unprocessed data was then thoroughly 

preprocessed to satisfy the requirements needed for the efficient application of EMD and 

its variations. Furthermore, dividing the data into an 80% training set and a 20% testing set 

was an essential step. To evaluate the expected accuracy of the proposed model, this was 

done purposefully. 
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 Step 2: Several distinct decomposition approaches, including EMD, EEMD, 

CEEMDAN, and SEMD, were needed for this comprehensive analysis of crude oil price 

data. First, the data was separated into separate components, like IMFs, which are 

characterized by a range of frequencies ranging from low to high. One monotone residue 

was identified in order to improve our understanding of the fundamental patterns in the 

historical data on the price of crude oil.  
 

 Step 3: In this phase, the suggested approach is built with an emphasis on achieving 

the greatest efficiency with lowest values for RMSE, MAE, and MAPE. Since different 

supervised learning algorithms are used to build the proposed hybrid models. Therefore, 

the IMFs and residue components separated from the actual WTI crude oil prices in step 2 

is used as input features to build the architecture of different hybrid models.  
 

 Step 4: Forecasts were made using a number of models, notably the CEEMDAN-ANN, 

SEMD-ANN, EEMD-ANN, and EMD-ANN. The experimental results unmistakably 

demonstrate that the CEEMDAN-SVM model performs better than the ensemble models 

by reaching minimal values in statistical indicators like RMSE, MAPE, and MAE. This 

demonstrates how the accuracy and prediction capabilities of the CEEMDAN-SVM model 

surpass those of its ensemble counterparts. 
 

 Step 5: In this stage, a thorough evaluation of the CEEMDAN-SVM hybrid model  

was conducted in conjunction with other hybrid machine-learning models. Amongst the 

performance measures that formed the basis of the assessment were RMSE, MAPE, and 

MAE. This comparative study sheds light on how accurate and effective the suggested 

CEEMDAN-SVM model is in comparison to other hybrid models. 
 

 The schematic view of the proposed model is presented in Figure 2.  
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Figure 2: Schematic View of the Proposed CEEMDAN-SVM Model 

 

5. ACCURACY MEASURES 
 

 We employ three main performance metrics called the RMSE, MAPE, and MAE. These 

metrics are listed numerically below, to assess the suggested models accuracy: 
 

RMSE = √
1

𝐴
∑(𝑦𝑎 − 𝑦�́�)2

𝐴

𝑎=1

 (14) 

 

MAPE = ∑
|𝑦𝑎 − 𝑦�́�|

|𝑦𝑎|

𝐴

𝑎=1

×
100

𝐴
 (15) 

 

MAE =
1

𝐴
∑|𝑦𝑎 − 𝑦�́�|

𝐴

𝑎=1

 (16) 
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 Across this study, it is imperative to clarify that the numeral 𝑦𝑎 represents the quantities 

that actually occurred at a given time, while 𝑦�́� represents the numbers that were projected 

over the same temporal span 𝑎. The total number of observations, appropriately denoted 

by A, is crucial to the evaluation. It is crucial to emphasize that a model's effectiveness is 

based on how low these indicators are.  

 

6. RESULT AND DISCUSSION 
 

6.1 Preprocessing of the Data 

 The investigation is based on the price data pertaining to West Texas Intermediate 

(WTI) crude oil, encompassing the period from March 1, 2003 to October 31, 2023 and 

comprising a total of 5364 observations. The data was accurately sourced from the Yahoo 

Finance website (https://finance.yahoo.com). To ensure the reliability of subsequent 

predictions, a crucial preprocessing phase was undertaken on the collected data before it 

was employed for model training. The behavior of the WTI crude oil closing prices in the 

time interval is shown in Figure 2.  
 

 Addressing the challenge of missing values, which can significantly affect the model's 

predictive capabilities, a strategic approach was adopted for imputation. Recognizing the 

influence of past moments on crude oil prices, a method was employed that leveraged the 

mean of the two preceding values and the value of the subsequent moment to fill in the 

gaps within the data. Furthermore, a separation of the data into 80% training and 20% for 

testing was implemented to facilitate a robust evaluation of the proposed model.  
 

 Furthermore, different libraries such as ggplot2, readxl, DescTools, EMD, Rlibeemd, 

reshape2, tidyr, e1071, caret, quantmod, randomForest, rpart, and neuralnet are utilized  

in RStudio for data analysis and building the proposed hybrid model.  

 
Figure 3: WTI Crude Oil Closing Prices in the Time Interval  

January 1, 2003 to October 31, 2023 

 

Table 1 

Descriptive Statistics of WTI Daily Closing Prices 

 

 

 
 

 

Count Min Max Mean Median Mode SD 

5364 -37.63 145.29 68.19 65.66 44.66 23.43 
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 Table 1 presents a comprehensive overview of the descriptive statistics pertaining to 

the daily closing prices of West Texas Intermediate (WTI) crude oil. With a total of 5364 

observations, this dataset captures a diverse range of price fluctuations in the market. The 

minimum recorded value is -37.63 USD, indicating an anomaly that can be attributed to 

the unprecedented events surrounding the COVID-19 pandemic. 
 

 The maximum closing price observed is 145.29 USD, showcasing the upper bounds of 

price levels within the examined period. The mean closing price stands at 68.19 USD, 

providing a measure of central tendency that represents the average value over the dataset. 

Complementing the mean, the median, which is 65.66 USD, offers additional insights into 

the distribution of prices, especially in the context of potential outliers. 
 

 Interestingly, the mode of 44.66 USD signifies a recurring value, shedding light on a 

specific price point that frequently occurred. This could be indicative of market conditions 

or influential factors during certain periods. Adding a layer of understanding to the dataset, 

the standard deviation (SD) is calculated at 23.43 USD, representing the degree of 

dispersion of individual data points from the mean. 
 

 It is crucial to acknowledge that the occurrence of an outlier, such as the significantly 

smaller can be directly linked to the global financial disruptions triggered by the COVID-

19 pandemic. This anomaly serves as a distressing reminder of the extraordinary economic 

impacts witnessed during this period, contributing to the broader narrative reflected in the 

WTI crude oil prices. 

 

6.2 Decomposition of Data with EMD, EEMD, SEMD, and CEEMDAN 

 Various techniques, including empirical mode decomposition (EMD), ensemble EMD 

(EEMD), statistical EMD (SEMD), and complete ensemble EMD with adaptive noise 

(CEEMDAN), were employed to analyze the closing prices of crude oil. The primary 

objective was to decompose these values into monotone residues and multiple intrinsic 

mode functions (IMFs). Figure 3 visually represents the results of this decomposition using 

EMD technique. Similarly, IMF’s constructed by EEMD, CEEMDAN and SEMD are 

presented in Figure 4, Figure 5 and Figure 6, respectively.  
 

 In the graphical representation, it is observed that the IMFs extracted using EMD, 

EEMD, and CEEMDAN exhibit similarities. However, the SEMD method generates fewer 

IMFs compared to EMD, EEMD, and CEEMDAN, which shows that replacing the cubic 

spline interpolation with smoothing never improves the decomposition results. This 

distinction in the number of IMFs highlights the unique characteristics and outcomes of 

each decomposition technique in capturing the underlying patterns in crude oil closing 

prices. 
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Figure 4: Decomposition of WTI Daily Closing Price  

with the Method of EMD 

 

 
Figure 5: Decomposition of WTI Daily Closing Price | 

with the Method of EEMD 

 

 
Figure 6: Decomposition of WTI Daily Closing Price  

with the Method of CEEMDAN 
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Figure 7: Decomposition of WTI Daily Closing Price  

with the Method of SEMD 

 

6.3 Intrinsic Mode Function (IMF) 
 The comprehensive descriptive statistics, encompassing key metrics like mean, median, 

standard deviation, minimum, and maximum values, have been precisely computed for 

each intrinsic mode function (IMF) as well as the actual crude oil prices. The insights 

derived from this analysis are presented in Tables 2-5, offering a detailed breakdown of the 

decomposition process. 
 

 Exploring the results from Table 2, the raw data unfolds with a spectrum of 

characteristics. From a minimum value of -37.694 to a maximum of 145.290, the data 

showcases a diverse range. The entire distribution is reflected in the median of 64.900 and 

mean of 68.070, which denote the center inclinations. In the meantime, the data standard 

deviation of 23.694, which captures sensitivities and variations, indicates a significant level 

of volatility. 
 

 As we focus on each particular IMF, interesting trends start to show up. The amplitudes 

of IMF1 and IMF2 are comparatively small, ranging from -24.334 to 24.497. This implies 

that there may be a lot of noise or high-frequency oscillations among these components. 

Having readings ranging from -11.265 to 11.244, IMF3 and IMF5 show heterogeneous 

trends, a combination of positive and negative deviations. IMF4 is particularly notable 

since it has a wider range, ranging from -15.298 to 10.279. Its positive bias, which is 

represented by a mean of 0.103 and suggests that the data may contain an ongoing pattern, 

is prominent. From IMF6-IMF11, there is a range of different wavelengths and amplitudes. 

Comparing these components with each other, they show larger ranges and higher standard 

deviations, which illustrate the fine features that the decomposition method captures. 
 

 Finally, intriguing features are revealed by the residue, which represents the 

information that remains after breakdown. The residue captures the rest of the details, with 

a minimum value of 55.95 and a maximum value of 78.86. The residual variability within 

this component is highlighted by the mean of 77.46 and the standard deviation of 10.88, 

which provide important insights into the complexities of the decomposed data. 
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Table 2 

Statistical Measures of IMFs and Residue Extracted by Implementing EMD 

Description Min. Median Mean SD Max. 

Actual -37.63 64.900 68.070 23.694 145.290 

IMF1 -24.334 0.024 0.016 1.142 24.497 

IMF2 -9.453 -0.001 0.005 1.020 9.653 

IMF3 -11.265 -0.004 -0.006 1.335 11.244 

IMF4 -15.298 0.046 0.103 1.842 10.279 

IMF5 -10.911 0.002 -0.051 2.523 15.359 

IMF6 -11.864 0.070 0.295 4.667 19.401 

IMF7 -58.215 -0.352 -4.083 15.617 42.787 

IMF8 -83.296 -1.219 -6.551 28.006 36.487 

IMF9 -20.367 0.881 1.729 12.146 26.061 

IMF10 -12.436 -0.233 -0.985 6.374 15.942 

IMF11 -0.956 0.136 0.135 0.783 1.226 

Residue 55.950 78.860 77.460 10.888 93.410 

 

Table 3 

Statistical Measures of IMFs and Residue Extracted by Implementing EEMD 

Description Min. Median Mean SD Max. 

Actual -37.63 64.900 68.070 23.694 145.290 

IMF1 -19.83 0.008 -0.0004 0.856 19.195 

IMF2 -13.87 0.002 0.0008 0.680 10.049 

IMF3 -8.653 -0.006 0.001 0.837 7.058 

IMF4 -6.686 0.011 -0.005 1.025 6.896 

IMF5 -5.838 -0.008 0.008 1.520 5.692 

IMF6 -14.73 -0.110 -0.098 3.531 16.844 

IMF7 -20.96 0.122 0.200 6.761 23.351 

IMF8 -12.30 -1.397 0.180 8.641 24.016 

IMF9 -15.83 -0.245 -0.636 8.316 12.875 

IMF10 -20.67 6.771 5.249 15.918 26.738 

IMF11 -0.455 0.332 0.305 0.527 1.022 

Residue 44.820 65.410 62.870 7.825 70.930 

 

 Table 3 presents a comprehensive statistical analysis that clarifies the unique 

characteristics of both the residue from the application of EEMD and the IMFs. Examining 

the IMFs values from IMF1 to IMF11, we find some interesting trends. IMF1 displays a 

wide range, with a minimum of -19.830 and a maximum of 19.195, suggesting significant 

variations in the data at hand. IMF11, on the other hand, has a narrower spectrum,  

ranging from -0.455 at the lowest value to 1.022 at the highest point, indicating lower 

fluctuation. 
 

 The median values of the IMFs represent their central trends. For example, IMF11, with 

a median of 0.332, provides information on its central trend, whereas IMF1, with a median 

of 0.008, depicts the middle of its distribution. Mean values provide hidden information 

that help us comprehend average behavior even further. Measuring the average 
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characteristics of the data are IMF1, which has a mean of -0.0004, and IMF11, which has 

a mean of 0.305.  
 

 Examining the standard deviations (SD) reveals how the data points are distributed 

around the mean. IMF5, which has a high standard deviation of 1.520, indicates more 

variation in its data points. IMF11, on the other hand, shows more clustered data points, 

indicating a certain level of homogeneity, with a comparatively low SD of 0.527. Now that 

we are focusing on the residue, this part stands for the unaccounted-for fraction of the 

signal that the IMFs were unable to catch. As evidenced by its mean value of 62.870 and 

median value of 65.410, the residue exhibits distinctive features and variability. The 

uniqueness of residual component is further highlighted by its 7.825 standard deviation, 

which provides important information about the details of the decomposed signal. 

 

Table 4 

Statistical Measures of IMFs and Residue Extracted by Implementing SEMD 

Description Min. Median Mean SD Max. 

Actual -37.63 64.900 68.070 23.694 145.29 

IMF1 -25.84 0.024 0.0023 1.221 25.854 

IMF2 -12.829 0.0025 0.010 1.173 11.091 

IMF3 -10.425 0.013 0.017 1.591 10.519 

IMF4 -12.471 -0.020 -0.0115 1.777 11.565 

IMF5 -14.737 0.0362 -0.0221 4.197 16.340 

IMF6 -10.129 -0.020 -0.099 4.625 10.671 

IMF7 -24.313 0.940 1.931 6.125 25.928 

IMF8 -19.214 -0.183 0.044 8.924 19.809 

Residue 17.54 67.820 66.300 13.906 99.390 

 

 A detailed summary of the wide range of values contained in the residue and intrinsic 

mode functions (IMFs) can be seen in Table 4. Interesting trends and features embedded 

in the broken components are revealed by this study. The component with the widest range 

of values, IMF1, is the most volatile, ranging from -25.840 to 25.854. IMF8, on the other 

hand, has an even more limited range, ranging from -19.214 to 19.809, indicating a smaller 

oscillation magnitude. Upon analyzing the IMFs central trend, we discover that each 

component's median value varies. Having a median value of 0.940, IMF7 leads the group 

and shows a central tendency towards positive values. IMF8, at the other hand, has the 

smallest median (-0.183), indicating a propensity for values that are negative. Further 

information about the average behavior of the IMFs can be gleaned from mean values. 

IMF6 has the smallest mean of -0.099, suggesting a predisposition towards negative 

deviations, whereas IMF7 stands out with the highest mean of 1.931, showing an 

inclination towards positive deviations. The standard deviations, which range from 1.173 

to 8.924, highlight the differences across the IMF's dispersion. Smaller numbers for the 

standard deviation suggest larger clusters of data, whereas larger numbers show greater 

variability in the distribution of data points. Now that we are looking at the residue, we can 

see that it ranges from 17.540 to 99.390. With a mean of 0.044 and a median value of 

67.820, the residue exhibits distinctive features that set it apart from the IMFs. This 



Badr Alnssyan et al. 431 

highlights even more how complex the deconstructed signal is and how unique 

characteristics are captured in each component. 

 

Table 5 

Statistical Measures of IMFs and Residue Extracted by Implementing CEEMDAN 

Description Min. Median Mean SD Max. 

Actual -37.630 64.900 68.070 23.694 145.290 

IMF1 -19.855 0.008 -0.0001 0.857 19.235 

IMF2 -9.234 0.0002 0.0003 0.270 5.993 

IMF3 -9.125 -0.001 0.003 0.664 7.091 

IMF4 -7.258 0.002 -0.002 0.833 6.996 

IMF5 -6.011 0.003 -0.0003 0.983 5.930 

IMF6 -3.975 -0.0004 -0.0003 1.308 4.271 

IMF7 -9.728 -0.011 0.006 2.093 6.636 

IMF8 -19.903 -0.091 -0.137 4.577 19.732 

IMF9 -20.827 0.544 0.662 7.007 23.563 

IMF10 -17.183 -3.299 -0.844 8.957 15.324 

IMF11 -22.063 0.349 -0.039 10.924 24.090 

Residue 36.310 68.980 68.420 14.302 87.670 

 

 A thorough examination of the statistical metrics connected to the residue obtained 

from the CEEMDAN decomposition and intrinsic mode functions (IMFs) is shown in 

Table 5. Starting with IMF1, we get a broad range of values, indicating notable swings, 

from -19.855 to 19.235. The median value of 0.008 sheds light on the distinctive nature of 

IMF1 by indicating a core propensity towards positive deviations. 
 

 Regarding IMF3, the median of -0.001229 and the mean value of 0.003 suggest that 

there is moderate amount of variation within this component. These metrics represent the 

average and central tendency of IMF3, providing important details regarding its general 

trend. 
 

 IMF8, on the other hand, has unique properties. With a standard deviation of 4.577 and 

a negative mean of -0.137, IMF8 indicates substantial variation with the possibility of 

anomalies. The range of values is -19.903 to 19.732. The wide range of numbers 

emphasizes how dynamic IMF8 is. 
 

 When we look at the residue, we see that its mean value is 68.420 and its median is 

68.980. These measurements point to a largely consistent structure of the residue part. On 

the other hand, the value that ranges from 36.310 to 87.670 suggests that there may be 

unusual or unusual values in the data. 
 

 To sum up, the statistical measurements offer significant understanding of the features 

and differences found in the IMFs and residue obtained through the CEEMDAN 

breakdown. These findings add to a thorough comprehension of the broken down elements 

and their distinctive characteristics. 
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6.4 Comparison of the Proposed Model 

 The compelling experimental findings presented in Table 6 unequivocally highlight the 

superior predictive capabilities of the CEEMDAN-SVM model when compared to its 

counterpart’s hybrid models. The exceptional performance of the CEEMDAN-SVM model 

is evident through remarkably low values of key performance indicators, with an RMSE of 

1.446, MAE of 1.259, and MAPE of 2.194, nearly approaching zero. These indicators 

collectively emphasize the model's potential to deliver highly accurate forecasts. 

 

Table 6 

Performance Metrics of Different Hybrid Models  

Used for WTI Crude Oil Prediction 

Model RMSE MAE MAPE 

ARIMA 27.105 22.667 34.582 

EMD-SVM 24.605 21.324 2.554 

EMD-Random Forest 31.113 24.471 2.671 

EMD-Decision Tree 41.894 34.023 2.907 

EMD-ANN 1.931 1.710 2.404 

EEMD-SVM 20.422 17.949 2.464 

EEMD-Random Forest 26.535 24.682 3.602 

EEMD-Decision Tree 16.569 13.189 14.304 

EEMD-ANN 1.534 1.509 2.611 

SEMD-SVM 2.530 1.950 2.480 

SEMD-Random Forest 16.029 12.669 3.348 

SEMD-Decision Tree 15.426 13.607 16.331 

SEMD-ANN 1.545 1.987 3.985 

CEEMDAN-SVM 1.446 1.259 2.194 

CEEMDAN-Random Forest 16.468 13.057 2.955 

CEEMDAN-Decision Tree 21.109 17.144 2.462 

CEEMDAN-ANN 1.581 1.710 2.363 

 

 In a holistic assessment across various scenarios, the CEEMDAN-SVM model 

consistently outperforms its counterparts, as detailed in Table 6. The CEEMDAN-SVM 

model exhibits the smallest values for essential statistical measures, including RMSE, 

MAE, and MAPE. The EEMD-ANN model secures the second-best position with an 

RMSE of 1.534, followed by the CEEMDAN-ANN model with an RMSE of 1.81, 

showcasing their respective forecasting capabilities for crude oil prices. 
 

 While exact actual and predicted values are not provided here, a comprehensive 

summary of this research endeavor is effectively conveyed through visual representations 

in Figure 7. These figures offer a strategic and simplified insight into the alignment 

between actual and predicted closing prices of crude oil. Moreover, Figure 7 visually 

indicates a negligible difference between actual and predicted values. However, a closer 

examination of the accuracy metrics reveals that the CEEMDAN-SVM model attains the 

lowest values for RMSE, MAE, and MAPE, solidifying its status as the most accurate 

model for predicting crude oil prices. 
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Figure 8: Comparison of Actual and Predicted WTI Crude Oil  

Daily Closing Prices using CEEMDAN-SVM Model 

 

7. CONCLUSION 
 

 The main purpose of this research work is to propose a hybrid model that predicts the 

WTI crude oil daily closing prices accurately. The proposed hybrid model is based on a 

new variant of EMD, which is known as CEEMDAN and supervised learning algorithm 

called SVR.  
 

 The experimental findings presented in Table 6 clearly highlight the superior predictive 

performance of the CEEMDAN-SVM model when compared to other hybrid models such 

as EMD-ANN, EEMD-ANN, SEMD-ANN and others. The exceptional performance of 

the CEEMDAN-SVM model is evident through remarkably low values of key performance 

indicators, with a RMSE of 1.446, MAE of 1.259, and MAPE of 2.194, nearly approaching 

zero. These indicators collectively emphasize the model potential performance to deliver 

highly accurate forecasts. 
 

 In a rigorous assessment across various scenarios, the CEEMDAN-SVM model 

consistently outperforms its counterparts, as detailed in Table 6. The CEEMDAN-SVM 

model exhibits the smallest values for essential statistical measures, including RMSE, 

MAE, and MAPE. The EEMD-ANN model secures the second-best position with an 

RMSE of 0.319, followed by the EEMD-ANN model with an RMSE of 1.534, showcasing 

their respective forecasting capabilities for crude oil prices. 
 

 While exact actual and predicted values are not provided here, a comprehensive 

summary of this research endeavor is effectively conveyed through visual representations 

in Figure 7. This figure offers a strategic and simplified insight into the alignment between 

actual and predicted closing prices of crude oil. Figure 8 visually indicates a negligible 

difference between actual and predicted values. However, a closer examination of the 

accuracy metrics reveals that the CEEMDAN-SVM model attains the lowest values for 

RMSE, MAE, and MAPE, confirming its status as the most accurate model for predicting 

crude oil prices. 
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 In a nut shell, the suggested model will help not only the experts in the field of financial 

time series analysis but the investors as well to make wise decision in investing in the stock 

prices of WTI. 
 

 The main limitation of this research work that all of the supervised machine-learning 

techniques used in this research work requires the input features, and without suitable input 

features the hybrid model cannot be trained. Therefore, selecting the suitable input features 

often remained a challenging task, and wrong selection may distort the prediction accuracy. 

To overcome this limitation, the author’s future work is focused on deep learning technique 

such as convolution neural network (CNN), long-short term memory (LSTM) network, and 

recurrent neural network (RNN).  
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