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ABSTRACT 
 

 Over numerous decades, academics have been attempting to develop a number of novel 

distributions to satisfy certain realistic demands. The rationale is that conventional 

distributions have generally been shown to lack fit in actual applications, such as medicinal 

research, engineering, hydrology, environmental science, and many more. Combining the 

Weibull and inverse Nadarajah Haghighi distributions generates a novel life-time 

distribution with four parameters, which is referred to as the Weibull-inverse Nadarajah 

Haghighi (WINH) distribution. Different structural characteristics of the formulated 

distribution have been determined and analysed. Distinct plots depict the behaviour of the 

probability density function (pdf) and the cumulative distribution function (cdf). The 

maximum likelihood estimation method is applied to estimate the stated distribution 

parameters. To assess and investigate the efficacy of estimators in terms of bias, variance, 

and mean square error (MSE), a simulation study was conducted. Lastly, the effectiveness 

of the stated distribution is proven by actual data sets. 
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1. INTRODUCTION 
 

 Over numerous decades, academics have been attempting to develop a number of novel 

distributions to satisfy certain realistic demands. The rationale is that conventional 

distributions have generally been shown to lack fit in actual applications, such as medicinal 

research, engineering, hydrology, environmental science, and many more. In particular, the 

objective of creating novel distributions or generalizations is to construct adaptable 

statistical models effective at dealing with complicated real-world data. This adaptability 

may be obtained in a straightforward manner by introducing new parameters to the standard 

distribution. 
 

 The Weibull distribution has been utilized in a variety of disciplines and applications. 

The hazard function of the Weibull distribution can only be monotonic in nature. As a 
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result, it cannot be employed to simulate lifespan data with a bathtub-shaped hazard 

function. 
 

 Suppose T  denotes a random variable that follows the Weibull distribution, then its 

probability density function is stated as 
 

    1; , ; 0, , 0tr t t e t
                     (1.1) 

 

 The exponential distribution is well-known for its constant hazard rate and memory less 

feature. This distribution cannot be used to analyze data with a monotonic hazard rate. 

Nadarajah and Haghighi (2011) developed a novel extension of the exponential distribution 

as a substitute model for the gamma and Exponentiated-exponential distributions. The 

probability density function of Nadarajah and Haghighi (NH) distribution is stated as 
 

       1 1 1
; , 1 ; 0, , 0

x
h x x e x


  

                 (1.2) 
 

 The transformation 
1

Y
X

 , yields the inverse of the Nadarajah and Haghighi 

distribution. As a result, the probability density function (pdf) of Nadarajah and Haghighi 

(NH) distribution is stated as 
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2
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        (1.3) 

 

 The associated cumulative distribution function of (1.3) is given as 
 

   
1 1

; , ; 0, , 0
y

G y e y


 

  
                    (1.4) 

 

 The objective of this research is to generalize the inverse Nadarajah-Haghighi 

distribution by inserting two extra parameters. The generalised distribution is referred to 

as the Weibull-Inverse Nadarajah Haghighi distribution (WINHD). The extra parameters 

will provide us greater flexibility in evaluating the tail behaviour of the defined density 

function. Moreover, the explored distribution may be employed to manage various 

elements of the hazard rate function. The Nadarajah-Haghighi has been studied thoroughly 

and employed in range of aspects of research. Abdul-Moniem (2015), Yousof et al. (2017), 

Korkmaz et al. (2017), Tahir et al. (2018), Reyad et al. (2019), Ahmad et al. (2022), Jallal 

et al. (2022), Lone et al. (2022) and Shafiq et al. (2021). 
 

 In recent decades, researchers have concentrated on discovering novel generators from 

continuous conventional distributions. As an outcome, the resulting distribution enhances 

the efficacy and adaptability of data analysis. The following are some generated families 

of distribution: the beta-G family of distribution investigated by Eugene et al. (2002), the 

gamma-G family by Zografos and Balakrishnan (2009), the kumaraswamy-G family by 

Cordeiro et al. (2011), the transformed-transformer(T-X) by Alzaatrh et al. (2013), the 

Weibull-G by Bourguignon et al. (2014), Brito et al. (2017) created the Topp-Leone odd 

log-logistic family of distributions, Brito et al. (2017) constructed the Gompertz-G 
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distribution family, and Alizadeh et al. (2017) established the inverse Weibull-G 

distribution. 
 

 T-X family of distributions defined by Alzaatreh et al. (2013) is given by 
 

     
 

0

W G y

F y v t dt

  

   
               (1.5) 

 

where  v t  be the probability density function of a random variable T  and  W G y 
  

 be a 

function of cumulative density function of random variable Y . 
 

 Suppose  ,G y   denotes the baseline cumulative distribution function, which depends 

on parameter vector  . Now using T-X approach, the cumulative distribution function 

 F y  of Weibull generator (WG) can be derived by replacing  r t  in equation (1.4) with 

(1.1)
 
and  
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The associated pdf of (1.6) becomes 
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 The survival  S y , hazard rate function  h y
 
and cumulative hazard function  H y

are respectively given by 
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1.1 Useful Expansion  

 We use Taylor’s series to the exponential function of the pdf in equation (1.7), we have 
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            (1.8) 

 

 Using equation (1.8) in equation (1.7), we get 
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          (1.9) 

 

 We know the generalized binomial expansion as  
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 Using equation (1.10) in equation (1.9), we have 
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where  
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p q
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2. WEIBULL-INVERSE NADARAJAH HAGHIGHI  

(WINH) DISTRIBUTION 
 

 In this part, we construct the cumulative distribution function (cdf) and probability 

density function (pdf) of the Weibull-Inverse Nadarajah Haghighi distribution and analyze 

the behavior of the cdf and pdf employing different layouts. Using equation (1.4) in 

equation (1.6), the cumulative distribution function of (WINH) is given by 
 

   

1 1

1

; , , , 1

y
e

F y e


 
   

 

 
 

  
         ; 0, , , , 0y              (2.1)

 
 

 Figure (2.1) and (2.2) depicts a few of the most likely contours of the cdf for various 

parameter values of WINHD. 
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  y 

Figure 2.1: cdf of WINHD under  

Different Values of Parameters 

y 

Figure 2.2: cdf of WINHD under 

Different Values of Parameters
 

 

 The associated probability density function of (WINHD) is given by 
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                  0, , , , 0y        (2.2)
  

 

 Figure (2.3) and (2.4) depicts a few of the most likely contours of the pdf for various 

parameter values of WINHD. 

 

  
y 

Figure 2.3: pdf of WINHD under  

Different Values of Parameters 

y 

Figure 2.4: pdf of WINHD under 

Different Values of Parameters
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3. RELIABILITY MEASURES OF WINH DISTRIBUTION 
 

 The reliability function is also known as survival function of a continuous random 

variable y  having cdf  F y , is defined as 
 

         1r
y

S y p Y y F y dy F y


      

 

 The survival function of WINH distribution is given as 
 

     ; , , , 1 ; , , ,S y F y           
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                     (3.1)  

 

 The hazard rate function of a continuous random variable y  is defined as 
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             (3.2) 

 

 Using equation (2.2) and (3.1) in equation (3.2), we obtain the hazard rate function of 

WINH distribution 
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 Figure (3.1) and (3.2) depicts a few of the most likely contours of the hazard rate 

function for various parameter values of WINHD.

  
 

  y 

Figure 3.1: hrf of WINHD under  

Different Values of Parameters 

y 

Figure 3.2: hrf of WINHD under 

Different Values of Parameters
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 The cumulative hazard rate function of a continuous random variable y  is defined as 
 

     log ; , , ,H y F y                      (3.3) 

 

 Using equation (2.1) in equation (3.3), we obtain the cumulative hazard rate function 

of WINH distribution 
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4. MATHEMATICAL PROPERTIES OF WINH DISTRIBUTION 
 

4.1 Moments of WINH Distribution 

 Let Y  denotes the random variable follows WINH distribution. Then the 
thr  moment 

denoted by 'r  is stated as 
 

     
0

' ; , , ,r r
r E Y y f y dy



        

 

 Using equation (1.11), we have 
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              (4.1) 

 

 Now using equations (1.3) and (1.4), in equation (4.1), we get 
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 For convenience take  1p q     , we have 
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 Using the following expansion in (4.2), we have 
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 After solving the integral, we get 
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4.2 Moment Generating Function of WINH Distribution 

 Let Y  be a random variable follows WINH distribution. Then the moment generating 

function of the distribution denoted by  YM t  is given 
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 Using Taylor’s series 
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4.3 Incomplete Moments of WINH Distribution 

 The sth incomplete moment of WINH about origin is given by 
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 From equations (1.11) and (1.4), we have 
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 After solving the integral, we get 
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4.4 Quantile Function of WINH Distribution 

 The quantile function of any distribution may be described as follows: 
 

     1
qQ u Y F u 

  

where  Q u  denotes the quantile function of  F y  for  0,1u . 
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 After simplifying equation (4.3), we obtain quantile function of WINH distribution as 
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5. MEAN DEVIATION FROM MEAN AND MEDIAN  

OF WINH DISTRIBUTION 
 

 The entirety of deviations is apparently a measure of amount of dispersion in a 

population. Let Y  be a random variable from WINH distribution with mean  . Then the 

mean deviation from mean is defined as. 
 

     D E Y  
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 After solving the integral, we get 
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Substituting value of equation (5.2) in (5.1), we get 
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 Let Y  be a random variable from WINH distribution with median M . Then the mean 

deviation from median is defined as. 
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 After solving the integral, we get 
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Substituting value of equation (5.4) in (5.3), we get 
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6. RENYI ENTROPY OF WINH DISTRIBUTION 
 

 If Y  denotes a continuous random variable having probability density function  f y . 

Then Renyi entropy is defined as 
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 Thus, the Renyi entropy of WINH distribution is given as 
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 Apply Taylor’s expansion for exponential function which is  
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 Using generalized binomial expansion, we have 
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7. ORDER STATISTICS OF WINH DISTRIBUTION 

 

 Consider 1 2, ,... nY Y Y  be random samples from WINH distribution. Let 
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 The corresponding cdf of X  is given by
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8. MAXIMUM LIKELIHOOD ESTIMATION OF  

WINH DISTRIBUTION 
 

 Let 1 2, ,.., nY Y Y  be a random sample of size n from WINH distribution then its 

likelihood function is given by 
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 The log likelihood function is given as  
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 The partial derivatives of equation (8.1), with respect parameters are 
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 Clearly the equations (8.2), (8.3), (8.4), and (8.5) are non-linear equations which cannot 

be expressed in compact form and it is difficult to solve them explicitly for , ,    and 

. By applying the iterative methods such as Newton–Raphson method, secant method, 

Regula-falsi method etc. The MLE of the parameters denoted as  ˆ ˆ ˆ ˆˆ , , ,      of 

 , , ,      can be obtained by using the above methods.

  

 For interval estimation and hypothesis tests on the model parameters, an information 

matrix is required. The 4 by 4 observed matrix is 
 

   

2 2 2 2

2

2 2 2 2

2

1

2 2 2

log log log log

log log log log

1

log log l

l l l l
E E E E

l l l l
E E E E

I
n l l

E E E



          
                       

          
                       

  
     
          

2

2

2 2 2 2

2

og log

log log log log

l l
E

l l l l
E E E E

 
 
 
 
 
 
 
               
 

           
                           

 

 

  



Saqib, Memon and Chand 275 

 The elements of above information matrix can obtain by differentiating equations (8.2), 

(8.3), (8.4), and (8.5) again partially. Under standard regularity conditions when n  

the distribution of ̂  can be approximated by a multivariate normal  
1

ˆ0,N I
 

 
 

 

distribution to construct approximate confidence interval for the parameters. 
 

 Hence the approximate  100 1 %  confidence interval for , ,   and  are 

respectively given by 
 

   1

2

ˆˆ Z I   

 

 1

2

ˆ ˆ, Z I     1

2

ˆ ˆ, Z I     and  1

2

ˆ ˆZ I       

where 

2

Z denotes the th  percentile of the standard normal distribution. 

 

9. SIMULATION STUDY OF WINH DISTRIBUTION 
 

 The mean value, bias, variance and MSE were all addressed to simulation analysis. 

From WINHD 𝑁 = 1000, samples of size 𝑛 = 50, 100, 150, 250, 300 and 350 were 

obtained. The following expression has been used to produce random numbers. 
 

   

1
1

1

1 1
1 log 1 log 1 1Y u



 



 
   

                   
  

  

where u  is uniform random numbers with  0,1u . For various parameter combinations, 

simulation results have been achieved. The mean value, bias, variance and MSE values are 

calculated and presented in Table 9.1 and 9.2. As the sample size increases, this becomes 

apparent that these estimates are relatively consistent and approximate the actual values of 

parameters. Interestingly, with all parameter combinations, the bias and MSE reduce as the 

sample size increases. As a result, it has been determined that the MLE technique is 

effective in estimating the WINHD parameters.  
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Table 9.1 

The Mean Values, Average Bias and MSEs of 1,000 Simulations of WINHD  

for Parameter Values 1.2  , 0.7  , 0.8   and 0.6   

𝒏 Parameters Average Bias Variance MSE 

50 

  2.0756 0.77565 0.9251 1.7386 

  1.1637 0.6547 0.3368 0.7210 

  0.1104 -0.689 0.0047 0.4802 

  1.3474 0.7474 0.4732 1.0320 

100 

  1.5694 0.3694 0.0833 0.2198 

  1.2202 0.5202 0.1589 0.4296 

  0.1727 -0.627 0.0061 0.3995 

  0.7191 0.1191 0.1242 0.1384 

150 

  1.4472 0.2472 0.0269 0.0880 

  1.0457 0.3457 0.0544 0.1739 

  0.2082 -0.591 0.0065 0.3567 

  0.5455 -0.054 0.0753 0.0783 

250 

  1.3714 0.1714 0.0137 0.0431 

  0.9357 0.2357 0.0278 0.0834 

  0.2494 -0.550 0.0072 0.3103 

  0.4124 -0.187 0.0415 0.0767 

300 

  1.3516 0.1516 0.0131 0.0361 

  0.9072 0.2072 0.0267 0.0697 

  0.2642 -0.535 0.0074 0.2944 

  0.3783 -0.221 0.0378 0.0869 

350 

  1.3379 0.1379 0.0082 0.0272 

  0.8875 0.1875 0.0173 0.0525 

  0.2729 -0.527 0.0073 0.2851 

  0.3579 -0.242 0.0326 0.0912 
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Table 9.2 

The Mean Values, Average Bias and MSEs of 1,000 Simulations of WINHD  

for Parameter Values 1.5  , 0.5  , 0.8   and 0.7   

𝒏 Parameters Average Bias Variance MSE 

50 

  1.5258 0.3258 0.0808 0.1870 

  1.1657 0.6657 0.3398 0.7830 

  0.1843 -0.615 0.0177 0.3967 

  0.6976 0.0976 0.3044 0.3139 

100 

  1.3565 0.1565 0.0171 0.0417 

  0.8110 0.3110 0.0733 0.1700 

  0.2540 -0.545 0.0152 0.3133 

  0.3572 -0.242 0.0648 0.1237 

150 

  1.3123 0.1123 0.0095 0.0222 

  0.7188 0.2188 0.0406 0.0885 

  0.2862 -0.513 0.0126 0.2765 

  0.2719 -0.328 0.0338 0.1414 

250 

  1.2615 0.0615 0.0049 0.0087 

  0.6146 0.1146 0.0204 0.0336 

  0.3450 -0.454 0.0104 0.2174 

  0.1871 -0.412 0.0150 0.1354 

300 

  1.2496 0.0496 0.0037 0.0062 

  0.5904 0.0904 0.0157 0.0239 

  0.3594 -0.440 0.0086 0.2027 

  0.1672 -0.432 0.0113 0.1186 

350 

  1.2392 0.0392 0.0032 0.0047 

  0.5694 0.0694 0.0132 0.0180 

  0.3762 -0.423 0.0083 0.1879 

  0.1539 -0.446 0.0098 0.1084 
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10. DATA ANALYSIS  
 

 This section assesses the effectiveness of the stated distribution using real-world data. 

We fitted the WINH distribution to many other models for comparative purposes, including 

modified Weibull distribution (MWD), additive Weibull distribution (AWD), Weibull 

distribution (WD), inverse Nadarajah-Haghighi distribution (INHD), Rayleigh distribution 

(RD) and exponential distribution. 
 

 We will use certain measures to evaluate which of the competitive models is the 

strongest, including AIC (Akaike Information Criterion), CAIC (Consistent Akaike 

Information Criterion), BIC (Bayesian Information Criterion) and HQIC (Hannan-Quinn 

Information Criterion). Such criteria can be represented mathematically by 
 

2 2lnAIC k l   
2

2ln
1

kn
CAIC l

n k
 

 
 

ln 2lnBIC k n l   and   2 ln ln 2lnHQIC k n l 
 

 

 We compute Anderson-Darling (A*), Cramer-Von Misses (W*), Kolmogorov-

Smirnov Statistic, and P-value in addition to the aforementioned goodness of measures. 

The model with the lowest value of these indicators and the greatest p-value is considered 

the best among the competing models. 
 

 Data Set 1: The data shows the mortality rate due to covid-19 of France country which 

has been recorded from first January to 20 February 2021 [http://covid-19.who.int/]. The 

data follows 
 

0.0995, 0.0525, 0.0615, 0.0455, 0.1474, 0.3373, 0.1087, 0.1055, 0.2235, 

0.0633, 0.0565, 0.2577, 0.1345,0.0843, 0.1023, 0.2296, 0.0691, 0.0505, 

0.1434, 0.2326, 0.1089, 0.1206, 0.2242, 0.0786, 0.0587, 0.1516, 0.2070, 

0.1170, 0.1141, 0.2705, 0.0793, 0.0635, 0.1474, 0.2345, 0.1131, 0.1129, 

0.2054, 0.0600, 0.0534, 0.1422, 0.2235, 0.0908, 0.1092, 0.1958, 0.0580, 

0.0502, 0.1229, 0.1738, 0.0917, 0.0787, 0.1654. 

 

Table 10.1 

The Descriptive Statistics for Data Set 1 

Min Q1 Med. Mean Q3 Kurt. Skew. Max 

0.04550 0.0738 0.1129 0.1299 0.1696 0.8817 3.0462 0.33730 
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Table 10.2 

The ML Estimates (Standard Error in Parenthesis) for Data Set 1 

Model ̂  ̂  ̂  ̂  

WINHD 
1.241 

(0.6611) 

1.007 

(0.2623) 

4.487 

(3.568) 

0.018 

(0.0171) 

MWD 
9.2169 

(1.7278) 

4.6125 

(2.7231) 

1.3982 

(0.1518) 

3.8229 

(4.4800) 

AWD 
7.8109 

(4.3140) 

9.6561 

(6.3205) 

2.0168 

(0.2793) 

2.0184 

(0.2854) 

WD 
46.753 

(17.835) 

2.0098 

(0.2112) 
------ ------ 

INHD 
0.0042 

(0.0023) 

16.15 

(9.0638) 
------ ------ 

RD 
46.113 

(6.457) 
------ ------ ------ 

EXD 
7.6945 

(1.0774) 
------ ------ ------ 

 

Table 10.3 

Comparison Criterion and Goodness of Fit Statistics for Data Set 1 

Model 2log l  AIC CAIC BIC HQIC 

WINHD -145.49 -137.49 -136.62 -129.76 -134.54 

MWD -131.52 -123.52 -122.65 -115.79 -120.57 

AWD -137.23 -129.23 -128.36 -121.50 -126.28 

WD -137.23 -133.23 -132.98 -129.36 -131.75 

INHD -125.03 -121.03 -120.78 -117.17 -119.56 

RD -66.527 -64.527 -64.445 -62.595 -63.789 

EXD -106.13 -104.13 -104.05 -102.19 -103.39 

 

Table 10.4 

Other Goodness of Fit Statistics Criterion for Data Set 1 

Model W* A* K-S value p-value 

WINHD 0.0603 0.4770 0.0974 0.7181 

MWD 0.2131 0.4976 0.1386 0.2805 

AWD 0.1416 0.9430 0.1086 0.5844 

WD 0.1411 0.9404 0.1085 0.5851 

INHD 0.1364 0.8930 0.2297 0.00916 

RD 0.1406 0.9380 0.1061 0.6135 

EXD 0.0911 0.6831 0.3008 0.00019 
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 Data Set 2: The data shows the mortality rate due to covid-19 of Canada country which 

has been recorded from first November to 26 December 2020 [https://covid-19.who.int/]. 

The data follows 
 

0.1622, 0.1159, 0.1897, 0.1260, 0.3025,0.2190, 0.2075, 0.2241, 0.2163, 

0.1262, 0.1627, 0.2591, 0.1989, 0.3053, 0.2170, 0.2241, 0.2174, 0.2541, 

0.1997, 0.3333, 0.2594, 0.2230, 0.2290, 0.1536, 0.2024, 0.2931, 0.2739, 

0.2607, 0.2736, 0.2323, 0.1563, 0.2677, 0.2181, 0.3019, 0.2136, 0.2281, 

0.2346, 0.1888, 0.2729, 0.2162, 0.2746, 0.2936, 0.3259, 0.2242, 0.1810, 

0.2679, 0.2296, 0.2992, 0.2464, 0.2576, 0.2338, 0.1499, 0.2075, 0.1834, 

0.3347, 0.2362. 

 

Table 10.5 

The Descriptive Statistics for Data Set 2 

Min Q1 Med. Mean Q3 Kurt. Skew. Max 

0.1159 0.2017 0.2261 0.2305 0.2677 2.6537 -0.0872 0.3347 

 

Table 10.6 

The ML Estimates (Standard Error in Parenthesis) for Data Set 2 

Model ̂  ̂  ̂  ̂  

WINHD 
3.9226 

(1.642) 

3.5267 

(2.1505) 

0.7705 

(1.1987) 

0.3261 

(1.3252) 

MWD 
85.734 

(40.073) 

7.9895 

(0.4318) 

3.5441 

(0.3838) 

12.170 

(1.6038) 

AWD 
127.37 

(120.21) 

138.30 

(110.27) 

4.0197 

(0.3775) 

4.0453 

(0.2053) 

WD 
119.25 

(37.968) 

3.4761 

(0.2440) 
------ ------ 

INHD 
0.0051 

(0.0031) 

32.516 

(19.864) 
------ ------ 

RD 
17.930 

(2.396) 
------ ------ ------ 

EXD 
4.3391 

(0.5798) 
------ ------ ------ 
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Table 10.7 

Comparison Criterion and Goodness of Fit Statistics for Data Set 2 

Model 2log l  AIC CAIC BIC HQIC 

WINHD -173.64 -165.64 -164.85 -157.54 -162.50 

MWD -169.68 -161.68 -160.90 -153.58 -158.54 

AWD -168.83 -160.83 -160.04 -152.73 -157.69 

WD -161.66 -157.66 -157.43 -153.61 -156.09 

INHD -84.469 -80.469 -80.243 -76.419 -78.899 

RD -43.843 -41.843 -41.769 -39.817 -41.058 

EXD -52.380 -50.380 -50.306 -48.355 -49.595 

 

Table 10.8 

Other Goodness of Fit Statistics Criterion for Data Set 2 

Model W* A* K-S value p-value 

WINHD 0.0595 0.3334 0.0893 0.763 

MWD 0.1314 0.7267 0.1346 0.2616 

AWD 0.0792 0.4304 0.1115 0.489 

WD 0.0668 0.3364 0.1384 0.2337 

INHD 0.2886 0.7647 0.4729 2.627e-11 

RD 0.0638 0.3963 0.3013 7.637e-05 

EXD 0.0837 0.5359 0.4246 3.399e-09 
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Figure 10.1: Estimated pdf of the Fitted Model for Data Set 1 

 

 

 
Figure 10.1: Empirical Reliability Function versus  

Fitted Reliability Function Data Set 1 
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Figure 10.3: Estimated pdf of the Fitted Model for Data Set 2 

 

 
Figure 10.4: Empirical Reliability Function versus  

Fitted Reliability Function Data Set 2 

 

CONCLUDING REMARKS 
 

 The focus of this research is to investigate prevailing pandemic-19 mortality data. In 

this study, we developed a novel flexible distribution known as the Weibull-inverse 

Nadarajah Haghighi distribution, renamed as (WINHD). Numerous mathematical 

characteristics are determined for this distribution, including moments, moment generating 

functions, incomplete moments, order statistics, Renyi entropy, mean deviations, and 

reliability analysis. The maximum likelihood estimation approach was used to estimate the 

distribution’s parameters. From tables (10.3), (10.4), (10.7) and (10.8) it is evident that the 

formulated distribution leads to a better fit than the comparable ones. 
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