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ABSTRACT 
 

 Non-response poses a significant concern within survey sampling, occurring when 

individuals are either unavailable or unwilling to respond to survey questions. To address 

this issue, the application of non-response adjustment through auxiliary variables is widely 

employed to estimate missing data points. This study delves into the extensive possibilities 

presented by this approach, particularly focusing on calibration weighting. The study 

specifically investigates the challenge of non-response within the context of ranked set 

sampling (RSS). 
 

 Within this study, we introduce two novel calibration estimators for population means. 

One estimator addresses scenarios of complete response, while the other pertains to cases 

of non-response under the ranked set sampling technique. To evaluate their performance, 

the Mean Square Error (MSE) and Bias expressions are derived. Furthermore, the 

performance of the proposed estimators is assessed through comprehensive simulation 

studies, encompassing both artificial and real-world datasets. For this purpose, the Mean 

Square Error and Bias for the ranked set samples of sizes 5, 8, 10, and 25, encompassing a 

total of 10,000 samples for each size category are calculated. 
 

 Our findings reveal that the proposed calibration estimator, along with the imputation 

through calibration for non-response, consistently generates more efficient estimates 

compared to mean and median imputation techniques. This underscores the potential of the 

calibration approach in mitigating the impact of non-response, offering improved accuracy 

and robustness in survey sampling. 
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1. INTRODUCTION 
 

 The ranked set sampling (RSS) approach was proposed by McIntyre in 1952 for the 

cases when taking the actual measurements for sampling units was difficult but ranking a 

set of sample units either informally or formally was relatively easy and reliable. The 

Ranked Set Sampling (RSS) technique gives more structure to the sample items and 

increases the amount of information contained in the sample. This extra structure and 

information provided by the judgment ranking enables RSS to be more efficient than 
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Simple Random Sampling (SRS) with the same number of observations (Wolfe, 2004, 

2012).  
 

 Let ( : )i nY  denotes the thi  order statistic from the set of n  values observed for 

1,2,.....i n  observations and  :Y i n j  denote the ith  order statistic in the sample of size 

 n  for jth  sample ( 1,2,...j m ). The 𝑛 measurements (1: ) ( : ),...,n j n n jY Y  are the order 

statistics. However, unlike order statistics, ranked set sampling treats these ordered values 

as distinct and independent observation units, with each value contributing unique insights 

about different characteristics of the population. In this approach, the joint probability 

density function for the ordered values is expressed as follows: 
 

     (1: ) ( : ) ( : )
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,..., ( )
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n j n n j i n
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 A RSS of size 𝑛 is very different than a simple random sample (SRS) of the same size 

in many ways. A SRS is selected in such a way that the 𝑛 units in the sample are 

independently and identically distributed whereas in RSS the units are considered mutually 

independent but are not evenly distributed.  
 

 In balanced ranked set samples we need exactly 2
n  units to select a sample of 𝑛 units. 

A more reasonable and practical approach was proposed by Chen (2001) in parametric 

settings. They considered unbalanced RSS schemes for m sets of size 𝑛, drawn from the 

population, and each of them was ranked by judgment. Let  : ( )Y i n j k  denote the 𝑖𝑡ℎ 

order statistic from the 𝑗𝑡ℎ sample of size m in the 𝑘𝑡ℎ cycle, then to get a larger sample 

the cycle can be repeated 𝑘 times to get a sample of size mk : 
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 An unbiased estimator for the population mean in this case is:  
 

  ( : ) ( )
1 1

1 n K

RSS i n j k
i k

y Y
mk  

                  (1.1) 

 

 The efficiency of the RSS procedure depends on the ranking within the subsets  

or groups and the accurate arrangement is the goal of the RSS procedure, which in some 

cases may not be possible. In many cases, some helpful information is  

available prior to sampling, enabling sampling units to be reasonably ranked according to 

the variable of interest. This information can be obtained through visual inspection, prior 

knowledge about the sampling units from the results of previous sampling surveys, 

associate variables, and expert opinion, allowing observations to be ranked based on one 
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or a combination of these source.This helping information can also be utilized to estimate 

non-response values in  data. Many techniques, such as extreme-RSS and median-RSS, are 

proposed for obtainting estimates in case of non-response (Bouza et al., 2010). 
 

 High non-response is a very common problem in sample surveys today, statistically, to 

concerned about the increasing bias and disparity in estimating population quantities such 

as totals or means. Nonresponse also caused the loss in the accuracy of the survey 

estimates, mainly due to the lower sample size and secondly due to increased variation in 

the weights of the questionnaire.  
 

 Various methods have been proposed in the literature to adjust and compensate for non-

response bias. Many of these methods utilize auxiliary or helping variables to estimate non-

response units. Calibration is one of these techniques and was first proposed by Deville 

and Sӓrndal (1992) to estimate population parameters. The calibration weighting has been 

widely used to adjust for non-response bias as well. The calibration estimator for the 

population mean is a weighted estimator that uses calibration weights that are as close as 

possible to the original sampling design weights while satisfying a set of constraints. These 

constraints are called calibration or benchmark constraints. For defining a classical 

calibration estimator for simple random sampling, let 𝑦𝑖  be the value of 𝑖𝑡ℎ observation of 

the study variable and 𝑥𝑖 = (𝑥1𝑖 , 𝑥2𝑖 , … , 𝑥𝑝𝑖) for 𝑞 = 1,2, … 𝑃 is the auxiliary vector 

associated with 𝑦𝑖  and at least population totals of all 𝑃 auxiliary variables are known 

before sampling and estimation to estimate the population total of study variable 𝑌 =
∑ 𝑦𝑖 .𝑈  Let the total of 𝑗𝑡ℎ variable be 𝑇𝑥𝑞 = ∑ 𝑥𝑞𝑖𝑈  and a vector of total(s) of 𝑝 auxiliary 

variables is denoted by X , where ∑  𝑈  is the sum of all k U . Also, the vector of Horvitz 

Thompson estimators of population total(s) for auxiliary variables is �̂�𝑥𝜋 = ∑ 𝑑𝑖𝑥𝑖𝑠  and 

∑  𝑆 is the sum on all k s .  
 

 The calibration estimator for estimating the population total of study variable 𝑦 that is 

defined as  
 

  �̂�𝑦𝑐 = ∑ 𝑤𝑖𝑦𝑖  𝑠                   (1.2) 
 

 The weights 𝑤𝑖  are named as calibration weights because these weights have a 

minimum distance from design weights and satisfy a calibration to benchmark constraints: 
 

  .  i i i
s U

w y X x  
 

(1.3) 

 

 By using different distance functions, many linear and nonlinear calibration estimators 

can be obtained. The chi-square type distance functions generate calibration weights that 

are linear functions of the design weights and can be written as:  
 

𝑤𝑖 = 𝑑𝑖(1 +  𝑑𝑖  𝑥′𝑖𝜆 ) (1.4) 
 

 The resulting calibration estimator is approximately equal to the general linear 

regression estimator, 
 

�̂�𝑦𝑐 =  �̂�𝑦𝜋 + 𝑏′
𝑤𝑠( 𝑋 −  �̂�𝑥𝜋 ) 

 

where   is the Horvitz Thompson estimators for the population total of the 

study variable and 𝑏𝑤𝑠 = (∑ 𝑑𝑖𝑠 𝑞𝑖𝑥𝑖  𝑥′𝑖)−1(∑ 𝑑𝑖𝑠 𝑞𝑖𝑥′𝑖𝑦𝑖).  
 

ŷ s k kt d y 
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 The calibration weighting is widely applied in surveys for adjusting non-response and 

correcting errors other than sampling errors. These methods typically address the group of 

respondents as a sample of the second stage, where the components of the double-response 

group are associated with compensation for both sampling and non-response (Bouza, 

2013). These weights, especially those for non-response observations are created with the 

help of additional information. Kott (2015) suggested that the calibration weights can be 

used to remove bias when the non-response units are a function of one or more variables 

in the survey. It was done by allowing the model variables in the weight control function 

to change the variables in the calibration equation. Another study was by Sinha et al. (2017) 

who used calibration weights to adjust non-response using auxiliary variables available at 

the estimation stage. A new method of calibration weighting was proposed under the 

Stratified simple random sampling design (SSRS). It was proved that the calibration 

capabilities under RSS were better than SSRS. Some of the researchers have also proved 

that the RSS calibration measures performed better than the SSRS and SRS (Koyuncu, 

2018). Recently Singh et al. (2021) considered the calibration techniques estimation of 

population variance of the response variable under random non-response and proposed a 

logarithmic type estimator using information available on a highly positively correlated 

auxiliary variable. Calibration techniques have been applied to determine the optimum 

strata weight. The results of Empirical studies showed that both for real and simulated data, 

the variance of the response variable is more efficient under calibration techniques for 

random non-response. Recently, Mehreen et al. (2022) proposed an estimator for the 

estimation of population mean in the presence of non-response in study variable by using 

ranked set sampling procedure for asymmetrical distributions and showed that use of 

ranked set sampling reduces the effect of asymmetry in the characteristics under study. It 

was found that the proposed estimator was more efficient than the compared estimators in 

the case of two auxiliary variables.  
 

 In this study non-response in RSS is adjusted through a calibration approach. A 

Calibration estimator for the population mean in case of full and non-response cases is 

proposed. The expression for Mean square error is derived in both cases and simulation 

studies are performed to determine the efficiency of the proposed estimators. 

 

2. NON-RESPONSE ADJUSTMENT IN RANKED SET SAMPLING  

USING CALIBRATION WEIGHTING 
 

 Let a vector of auxiliary variable  ( : ) ( : ) (1) ( : ) ( )1, ....i n j i n j i n j pX X X  is associated with 

study variable’s value ( : )i n jY  and assume that all values of auxiliary variables 

corresponding to the sampling units of the study variable are known prior to sampling and 

are correlated with study variable values. The proposed calibration estimator for population 

mean in this case (full response) is defined as: 
 

  
ˆ

TCRSS
CRSS mk

y
y   for ( : ) ( : )

ˆ i n jj kTCRSS i n jy yw          (2.1) 
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where ( : )i n jw  are obtained such that these weights have a minimum distance from 

sampling design weights ( : )i n jd  where ( : )
( : )

1
i n j

i n j

d 


 and satisfy a calibration to 

benchmark constraints:  
 

  ( : ) ( : ) ( : )
( : ) 1 ( : ) 1

n N

i n j i n j i n j
i n i n

w x X
 

               (2.2) 

 

 Let for the second case, we suppose that some of the values ( : )i n jY , are missing and the 

order of missing values can be determined by using information of correlated auxiliary 

variable used in estimation and is known from any previous source:  
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 The proposed calibration approach is to divide the units of the auxiliary variables into 

two non-overlapping sets; one consists of the values that are paired with the response set 

of values of the study variable and the other for non-response set of values. The calibration 

weights for the non-response values of the study variable are obtained by satisfying a 

calibration to the sample totals of auxiliary variables. 
 

 Let ( : )
( : ) 1

n

i n
i n

x


  is the sample total of ordered auxiliary variable, 𝑟 is the set of values 

( : )
( : )

r

i n
i n

x  that are associated with the response set of study variable and 𝑛 − 𝑟 is the set of  

non-response values ( : )
( : )

n r

i n
i n

x


  

 

 The non-response values can be estimated using the calibration weights that satisfy a 

calibration to the following benchmark constraints:  
 

  ( : ) ( : ) ( : )
( : ) ( : )

n r n

i n nr i n i n j
i n i n

x xw


                 (2.3) 

 

 And non-response values can be estimated using  
 

  ( : ) ( )
ˆ i n nrCRSS RSS ry yw                 (2.4) 

 

where 
( )RSS ry

 
is the mean obtained from response values in ranked set sampling  

and the calibration weights ( : )i n nrw  are derived in such a way that they satisfy  
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calibration to benchmark constraints (2.3) and have a minimum distance from  

sampling design weights and are obtained by differentiating Lagrange’s equation 
2

( : ) ( : )
( : )1 ( : ) ( : )

( : ) ( : )( : ) ( : )

( )

2

n r n
i n nr i n

i n nr i n i n
i n i ni n i n

w d
x x

d q
w

 
    

 
   and putting it equal to zero. The 

( : )i nd  is sampling design weight for thi  ordered observation selected in the ranked set 

sample. The resulting calibration weights are derived as:  
 

  ( : ) ( : ) ( : ) 1 (i:n)1i n nr i n i n jw d q x                  (2.5) 

 

 The value is obtained from calibration constraints (2.3). Using the value of 1  in 

equation (2.5), we get the resulting calibration weights for missing or non-response 

values.
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     (2.6)

 
 

 Using calibration weights (2.6) in (2.4), we get the estimated values for missing 

observation of the study variable’s values.  
 

  

( : ) ( : ) ( : )
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   (2.7) 

 

 Using estimated values obtained in (2.7), the proposed calibration estimator in case of 

non-response in RSS is defined as:  
 

  ( : ) ( : ) ( : )( )
( : ) ( : )

ˆ ˆ
n r r

i n nr i n r i nTCRSS nr CRSS
i n i n

yy yw w


             (2.8) 

 

where ( : )i n rw  are the calibration weights that satisfy calibration to benchmark constraints 

and have a minimum distance from the sampling design weights using Lagrange’s 

equation.  
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        (2.9) 

 

  ( : )( : ) ( : ) ( : ) 21 i n ji n r i n j i n jw d q x                  (2.10) 

 

 The value is obtained from calibration constraints described in (2.2). 
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 Utilizing value of 2  in equation (2.10), we get the resulting calibration weights to 

estimate the population total for response values  
 

  

( : ) ( : ) ( : )
( : ) ( : )
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( : )
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 (2.11) 
 

 The weights (2.6) and (2.11) in (2.8), provide the resulting calibration estimator for 

estimating the population total of the study variable’s values.  
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 A simplified form of the estimator is, where  
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Also,  
 

  ( : ) ( : )( )
( : )

ˆˆ
n r

i n nr i n nryd nr CRSS
i n

d q yt


   and ( : ) ( : )( ) ( : )
( : )

ˆ
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 The estimator (2.12) uses calibration weights to adjust non-response values in RSS and 

is a weighted sum of calibration estimator in case of non-response that is the weighted 

calibration estimator of response and estimated non-response values. 

 

3. COMPARISON OF THE PROPOSED ESTIMATORS 
 

 In ranked set sampling consider a finite population consisting of  1 2 3, , ,..., NN Y Y Y Y  

units, where ( : )i n jy  is ith value among the 𝑛 ranked value in a set of 𝑗 samples and with 

each unit of the study variable is associated with an auxiliary variable unit ( : )i n jx . The 

Population mean for the study variable is, 
1

1 N

y k
k

T Y
N 

   and the population mean for  

the auxiliary variable is 
1

x k
k

X
N

T   . 

 

 Also, the Horvitz-Thompson estimator for the population mean of the auxiliary variable  

in one cycle RSS can be defined as  
 

  ( : ) ( : )

1
d̂xRSS i n j i n j

j i

t d x
m

   where 1,...,i n
 

1,...,j m  

 

 The error associated with Horvitz Thompson estimator is ˆ
dxRSS dxRSS x

e t T  .
 

 

 Similarly, the error associated with the Horvitz-Thompson estimator for the population 

total of study variable in RSS ( : ) ( : )

1
d̂yRSS i n j i n j

j i

t d y
m

   is ˆ
dyRSS dyRSS ye t T  . 

 

 Also, using the results RSS RSS RSSe b  ,  2 22
xdxRSS xRSSE e CT ,  2 22

ydyRSS yRSSE e CT  

and  .dxRSS dyRSS x y xRSS yRSS xyE e e T T C C    where,

 

xyRSS

xy
xRSS yRSS

S

S S


 

and 
.

N n

N n


  . 

 

 Using the above results, the mean square errors of the proposed calibration estimator 

can be derived in case of full and non-response. 

 

Case I:   

 To derive a Mean square error for the proposed estimator in case of full response we 

will follow the results derived by Deville and Särndal (1992); the calibration estimator is 

asymptotically equivalent to the regression estimator and bias related to the calibration 

estimator is  
 

 Hence MSE of the calibration estimator in ranked set sampling can be obtained in case 

of full response using the expression:  
 

    
2

1( ) ( )CRSS regRMSE y MSE y BiasO n 
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 After simplification, the mean square error of the calibration estimator in ranked set 

sampling when all sample values are known is obtained as: 
 

    
2

2 2 12( ) 1yCRSS yRSS xyMSE y C BiasO nT
    

 
 

 

Case 2: 

 The mean square error of the proposed calibration estimator in case of non-response 

can be derived using the same results given in section 4.1. 
 

 The proposed calibration estimator in non-response case is, 
 

  ( : ) ( : ) ( : )( )
( : ) ( : )

ˆˆ
n r r

i n nr i n r i nCRSS nr CRSS
i n i n

yyw wt


    

 

 And can be written in the form: 
 

 ( )ˆCRSS nrt ( : ) ( : ) ( : )( )
( : ) ( : )

ˆ
N n

nr i n j i n j i n jyd nr
i n i n

X d xbt


   
 
   

      + ( : ) ( : ) ( : )( )
( : ) ( : )

ˆ
N n

r i n j i n j i n jyd r
i n i n

X d xbt


  
 
   

 

 The Mean Square error of the estimator will be: 
 

       
2

ˆ ˆ
yCRSS nr CRSS nr

MSE t E t T   

 

 Using the results we have, 
 

  2 22
( )( ) 1ˆ y nr yRSS xyCRSS nrMSE CTt    

    
2

2 2 12
( ) 1y r yRSS xyC BiasO nT

   
 

.
 

 

4. SIMULATION STUDY 
 

 To check the performance of the proposed estimators two simulation studies are carried 

out using artificially generated populations and real-life data; One for the full response and 

other for the non-response case 
 

 The proposed calibration imputation method for non-response estimation is compared 

with mean and median imputation in RSS. Also, the efficiency of the proposed calibration 

estimator ( )CRSSy  is compared with classical ranked set sample unbiased estimator of the 

population mean  
 

  ( : ) ( )
1 1

1 n K

RSS i n j k
i k

y Y
mk  
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and Double Median Ranked Set Sample estimator proposed by Samawi & Tawalbeh 

(2002) 
1

( )1 1
2

1 n K

DMRSS r
i ki k

y W
mk   

    
  

    for odd cases and 
1 ( )1 1

2

1 n K

DMRSS r
i th ki k

y W
mk  

    
  

    

for even cases where iW  are second stag median ranked set sample units. 

 

 Simulation 1 
 In Simulation Study I, three populations are considered to evaluate the performance of 

the proposed estimator in case of full response as compared to previously existent 

estimators. For this purpose, two artificial populations and one real-life data was used. The  

the first population follows a normal distribution having large variance with parameters 

𝑁~(100,225). To assess the performance of the proposed estimators for highly  

skewed distributions, the second population follows a gamma distribution with parameters 

𝑈 = Gamma (2, 2). Both populations consist of 10,000 units. From these populations,  

100 ranked set samples were selected for each of the sample sizes: 5, 8, 10, and 25, using 

a one-cycle balanced ranked set sampling procedure (Sevinç et al., 2019).  
 

 For the first population, a correlated concomitant variable (𝑋) was generated for the 

10,000 units. This was done in such a way that 𝜀𝑖 follows a normal distribution, and the 

correlation coefficient between 𝑋 and 𝑌 was fixed at 0.7. For the second population, the 

correlated variable (𝑋𝐺) was generated using the relationship 𝑋𝐺 = 𝑈 + 2𝑉, where 𝑈 

follows a Gamma (2, 2) distribution and 𝑉 follows a Gamma(1, 2) distribution. This 

ensured that the correlation between 𝑈 and 𝑋𝐺 is 𝜌 = 0.623. 
 

 The third population was real-life data taken from the online source 

(http://mercury.webster.edu/aleshunas/Data%20Sets/Supplemental%20Excel%20Data%2

0Sets.htmto) consisting of 2445 rows. The response variable “sales of items per day” 

follows a normal distribution (Kolmogorov Smirnov test’s p-value = 0.535) with (𝜇 = 3.5,  

𝜎 = 2.112) and the auxiliary variable “Price of items” is moderately correlated  

(𝑟 = 0.650) with the study variable. The performance of the estimators under full response 

case was evaluated for ranked set samples of sizes 5, 8, 10, and 25. Results for each sample 

size were averaged over 100 ranked set samples using one cycle Balanced Ranked Set 

Sampling (BRSS). 
 

 The performance of the proposed estimator is compared with two classical and 

commonly employed estimators for the population mean in the context of RSS. The 

estimators employed in the simulation study are outlined below: 
 

i. The classical Mean estimator (
RSSy ) 

ii. Double Median Ranked set sample estimator (
DMRSSy ). 

iii. Calibration Estimator (
CRSSy ) 

 

 The population mean in ranked set sampling ( : )

1
yRSS n i nY

N
T    is estimated using the 

proposed calibration estimator ( ( )ˆCRSS nrt ) when missing values are imputed using the 

following three methods

 
 

http://mercury.webster.edu/aleshunas/Data%20Sets/Supplemental%20Excel%20Data%20Sets.htmto
http://mercury.webster.edu/aleshunas/Data%20Sets/Supplemental%20Excel%20Data%20Sets.htmto
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i. Mean Imputation  

ii. Median Imputation 

iii. Imputation through calibration approach  
 

 For comparing the efficiency of the estimator, the Bias and MSE were calculated and 

defined as:  
 

 ˆ ˆ( ) ( )Bias t E t   and 
2ˆ ˆ( ) ( )MSE t E t   

 

 Simulation 2 

 In the second simulation study, we examined the effectiveness of the estimators in case 

of non-response. The efficiency of the proposed calibration estimator in case of non-

response is investigated by imputing the missing values with the mean, median, and 

proposed calibration imputation methods. To induce non-response in each population, 

random missing values were deliberately introduced, accounting for a non-response rate of 

20-25% of the data. 

 

5. RESULTS 
 

 From Table 1, it is evident that for artificially generated populations, both bias and 

mean square progressively decrease as the sample size of RSS increases. In the case of the 

Normal distribution with large variance, the Double Median Ranked set sample estimator 

(
DMRSSy ) outperforms the classical mean estimator, although it is not as efficient as the 

proposed calibration estimator.  
 

 Also, the efficiency of the Calibration estimator increases with sample size, and a 

substantial reduction in bias and mean square error can be gained. The relative efficiency 

of the calibration estimator increases by 13% as compared to the Classical mean estimator 

and approximately 12% when compared with the (
DMRSSy ) for a BRSS of size 25. In the 

case of Gamma (2, 2) distribution, the classical mean estimator outperforms the median 

estimator for an even number of observations in the sample that is the RSS of size 𝑛 = 8 

and 10. However, in this scenario, the proposed estimator consistently demonstrates the 

highest level of efficiency among the compared estimators. The mean square error of the 

Calibration estimator reduces to 0.001431 in the case of Gamma distribution with RSS of 

size 25 which is negligible as compared to other estimators. The same pattern can be 

observed in the case of real data. The optimum value of mean square error is obtained 

(0.03908) for the Calibration estimator under RSS for 𝑛 = 25. 
 

 Table 2 shows the results of the simulation study in case of non-response. It can be 

observed that a substantial reduction in bias and mean square error is attained using 

imputation through calibration weighting. The estimator of population mean that uses the 

calibration imputation method performs better than the other estimators in terms of 

minimum bias and mean square Error. The bias and mean square error reduce gradually 

with increasing the sample size but the optimum value for mean square is achieved for the 

case when the calibration imputation method is used. The mean imputation method 

outperforms median imputation method for the generated normal population, however, the 

DMRSSy  performs better in the other cases. However, the calibration weighting imputation 
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consistently demonstrates the highest level of efficiency among the compared imputation 

methods for non-response. The relative efficiency of the proposed method increases by 

16.67% as compared to mean imputation and 24% as compared to median imputation for 

RSS of 𝑛 = 25 in the case of normally distributed data with large variance. Also, the MSE 

reduces to 0.0021184 for Gamma (2,2) and 0.1007 for real data respectively when the 

calibration imputation method is used. 

 

6. CONCLUSION 
 

 Two estimators for the population mean are presented within the framework of ranked 

set sampling. One is designed for situations of full response, while the other addresses cases 

of non-response by employing a proposed calibration imputation method for adjustment. 

The Mean Square Error (MSE) and Bias of each estimator are derived. Additionally, two 

simulation studies are conducted to evaluate the performance of these estimators in both 

full response and non-response scenarios. 
 

 The findings demonstrate that the proposed calibration estimator for full response 

outperforms the compared estimators in terms of efficiency. Moreover, imputation based 

on calibration weighting exhibits greater efficiency, with lower values of bias and mean 

square error compared to the alternative imputation methods. In conclusion, it can be 

affirmed that the calibration estimator in ranked set sampling proves to be more efficient 

than the compared estimators. Furthermore, imputation using calibration weighting for 

handling non-response or missing values in ranked set sampling leads to more accurate 

estimates when contrasted with mean or median imputation methods. 
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Table 1 

Results of Simulation Study for Generated and Real Life Populations in case of Full Response 

Estimators 
Sample 

Sizes 

Generated Data Real Data 

Normal (100,225) Gamma(2,2) Normal(3.5, 4.11) 

5 8 10 25 5 8 10 25 5 8 10 25 

RSSy  
Mean 95.2286 96.4053 96.866 98.203 1.2218 0.98610 1.01711 1.00822 2.9876 3.05796 3.3062 3.6681 

Bias -4.4521 -3.4755 -2.0141 -1.6775 -0.2447 0.13971 0.12058 -0.0647 -0.8967 -0.6139 -0.4067 0.3982 

MSE 12.1088 7.0301 5.0850 2.5591 0.05990 0.01651 0.01454 0.00419 0.8099 0.3713 0.1941 0.0966 

DMRSSy  
Median 103.206 96.9504 96.971 102.68 0.88593 1.23549 0.96284 1.02245 3.02102 3.1714 3.2500 3.7734 

Bias 3.32577 -2.9304 -2.0093 1.6002 -0.1078 0.29764 -0.2309 0.00867 -0.7567 -0.4853 -0.3167 0.3032 

MSE 11.0607 6.58742 6.1076 2.2409 0.00989 0.04815 0.03156 0.00822 0.5467 0.2355 0.1640 0.1964 

CRSSy  
Mean 96.2670 97.8526 97.929 98.902 0.94361 0.99758 0.99767 0.98999 3.7016 3.6682 3.6510 3.4549 

Bias -3.1137 -2.0279 -1.4508 1.2173 -0.0801 -0.0501 -0.0541 -0.0378 0.4284 0.3497 0.3133 -0.1976 

MSE 10.0593 4.0566 3.0041 1.9731 0.00951 0.00580 0.00583 0.00143 0.2497 0.1711 0.1547 0.03908 

 

Table 2 

Results of Simulation Study for Generated and Real Life Populations in case of Non-Response 

Estimators 
Sample 

Sizes 

Generated Data Real Data 

Normal (100,225) Gamma(2,2) Normal(3.5, 4.11) 

5 8 10 25 5 8 10 25 5 8 10 25 

Mean 

Mean 92.8876 93.4579 103.176 95.0681 0.94321 1.394973 0.96781 1.208222 2.7876 2.8779 3.3062 3.6981 

Bias -7.0095 -3.42287 4.29537 -3.81267 -0.54331 0.41332 -0.22580 0.220759 -0.998 -0.9139 -0.4067 0.3982 

MSE 16.0542 9.40752 8.4502 4.53645 0.23961 0.20112 0.11359 0.10431 0.8993 0.7913 0.2941 0.1666 

Median 

Median 112.323 95.6834 104.958 95.0681 0.95933 0.963549 1.26846 0.97456 3.0210 3.0714 3.1500 3.6734 

Bias 13.4421 -3.5974 6.07797 -3.99126 -0.50755 -0.476432 0.29031 -0.200670 -0.8567 -0.5853 -0.4367 0.3432 

MSE 18.6919 10.2233 9.94172 6.3364 0.09989 0.098159 0.09663 0.08350 0.7467 0.7355 0.3640 0.1964 

Calibration 

Mean 95.3524 97.1310 97.4874 98.6831 0.96361 0.975871 0.99767 1.009999 3.8096 3.7682 3.6610 3.6549 

Bias -4.5284 -1.7497 -1.9331 -1.2976 -0.83301 -0.50312 -0.54311 -0.047811 0.8284 0.5497 0.3933 0.2776 

MSE 10.4497 6.06171 4.1547 2.73908 0.09251 0.044802 0.02489 0.002118 0.6417 0.3271 0.2334 0.1007 

 


