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ABSTRACT

Over numerous decades, academics have been attempting to develop a number of novel
distributions to satisfy certain realistic demands. The rationale is that conventional
distributions have generally been shown to lack fit in actual applications, such as medicinal
research, engineering, hydrology, environmental science, and many more. Combining the
Weibull and inverse Nadarajah Haghighi distributions generates a novel life-time
distribution with four parameters, which is referred to as the Weibull-inverse Nadarajah
Haghighi (WINH) distribution. Different structural characteristics of the formulated
distribution have been determined and analysed. Distinct plots depict the behaviour of the
probability density function (pdf) and the cumulative distribution function (cdf). The
maximum likelihood estimation method is applied to estimate the stated distribution
parameters. To assess and investigate the efficacy of estimators in terms of bias, variance,
and mean square error (MSE), a simulation study was conducted. Lastly, the effectiveness
of the stated distribution is proven by actual data sets.
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1. INTRODUCTION

Over numerous decades, academics have been attempting to develop a number of novel
distributions to satisfy certain realistic demands. The rationale is that conventional
distributions have generally been shown to lack fit in actual applications, such as medicinal
research, engineering, hydrology, environmental science, and many more. In particular, the
objective of creating novel distributions or generalizations is to construct adaptable
statistical models effective at dealing with complicated real-world data. This adaptability
may be obtained in a straightforward manner by introducing new parameters to the standard
distribution.

The Weibull distribution has been utilized in a variety of disciplines and applications.
The hazard function of the Weibull distribution can only be monotonic in nature. As a
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result, it cannot be employed to simulate lifespan data with a bathtub-shaped hazard
function.

Suppose T denotes a random variable that follows the Weibull distribution, then its
probability density function is stated as

r(to,B)=apt’ e ;t>0,0,8>0 1.1)

The exponential distribution is well-known for its constant hazard rate and memory less
feature. This distribution cannot be used to analyze data with a monotonic hazard rate.
Nadarajah and Haghighi (2011) developed a hovel extension of the exponential distribution
as a substitute model for the gamma and Exponentiated-exponential distributions. The
probability density function of Nadarajah and Haghighi (NH) distribution is stated as

h(x:0,1) = 00, (1+3x)* L& 50,625 0 (12)

The transformation Y :%, yields the inverse of the Nadarajah and Haghighi

distribution. As a result, the probability density function (pdf) of Nadarajah and Haghighi
(NH) distribution is stated as

6-1 17[1+7]
g(y;e,k):%[H&] e r Y :y>00,A>0 (1.3)
y y
The associated cumulative distribution function of (1.3) is given as
17[1+A]9
G(y;0,0)=e * ¥/ ;y>061>0 (1.4)

The objective of this research is to generalize the inverse Nadarajah-Haghighi
distribution by inserting two extra parameters. The generalised distribution is referred to
as the Weibull-Inverse Nadarajah Haghighi distribution (WINHD). The extra parameters
will provide us greater flexibility in evaluating the tail behaviour of the defined density
function. Moreover, the explored distribution may be employed to manage various
elements of the hazard rate function. The Nadarajah-Haghighi has been studied thoroughly
and employed in range of aspects of research. Abdul-Moniem (2015), Yousof et al. (2017),
Korkmaz et al. (2017), Tahir et al. (2018), Reyad et al. (2019), Ahmad et al. (2022), Jallal
et al. (2022), Lone et al. (2022) and Shafiq et al. (2021).

In recent decades, researchers have concentrated on discovering novel generators from
continuous conventional distributions. As an outcome, the resulting distribution enhances
the efficacy and adaptability of data analysis. The following are some generated families
of distribution: the beta-G family of distribution investigated by Eugene et al. (2002), the
gamma-G family by Zografos and Balakrishnan (2009), the kumaraswamy-G family by
Cordeiro et al. (2011), the transformed-transformer(T-X) by Alzaatrh et al. (2013), the
Weibull-G by Bourguignon et al. (2014), Brito et al. (2017) created the Topp-Leone odd
log-logistic family of distributions, Brito et al. (2017) constructed the Gompertz-G
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distribution family, and Alizadeh et al. (2017) established the inverse Weibull-G
distribution.

T-X family of distributions defined by Alzaatreh et al. (2013) is given by
F(y)= ] v(t)dt (1.5)

where v(t) be the probability density function of a random variable T and w [G(y)} be a
function of cumulative density function of random variable Y .

Suppose G ( Y, Q) denotes the baseline cumulative distribution function, which depends
on parameter vector . Now using T-X approach, the cumulative distribution function
F(y) of Weibull generator (WG) can be derived by replacing r(t) in equation (1.4) with

(1.1) and W [G(y)} = G(yé; , where G(y,&)=1-G(y,) which follows

G(y
G(y.6)
G(v.€) ;
F(y;aBC)= [ apt’re ™ dt
0
,Q(Q(VC)]
—1-e (09 yy>0,0,3C>0 (1.6)

The associated pdf of (1.6) becomes

[0(:0)" &5
[G (. C):'Bﬂ

The survival S(y), hazard rate function h(y) and cumulative hazard function H ('y)
are respectively given by

B
f(y;euB.C)=apg(y.C) ] ;y>0,0,,C>0 (L.7)

,O{Cj(m)]ﬁ
s(y)=1-F(yiapc)=e 0
= M
h(y) Bg(y,f;)[é(y,g)JB+1
- 6(y.0)
(9= wof 1) o[ 5
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1.1 Useful Expansion
We use Taylor’s series to the exponential function of the pdf in equation (1.7), we have

e—o{ggv@f (1?p [ EY C;Jpﬁ (1.8)

Using equation (1.8) in equation (1.7), we get

f(yioB,0) = é%mﬁag(y,g)( )P (S (.0) PP @)

MS

p=0

We know the generalized binomial expansion as
(1-2)°= i[“q_lqu ;a>0,7<1
Now
(8(y, C))*(B(
Using equation (1.10) in equation (1.9), we have

f(yiap)= 3 iﬁ[mpﬂ)m]ﬂpum(y,c)( (y.0)f"

_-6(y)) I3 (B( p+1)+q](G (v.0)) w10)

p=0g=0 P! (q
= 3 35,00(v.0)(6(r0)f" (11D)
p=0q=
where
)" (B(p+1)+q) .,
L (B

2. WEIBULL-INVERSE NADARAJAH HAGHIGHI
(WINH) DISTRIBUTION

In this part, we construct the cumulative distribution function (cdf) and probability
density function (pdf) of the Weibull-Inverse Nadarajah Haghighi distribution and analyze
the behavior of the cdf and pdf employing different layouts. Using equation (1.4) in
equation (1.6), the cumulative distribution function of (WINH) is given by

1+& 1
Y

o{e[ ]ei 1}
F(y;oB0,1)=1-¢ *.y>0a,p,61>0 (2.1)

Figure (2.1) and (2.2) depicts a few of the most likely contours of the cdf for various
parameter values of WINHD.
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Figure 2.1: cdf of WINHD under Figure 2.2: cdf of WINHD under
Different Values of Parameters Different VValues of Parameters
The associated probability density function of (WINHD) is given by
0
A
2 0 2 0 _B_l —a. 9[17) 71_1
QBO)L by 6-1 [l+7] -1 (l+fj -1
f(y;oB,01)= 1+=] e Y el Y1) e LR
y? y

y>0,0,03,0,A>0 (2.2)

Figure (2.3) and (2.4) depicts a few of the most likely contours of the pdf for various
parameter values of WINHD.
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3. RELIABILITY MEASURES OF WINH DISTRIBUTION

The reliability function is also known as survival function of a continuous random
variable y having cdf F(y), is defined as

S(y)=p (Y >y)= [ F(y)dy=1-F(y)

The survival function of WINH distribution is given as

S(y;ouB,6,1)=1-F(y;a,B,0,1)

—o{e(h)’:] h l}
S(y;a.B.0,1)=¢ -+ (3.1)
The hazard rate function of a continuous random variable y is defined as
f ; ’ le! 7\’
h(y;a,g,e,x)zw (3.2)
S(y;a.pB,0,1)

Using equation (2.2) and (3.1) in equation (3.2), we obtain the hazard rate function of
WINH distribution

eronon- 42t

Figure (3.1) and (3.2) depicts a few of the most likely contours of the hazard rate
function for various parameter values of WINHD.
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The cumulative hazard rate function of a continuous random variable y is defined as
H(y)=~log| F(y;aB,6,%)] (3.3)

Using equation (2.1) in equation (3.3), we obtain the cumulative hazard rate function
of WINH distribution

H(y;aB.0,1)=a e[l%] o

4, MATHEMATICAL PROPERTIES OF WINH DISTRIBUTION
4.1 Moments of WINH Distribution

Let Y denotes the random variable follows WINH distribution. Then the r™ moment
denoted by p', is stated as

no= E(Y’):Iy’f(y;a,ﬁ,e,x)dy

Using equation (1.11), we have

A S B(p+1)+g-1
=1y 3 3 8,,0(10)(6(10)f T Hay (4.1)
0 p=09=0
Now using equations (1.3) and (1.4), in equation (4.1), we get
B(p+1)+q
© © A 6-1 —[l+f]e+1
we =3 > 8,400] y 2 (1+—] e\ dy
p=0q=0 0 y
For convenience take B(p+1)+q=v, we have
© o © A 6-1 —o[l+fj0
=Y > sp,qeerJyr—z [1+—J e Y dy
p=0q=0 0 y

0
Making substitution o[1+—] =z,s0that v<z<oo, we have

1
= i iO:E"p,qwi(_l)iraf l_(ije ez (4.2)
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Using the following expansion in (4.2), we have

s=1 x=0 s=0
1 s+1 1
where ¢ (r) (-2) i‘[(r+x)
sl yo
s
| 0 o eU r®(z\e _
pe=2 Y Y c(r)d, " —(-1) rj(—j e 2dz
p=0g=0s=0 L v
o o o ~(s+0) o S
=Y Y Y (r)s,A e 0 (1) [z%7dz
p=0q=0s=0 Y v
After solving the integral, we get
0 00 © —(S+9)
We=3X X Xc(r)dpghey (—1)'rf[1+5,oj-
p=0¢=0s=0 Y 0

4.2 Moment Generating Function of WINH Distribution

Let Y be arandom variable follows WINH distribution. Then the moment generating
function of the distribution denoted by My (t) is given

My (t)= E(e‘y)=°§et¥f (y,0,B,0,)dy

Using Taylor’s series

[1+W+%+%+"'Jf (y.0.B,6,1)dy

it—T Tt (y,o.B,0)dy
ro g

I
o8

0 t r
- ()
SRR tr M —r S
My(t)=X X X Z—lcs( PBogretv o (-1 F(l+—,uj_
p=0q=0s=0r=0 I'} 0

4.3 Incomplete Moments of WINH Distribution
The st incomplete moment of WINH about origin is given by
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Ts(f)=fy’f(y,a,ﬁ,e,x)dy

0

From equations (1.11) and (1.4), we have

0
i v Y 01 1+&
Ts(r)= 2 20,48 ijyr‘z[pr&} e [ yj dy

p=09=0 ' 0 y

0 0
Making substitution u(1+ &j =z sothat ©o<z< u[1+&] , We have
y y

IR
0 © o AT o 0
T (r)=3% X 8,4e 7”—(—1)( [ 1—(5j6 e ldz
p=0q=0 L 0 L
u[1+7]
o0 o0 00 7(S+9) 0 i
=Y Y Y (rPpe A (-1) v 0 [ z%dz
p=00g=0s=| 0
0[14—7]

4.4 Quantile Function of WINH Distribution
The quantile function of any distribution may be described as follows:

Q(u) =Yy =F7(u)
where Q(u) denotes the quantile function of F(y) for ue(0,1).
Let us suppose
A o *
1) [
F(y)=1-e =u (4.3)

After simplifying equation (4.3), we obtain quantile function of WINH distribution as
-1
1

-1Y))e

Qu)=Y, = % 1+log 1+(_Ellog(l—u)jﬁ -1
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5. MEAN DEVIATION FROM MEAN AND MEDIAN
OF WINH DISTRIBUTION

The entirety of deviations is apparently a measure of amount of dispersion in a
population. Let Y be a random variable from WINH distribution with mean . Then the

mean deviation from mean is defined as.
D(p)=E()Y -4

Y —uf (y)dy

O—T o238

(u=y)f (y)dy+ ] (y=w)f (y)dy

n

~ 24 (w)-2[ ¥F (y)dy 61

0

Now

¢}
0-1
i 2 oma 1 by —u| 1+2
[yf(y)dy=3 28,4 exj_(u_] e [ yj dy
0 p:()q:() Oy y

0 0
Making substitution u(1+ &j =z sothat o< z< o(l+ &j , we have
y 5

p=09=0s=0 L [ Je L
vl I+—
53 © o ® ] —(S+9) 0 s
[yf(y)dy=2 X X ci()3pq(-1) 2’ © [ z%7dz
0 p=0g=0s=0 U[1+7]0

After solving the integral, we get

o o o —(s+0) )
TW(y)dy= > Y T (1)8,q(-1) ety 0 F[%+Lo(l+&j J (5.2)
0 B

p=09g=0s=0
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Substituting value of equation (5.2) in (5.1), we get

{U]
D(u)zZu—Zpe P

o o o —(s+0) 0
2% X X 6(1)3pq(-1) ey O r{%ﬂ,u[u&j]

p=0g=0s=0 o8

Let Y be arandom variable from WINH distribution with median M . Then the mean
deviation from median is defined as.

D(M)=E(Y -M|)

=[[Y =Mt (y)dy

o—= 0‘—-8

(M=) () [ (=M1 (y)oy
=u-2[ yf (y)dy (5.3)

Now

M A 6-1 —U[lJr&}e
gyf(y)dy Z ZSM “exj [1+§] e Y dy
p_ =l

0
Making substitution u(1+ &j =z sothat o<z < 0(1+ , we have
y

3
M

N—
[«=)

o—Z=

sz ~ 4@ 7 z % ~z
AR = 2 B 5 W [ljx)e(oj h
V| +ﬁ

w o o —(s+6) s
yi(y)y=3 > >c (D)8,0(-) " he’n O [ 207z

p=00=0s= 0
o(l+ > j

After solving the integral, we get

o—Z=

—(s+0)

ny(y)dy IDIPANCILH <1>‘1%e°°”[§”’°(“%m (5.4)

p=0=05=0
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Substituting value of equation (5.4) in (5.3), we get

p=0qg=0s=0

w o o —(s+0) 0

6. RENYI ENTROPY OF WINH DISTRIBUTION

If Y denotes a continuous random variable having probability density function f(y).
Then Renyi entropy is defined as

TR(p)zﬁlogﬁf"(y)dy},Where p>0and p=1

Thus, the Renyi entropy of WINH distribution is given as

RESE cwe) (29|
TR(P)—l_plog (j) aBg(y,C)(é(y,C))Me dy

) (o0
» (G(v.6)) o [@(y,c)] dy

1 P
=E|og (oB) g(g(y,c)) (é(y,g))p(w

Apply Taylor’s expansion for exponential function which is

oM _ § (_1)p (mZ)P

{z (@B (@) T(a(n0)) (G (10 (6 (5.0 " ey
Using generalized binomial expansion, we have
(1-2)" i[“q lj ;a>0,lz/<1

So that
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(é(y,c))—ﬁ(pw)—p :(1_G(y’€))—ﬁ(p+p)—p _ i [B( p+P)+P+q—1](G(y’€))q

q=0\(Q

Applying above, we get

i i (_1?9 [B(p+p)+p+q_]}(0ﬁﬁ)p (Otp)p

Tz (p) = _iplog o Pt \d
Xg (g (y,C))P (G(y, (;))B(p+p)—p+q dy
=lilog{ S 3 0pa 1 (9(1.0)) (6(3,0)f P dy} (6.1)
—-pP p=0q=0 0
where

p.q

A A YT

p! \q

Using equations (1.3) and (1.4) in equation (6.1), we have

1 ) o © 1 X P(efl) lf(lJr%Je B( p+p)+q
Te(p)=—"l0g< > > ®,,(6A —(l+—J e dy
R ( ) 1_p 0=04=0 p.q ( ) g y2p y

For convenience take B(p+p)+q=uv, we have

1 © © 1 by p(e—l) 7U[l+&]
Ta(p)=——log{ Y 3 o,,(61) €® —E1+—) e © Yy
r(P) 1-p {quo pa (01) £y2p y

(¢]
. I A
Making substitution v 1+—J =z,s0that v<z<oo, we have

y
1 22 1
1 © (60)" A% =l (7o 2o ' _
T =——1Io et —— || —| -1 =1 edz
R(p) 1-p J ,qugomp'q vo { v v
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Using (1— x)a_1 = i (-1)° [a—lj x°, we have

s=0 S
1
T =—1Io
R(P) 1-p g
s+1
® » ® 2(2p-2 e () A% ez o !
2prs—2( 2p (61) z2\e
S35 ( ]m —H etz
p:Oq:Os:O( ) S P vo ;[ L
After solving the integral, we get
1
T =——Ilo
r(P) 1-p 9
—(s+1)
© B B e o2p—2 e’ (on) A%y o s+1
>3 Y (-1)FT [ jmnq (o) r b
p=0g=0s=0 S 0 0

7. ORDER STATISTICS OF WINH DISTRIBUTION

Consider Y;,Y,,..Y,, Dbe random samples from WINH distribution. Let
Yiy) <Y(z) <+ <Y(n) be the corresponding order statistics. Then the pdf of the r™ order
statistics of the WINH distribution, say X =Y,

fy @):W&_r),w(x)[l_ax)r f(x)

(¢]
0 _B_l 0 —a e[H:Ti] _1_1
1 x*1P¢%1 @%4
x—[l+—j et ) 1 et Vi) e B
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The corresponding cdf of X is given by

P (%)= 2 F (0)[1-F(x)]"”

) H] a
gl

273

8. MAXIMUM LIKELIHOOD ESTIMATION OF
WINH DISTRIBUTION

Let Y;,Y,,..,Y, be a random sample of size n from WINH distribution then its
likelihood function is given by

The log likelihood function is given as

logl =nloga+nlogB+nIoge+nlogx+ilog[%}ﬁ@—l}ilog(MAJ
i=1 i i=1 Yi

0 0 _B
~(B+1)Y e[1+y£iJ T +i[[1+£)6—1}aﬁ e[hy%J | ey
i=1 i=1

i=1 Yi
The partial derivatives of equation (8.1), with respect parameters are

W P
1+—]—1
aloglzﬂ_i e( :

oa

[0

(8.2)

(8.3)
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dlogl n o A " [“i]e-l 2 Y A
—g:—+ZIog(l+7J—(B+1). gw 7 [1+—J Iog(l+—)

00 0 ia ; i=1 i

0
+Zn‘, [1+lj Iog{l+£}
i=1 Yi Yi

,B,l

A 0
e{1 y‘J l[l+lj Iog(l+£} (8.4)

-p-1 0
A _
e(l+7i} -1 (yI +}L)9 1 (85)

i=1 Yi i=1 y,e

Clearly the equations (8.2), (8.3), (8.4), and (8.5) are non-linear equations which cannot
be expressed in compact form and it is difficult to solve them explicitly for o,[3,0 and A

. By applying the iterative methods such as Newton—Raphson method, secant method,
Regula-falsi method etc. The MLE of the parameters denoted as @(d,ﬁ,é,i) of

(o, B.6,1) can be obtained by using the above methods.

For interval estimation and hypothesis tests on the model parameters, an information
matrix is required. The 4 by 4 observed matrix is

£ o%logl £ d%logl £ o%log| . o%log|

00 0P 0000 dook

£ o%logl £ d%logl £ o%log| . % log|

4 0)=- 1 dpoa op? opoo PO
n £ o%logl £ d%logl . % log| . % log|

0000 200p 00? D0

£ o%logl £ o%logl . % log| . % log|

oo OB ono0 on?
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The elements of above information matrix can obtain by differentiating equations (8.2),
(8.3), (8.4), and (8.5) again partially. Under standard regularity conditions when n — oo

~ ~\—1
the distribution of £ can be approximated by a multivariate normal N(O,I(c;) )

distribution to construct approximate confidence interval for the parameters.

Hence the approximate 100(1-y)% confidence interval foro.,B,6and 2 are
respectively given by

&J_rz% /l;;(é) ,Biz% /lgg(f;) ,éiz% /lgg(i) and iiz% |;§(é)

where Z,, denotes the ¢™ percentile of the standard normal distribution.
2

9. SIMULATION STUDY OF WINH DISTRIBUTION

The mean value, bias, variance and MSE were all addressed to simulation analysis.
From WINHD N = 1000, samples of size n = 50, 100, 150, 250, 300 and 350 were
obtained. The following expression has been used to produce random numbers.

-1
-1

1 -1 B
Y =| =|1+log|1+| —log(1-u -1
A g [oc g( )j

where U is uniform random numbers with u e (0,1). For various parameter combinations,

simulation results have been achieved. The mean value, bias, variance and MSE values are
calculated and presented in Table 9.1 and 9.2. As the sample size increases, this becomes
apparent that these estimates are relatively consistent and approximate the actual values of
parameters. Interestingly, with all parameter combinations, the bias and MSE reduce as the
sample size increases. As a result, it has been determined that the MLE technique is
effective in estimating the WINHD parameters.
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Table 9.1
The Mean Values, Average Bias and MSEs of 1,000 Simulations of WINHD
for Parameter Valuesa. =12, B=0.7, 6=0.8 and A =0.6

n Parameters | Average Bias Variance | MSE
a 2.0756 | 0.77565 0.9251 1.7386
50 B 1.1637 0.6547 0.3368 0.7210
0 0.1104 -0.689 0.0047 0.4802
A 1.3474 0.7474 0.4732 1.0320
a 1.5694 0.3694 0.0833 0.2198
100 B 1.2202 0.5202 0.1589 0.4296
0 0.1727 -0.627 0.0061 0.3995
A 0.7191 0.1191 0.1242 0.1384
a 1.4472 0.2472 0.0269 0.0880
150 p 1.0457 0.3457 0.0544 0.1739
0 0.2082 -0.591 0.0065 0.3567
A 0.5455 -0.054 0.0753 0.0783
a 1.3714 0.1714 0.0137 0.0431
250 p 0.9357 0.2357 0.0278 0.0834
0 0.2494 -0.550 0.0072 0.3103
A 0.4124 -0.187 0.0415 0.0767
o 1.3516 0.1516 0.0131 0.0361
300 p 0.9072 0.2072 0.0267 0.0697
0 0.2642 -0.535 0.0074 0.2944
A 0.3783 -0.221 0.0378 0.0869
a 1.3379 0.1379 0.0082 0.0272
350 p 08875 | 0.1875 | 0.0173 | 0.0525
0 0.2729 -0.527 0.0073 0.2851
A 0.3579 -0.242 0.0326 0.0912
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The Mean Values, Average Bias and MSEs of 1,000 Simulations of WINHD

Table 9.2

for Parameter Valuesa. =15, B=0.5, 6=0.8 and A =0.7

n | Parameters | Average | Bias | Variance | MSE
o 1.5258 | 0.3258 | 0.0808 | 0.1870
50 B 1.1657 | 0.6657 | 0.3398 | 0.7830
0 0.1843 | -0.615 | 0.0177 | 0.3967
A 0.6976 | 0.0976 | 0.3044 | 0.3139
o 1.3565 | 0.1565 | 0.0171 | 0.0417
100 B 0.8110 | 0.3110 | 0.0733 | 0.1700
0 0.2540 | -0.545 | 0.0152 | 0.3133
A 0.3572 | -0.242 | 0.0648 | 0.1237
o 1.3123 | 0.1123 | 0.0095 | 0.0222
150 p 0.7188 | 0.2188 | 0.0406 | 0.0885
0 0.2862 | -0.513 | 0.0126 | 0.2765
A 0.2719 | -0.328 | 0.0338 | 0.1414
o 1.2615 | 0.0615 | 0.0049 | 0.0087
250 p 0.6146 | 0.1146 | 0.0204 | 0.0336
0 0.3450 | -0.454 | 0.0104 | 0.2174
A 0.1871 | -0.412 | 0.0150 | 0.1354
o 1.2496 | 0.0496 | 0.0037 | 0.0062
300 p 0.5904 | 0.0904 | 0.0157 | 0.0239
0 0.3594 | -0.440 | 0.0086 | 0.2027
A 0.1672 | -0.432 | 0.0113 | 0.1186
o 1.2392 | 0.0392 | 0.0032 | 0.0047
350 p 0.5694 | 0.0694 | 0.0132 | 0.0180
0 0.3762 | -0.423 | 0.0083 | 0.1879
A 0.1539 | -0.446 | 0.0098 | 0.1084
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10. DATA ANALYSIS

This section assesses the effectiveness of the stated distribution using real-world data.
We fitted the WINH distribution to many other models for comparative purposes, including
modified Weibull distribution (MWD), additive Weibull distribution (AWD), Weibull
distribution (WD), inverse Nadarajah-Haghighi distribution (INHD), Rayleigh distribution
(RD) and exponential distribution.

We will use certain measures to evaluate which of the competitive models is the
strongest, including AIC (Akaike Information Criterion), CAIC (Consistent Akaike
Information Criterion), BIC (Bayesian Information Criterion) and HQIC (Hannan-Quinn
Information Criterion). Such criteria can be represented mathematically by

2kn
n-k-1
BIC =kInn—2Inl and HQIC = 2kIn(In(n))-2Inl

AIC =2k -2Inl CAIC = —-2Inl

We compute Anderson-Darling (A*), Cramer-Von Misses (W?*), Kolmogorov-
Smirnov Statistic, and P-value in addition to the aforementioned goodness of measures.
The model with the lowest value of these indicators and the greatest p-value is considered
the best among the competing models.

Data Set 1: The data shows the mortality rate due to covid-19 of France country which
has been recorded from first January to 20 February 2021 [http://covid-19.who.int/]. The
data follows

0.0995, 0.0525, 0.0615, 0.0455, 0.1474, 0.3373, 0.1087, 0.1055, 0.2235,
0.0633, 0.0565, 0.2577, 0.1345,0.0843, 0.1023, 0.2296, 0.0691, 0.0505,
0.1434, 0.2326, 0.1089, 0.1206, 0.2242, 0.0786, 0.0587, 0.1516, 0.2070,
0.1170, 0.1141, 0.2705, 0.0793, 0.0635, 0.1474, 0.2345, 0.1131, 0.1129,
0.2054, 0.0600, 0.0534, 0.1422, 0.2235, 0.0908, 0.1092, 0.1958, 0.0580,
0.0502, 0.1229, 0.1738, 0.0917, 0.0787, 0.1654.

Table 10.1
The Descriptive Statistics for Data Set 1
Min Q: Med. Mean Qs Kurt. Skew. Max

0.04550 | 0.0738 | 0.1129 | 0.1299 | 0.1696 | 0.8817 | 3.0462 | 0.33730
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Table 10.2
The ML Estimates (Standard Error in Parenthesis) for Data Set 1
Model a B 0 A
1.241 1.007 4.487 0.018
WINHD 1 g 6611) | (02623) | (3568) | (0.0171)
MWD 9.2169 4.6125 1.3982 3.8229
(1.7278) (2.7231) (0.1518) (4.4800)
AWD 7.8109 9.6561 2.0168 2.0184
(4.3140) (6.3205) (0.2793) (0.2854)
46.753 2.0098
WD 17.835) | (02112 | T | T
0.0042 16.15
INHD (0.0023) | (@0638) | T | T
46.113
RD 6457y | T | T | T
7.6945
EXD @worray | T | T | T
Table 10.3
Comparison Criterion and Goodness of Fit Statistics for Data Set 1
Model —2logl AIC CAIC BIC HQIC
WINHD -145.49 -137.49 -136.62 -129.76 -134.54
MWD -131.52 -123.52 -122.65 -115.79 -120.57
AWD -137.23 -129.23 -128.36 -121.50 -126.28
WD -137.23 -133.23 -132.98 -129.36 -131.75
INHD -125.03 -121.03 -120.78 -117.17 -119.56
RD -66.527 -64.527 -64.445 -62.595 -63.789
EXD -106.13 -104.13 -104.05 -102.19 -103.39
Table 10.4
Other Goodness of Fit Statistics Criterion for Data Set 1
Model w* A" K-S value p-value
WINHD 0.0603 0.4770 0.0974 0.7181
MWD 0.2131 0.4976 0.1386 0.2805
AWD 0.1416 0.9430 0.1086 0.5844
WD 0.1411 0.9404 0.1085 0.5851
INHD 0.1364 0.8930 0.2297 0.00916
RD 0.1406 0.9380 0.1061 0.6135
EXD 0.0911 0.6831 0.3008 0.00019
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Data Set 2: The data shows the mortality rate due to covid-19 of Canada country which
has been recorded from first November to 26 December 2020 [https://covid-19.who.int/].

The data follows

0.1622, 0.1159,
0.1262, 0.1627,
0.1997, 0.3333,
0.2607, 0.2736,
0.2346, 0.1888,
0.2679, 0.2296,
0.3347, 0.2362.

0.1897, 0.1260, 0.3025,0.2190, 0.2075
0.2591, 0.1989, 0.3053, 0.2170, 0.2241
0.2594, 0.2230, 0.2290, 0.1536, 0.2024
0.2323, 0.1563, 0.2677, 0.2181, 0.3019
0.2729, 0.2162, 0.2746, 0.2936, 0.3259
0.2992, 0.2464, 0.2576, 0.2338, 0.1499

, 0.2241, 0.2163,
, 0.2174, 0.2541,
, 0.2931, 0.2739,
, 0.2136, 0.2281,
, 0.2242, 0.1810,
, 0.2075, 0.1834,

The ML Estimates (Standard Error in Parenthesis) for Data Set 2

Table 10.5
The Descriptive Statistics for Data Set 2
Min Q1 Med. Mean Qs Kurt. Skew. Max
0.1159 | 0.2017 | 0.2261 | 0.2305 | 0.2677 | 2.6537 | -0.0872 | 0.3347
Table 10.6

A

A

A

Model a 0 A
3.9226 35267 0.7705 0.3261
WINHD (1.642) (21505) | (1.1987) | (1.3252)
WD 85.734 7.9895 35441 12.170
(40073) | (04318) | (0.3838) | (1.6038)
WD 127.37 138.30 4.0197 4.0453
(12021) | (11027) | (03775) | (0.2053)
119.25 3.4761
Wb (37.968) | (02440) | T | T
0.0051 32516
INHD (0.0031) | (o9s8s4) | T | T
17.930
RD @3%) | T | T | T
43391
EXD ©s5798) | T | T | T
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Table 10.7
Comparison Criterion and Goodness of Fit Statistics for Data Set 2

Model

—2logl

AlIC

CAIC

BIC

HQIC

WINHD

-173.64

-165.64

-164.85

-157.54

-162.50

MWD

-169.68

-161.68

-160.90

-153.58

-158.54

AWD

-168.83

-160.83

-160.04

-152.73

-157.69

WD

-161.66

-157.66

-157.43

-153.61

-156.09

INHD

-84.469

-80.469

-80.243

-76.419

-78.899

RD

-43.843

-41.843

-41.769

-39.817

-41.058

EXD

-52.380

-50.380

-50.306

-48.355

-49.595

Table 10.8

Other Goodness of Fit Statistics Criterion for Data Set 2

Model

W

AF

K-S value

p-value

WINHD

0.0595

0.3334

0.0893

0.763

MWD

0.1314

0.7267

0.1346

0.2616

AWD

0.0792

0.4304

0.1115

0.489

WD

0.0668

0.3364

0.1384

0.2337

INHD

0.2886

0.7647

0.4729

2.627e-11

RD

0.0638

0.3963

0.3013

7.637e-05

EXD

0.0837

0.5359

0.4246

3.399e-09
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Figure 10.1: Estimated pdf of the Fitted Model for Data Set 1
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Figure 10.1: Empirical Reliability Function versus
Fitted Reliability Function Data Set 1
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Figure 10.3: Estimated pdf of the Fitted Model for Data Set 2
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Figure 10.4: Empirical Reliability Function versus
Fitted Reliability Function Data Set 2

CONCLUDING REMARKS

The focus of this research is to investigate prevailing pandemic-19 mortality data. In
this study, we developed a novel flexible distribution known as the Weibull-inverse
Nadarajah Haghighi distribution, renamed as (WINHD). Numerous mathematical
characteristics are determined for this distribution, including moments, moment generating
functions, incomplete moments, order statistics, Renyi entropy, mean deviations, and
reliability analysis. The maximum likelihood estimation approach was used to estimate the
distribution’s parameters. From tables (10.3), (10.4), (10.7) and (10.8) it is evident that the
formulated distribution leads to a better fit than the comparable ones.
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