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ABSTRACT 
 

 This paper introduces a novel approach for estimating the population mean in stratified 

sampling while accounting for non-response and measurement error. We propose a 

regression-cum-exponential estimator, which combines regression and exponential 

functions to estimate the population mean. This estimator is compared to other modified 

usual estimators commonly used in stratified sampling such as regression, ratio, and 

exponential estimators. This present article provides the expressions for the bias and means 

square error of the proposed estimator, considering the joint influence of non-response and 

measurement error. The theoretical comparisons between the proposed estimators and the 

existing ones to evaluate their respective performances. To further access the efficiency of 

the proposed estimators a simulation study is conducted. The results of the study indicate 

that the regression-cum-exponential estimator and its class of estimators outperform the 

existing estimators when dealing with the joint influence of nonresponse and measurement 

error. Overall, the paper introduces a novel approach to address the challenges of 

estimating population mean in stratified sampling while soldiering nonresponse and 

measurement error, The proposed estimators outperform existing methods in the presence 

of these factors, providing valuable insights for researchers and practitioners working with 

survey data. 
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1. INTRODUCTION 
 

 In survey research, while conducting a survey researchers may encounter two types of 

errors: sampling errors and non-sampling errors. Sampling errors arise from the lack of 

representativeness in the selected sample for observation, leading to a deviation between 

the sample estimate and the population parameter. These errors typically diminish as the 

sample size increases, allowing for a more accurate reflection of the population. Whereas 
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non-sampling errors, on the other hand, emerge from a variety of sources including 

inadequate frames, inaccurate sampling procedures, errors in coding and decoding,  

over reporting or underreporting by participants, incomplete coverage of sample units due 

to non-response, and measurement errors. Unlike sampling errors, non-sampling errors do 

not reduce with an increase in the sample size. In fact, as the sample size grows, the 

potential for non-sampling errors to occur may also increase. To minimize these errors, 

researchers should strive for a careful survey design, ensure a representative sample 

selection process, use reliable data collection methods, thoroughly train survey 

administrators, address non-response issues effectively, and implement quality control 

measures throughout the research process. 
 

 In survey research, non-response is a prevalent issue that can occur for various reasons, 

such as language barriers, unavailability of respondents, or censorship. It is widely 

recognized among statistics that ignoring the stochastic nature of non-response can 

introduce bias into the data representation. To reduce the impact of nonresponse, 

statisticians often employ the subsampling technique and propose various estimation 

methods. For example, one approach suggested by [5] involves using subsampling to 

modify the treatment of nonresponse in specific survey inquiries. Other scholars such as 

[11-13], have discussed the utilization of auxiliary information in conjunction with 

complete responses to alleviate non-response bias. Additionally, there are notable work 

presented by [1], [7], [9], [19-21] that provide insights into strategies for dealing with 

nonresponse. These proactive approaches enable researchers to an account for non-

response and produce reliable findings. 
 

 The measurement error in survey research reference to the discrepancy between the 

recorded value and the true value of the variable being measured. For instance, in a study 

that examines students cumulative grade point average (CGPA) if students are asked to 

report their actual CGPA, they may provide inaccurate or round ed figures instead of the 

precise value. This disparity between the reported and true CGPA represents the 

measurement error. To estimate unknown parameters when measurement error is present, 

substantial work has been done by researchers such as [4], [15-18], and many others. Their 

contributions have provided valuable insights and techniques for dealing with the impact 

of measurement error on parameter estimation in surveys. Similarly, researchers such as 

[4], [3], [6] and [7] addressed non-response issues and estimated population parameters by 

developing methods for handling nonresponse. 
 

 The impact of nonresponse and measurement error on population mean estimation bas 

been investigated by several notable researchers ([8], [10], [2], [14]). However, their 

studies primarily focused on simple random sampling using signal auxiliary variable. This 

study aims to extends these findings and enhance the efficiency of existing estimators by 

introducing regression cum exponential estimators for population mean estimation in the 

context of stratified random sampling. Furthermore, this study seeks to account for two 

non-sampling errors: nonresponse and measurement error. The proposed approach utilizes 

a novel combination of linear and exponential functions to develop estimators. Moreover, 

this study extends the existing literature by modifying classical ratio, regression, and 

exponential estimators to accommodate the presence of nonresponse and measurement. 
 



Uzma Iqbal et al. 519 

 After introducing nonresponse, and measurement error and presenting the sampling 

strategy and discussing some existing estimators section 4 covers modified ratio, 

regression, and exponential estimator for stratified sampling under the joint influence of 

measurement error and non-response along with the derivation. In section 5, we propose 

regression-cum-exponential estimators using single and two auxiliary variables of a 

population mean in the presence of non-response and measurement. The expressions of the 

bias and mean square error have been derived. Section 6 provides theoretical comparison 

to demonstrate the performance of the proposed regression-cum-exponential estimator. To 

support the proposed methodology, a simulation study is presented in section 7. Some 

concluding remarks are made in Section 8. 

 

2. SAMPLING STRATEGY 
 

 Before presenting the sampling strategy of stratified sampling and estimation 

procedures, some basic notations used in this study are defined. Let a population of  

size 𝑁 be divided into 𝐿 homogenous strata with 𝑁ℎ units (ℎ = 1,2, . . . , 𝐿) such that 

∑ 𝑁ℎ
𝐿
ℎ=1 = 𝑁.     

N: Population size 

𝑁ℎ: Population of size of ℎ𝑡ℎstratum; 

𝑌
𝑋 ⁄  : Study variable / Auxiliary variable; 

𝜇𝑌 𝜇𝑋⁄ : Population mean of Y/ Population mean of X 

𝜇𝑌ℎ
𝜇𝑋ℎ

⁄  : Population means in ℎ𝑡ℎ stratum;  

𝜇𝑌ℎ(1)
, 𝜇𝑋ℎ(1)

: Population means of respondents group in ℎ𝑡ℎstratum; 

𝜇𝑌ℎ(2)
, 𝜇𝑋ℎ(2)

: Population means of non-respondents group in ℎ𝑡ℎstratum; 

𝜎𝑌ℎ
2

𝜎𝑋ℎ
2⁄ : Population Variances of Y and X respectively in ℎ𝑡ℎ stratum;  

𝜎𝑌ℎ(1)

2 , 𝜎𝑋ℎ(1)

2 : Population Variances from group of respondents in ℎ𝑡ℎ stratum;  

𝜎𝑌ℎ(2)

2 , 𝜎𝑋ℎ(2)

2 : Population Variances from group of non-respondents in ℎ𝑡ℎ stratum;  

𝐶𝑌ℎ(1)
, 𝐶𝑋ℎ(1)

: Coefficient of variation for Y and X from group of respondents in 

ℎ𝑡ℎ stratum;  

𝐶𝑌ℎ(2)
, 𝐶𝑋ℎ(2)

: Coefficient of variation for Y and X from group of non-respondents 

in ℎ𝑡ℎ stratum;  

𝑦ℎ𝑖

𝑥ℎ𝑖
: Report values on Y and X for 𝑖𝑡ℎ units in ℎ𝑡ℎstratum; 

𝑌ℎ𝑖

𝑋ℎ𝑖
: True values on Y and X for 𝑖𝑡ℎ units in ℎ𝑡ℎstratum; 

𝑈ℎ𝑖 = 𝑦ℎ𝑖 − 𝑌ℎ𝑖 : Measurement error on the study variable associated with 𝑖𝑡ℎ 

units in ℎ𝑡ℎstratum;  
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𝑉ℎ𝑖 = 𝑥ℎ𝑖 − 𝑋ℎ𝑖 : Measurement error on the auxiliary variable associated with 𝑖𝑡ℎ 

units in ℎ𝑡ℎstratum; 

𝑈ℎ𝑖
∗ = 𝑦ℎ𝑖

∗ − 𝑌ℎ𝑖
∗  : Measurement error and non-response on Y associated with 𝑖𝑡ℎ 

units in ℎ𝑡ℎstratum; 

𝑉ℎ𝑖
∗ = 𝑥ℎ𝑖

∗ − 𝑋ℎ𝑖
∗  : Measurement error and non-response on X associated with 𝑖𝑡ℎ 

units in ℎ𝑡ℎstratum; 

𝜎𝑈ℎ(2)

2 , 𝜎𝑉ℎ(2)

2 : Population Variances of U and V respectively from the group of 

non-respondents; 

𝜌𝑌𝑋ℎ(1) 
 and 𝜌𝑌𝑋ℎ(2)

: Coefficient of correlation between the study variable and 

auxiliary variable for the respondent and non-respondents parts of the 

population respectively; 

𝑃ℎ =
𝑁ℎ

𝑁
 : Weight of ℎ𝑡ℎstratum;     

𝑛ℎ: sample size in ℎ𝑡ℎstratum; 

𝜇̃𝑥(𝑠𝑡)
= Sample mean estimator; 

𝜇̃𝑦(𝑠𝑡)
∗

𝜇̃𝑥(𝑠𝑡)
∗  : Sample mean estimator with non-response and measurement error.  

 

Now consider, 
 

𝜇𝑌 = ∑ 𝑃ℎ𝜇𝑌ℎ
𝐿
𝑖=1 ,  𝜇𝑋 = ∑ 𝑃ℎ𝜇𝑋ℎ

𝐿
𝑖=1 ,  𝜇𝑌ℎ =

1

𝑁
∑ 𝑦ℎ𝑖

𝑁𝐿
𝑖=1 , 

𝜇𝑋ℎ =
1

𝑁ℎ
∑ 𝑥ℎ𝑖

𝐿
𝑖=1  and 𝑃ℎ =

𝑁ℎ

𝑁
. 

 

 The measurement error 𝑈ℎ𝑖
∗ = 𝑦ℎ𝑖

∗ − 𝑌ℎ𝑖
∗  and 𝑉ℎ𝑖

∗ = 𝑥ℎ𝑖
∗ − 𝑋ℎ𝑖

∗  in the presence of non-

response associated are assumed to have their means zero and the variances 𝜎𝑈ℎ(2)

2  and 

𝜎𝑉ℎ(2)

2  for the non-respondent part of the population. 
 

 Consider a finite population of size N is stratified into L homogenous strata. Let 𝑁ℎ, be 

the size of ℎ𝑡ℎ stratum (ℎ = 1,2,3, . . . 𝐿) Such that ∑ 𝑁ℎ
𝐿
ℎ=1 = 𝑁 and (𝑦ℎ𝑖 , 𝑥ℎ𝑖,𝑧ℎ𝑖) be the 

observations of study variable y and auxiliary variable 𝑥 on the 𝑖𝑡ℎ unit of ℎ𝑡ℎ stratum, 

respectively. Let 𝑦̅ℎ and 𝑥̅ℎ , be the sample means of ℎ𝑡ℎ stratum corresponding to the 

population means 𝑌̅ℎ  and 𝑋̅ℎrespectively. Usually, it is not possible to collect complete 

information from all the tits selected in the sample 𝑛ℎ(∑ 𝑛ℎ
𝐿
ℎ=1 = 𝑛) Let 𝑛ℎ(1)

 units from 

a sample of 𝑛𝑡ℎ provide their responses and 𝑛ℎ(2)
, units do not. Adapting Hansen and 

Hurwitz sub-sampling methodology, a sub-sample of size 𝑟ℎ (𝑟 =
𝑛ℎ(2)

𝑓ℎ
; 𝑓ℎ > 1) from 

𝑛ℎ(2)
 non-respondents’ group is selected at random, the sampling fraction among the  

non-respondent group in the hth stratum. In practice, 𝑟ℎ, is usually not integer and has  

to be recorded. Following most of the current literature on this topic, let us assume that the 

followed-up 𝑟ℎ (⊂ 𝑛ℎ(2)
) units respond on the second call. 
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 𝜌 is population correlation coefficient between X and Y for the responding and non-

responding part of the population respectively.  

 

3. SOME EXISTING ESTIMATOR 
 

 Azeem and Hanif [2] proposed few estimators under the joint influence of nonresponse 

and measurement error for estimation of population mean in two-phase sampling. The 

estimators are as follows: 
 

𝑇𝐴𝐻1 = 𝜇̃𝑦
∗
𝜇̃𝑥

′∗

𝜇𝑋

𝜇̃𝑥
′∗

𝜇̃𝑥
∗
, (1) 

and 
 

𝑇𝐴𝐻2 = 𝜇̃𝑦
∗
𝜇̃𝑥

′∗

𝜇𝑋

𝑒𝑥𝑝 (
𝜇̃𝑥

′∗ − 𝜇̃𝑥
∗

𝜇̃𝑥
′∗ + 𝜇̃𝑥

∗
), (2) 

 

 The mean square error of the estimators are as,  
 

𝑀𝑆𝐸 (𝑇𝐴𝐻1) = 𝜆2𝜇𝑌
2
(𝐶𝑦

2 + (
𝑁 + 𝑛

𝑁 − 𝑛
)𝐶𝑥

2 − 2(
𝑁 + 𝑛

𝑁 − 𝑛
) 𝜌𝑦𝑥𝐶𝑦𝐶𝑥) 

+𝜃𝜇𝑌
2 (𝐶𝑦(2)

2 + (
𝑁 + 𝑛

𝑁 − 𝑛
)𝐶𝑥(2)

2 − 2 (
𝑁 + 𝑛

𝑁 − 𝑛
)𝜌𝑦𝑥(2)𝐶𝑦(2)𝐶𝑥(2)) 

 

+𝜆2𝜇𝑌
2 (

𝑆𝑢
2

𝜇𝑌
2
+ (

𝑁 + 𝑛

𝑁 − 𝑛
)

2 𝑆𝑣
2

𝜇𝑋
2
) + 𝜃𝜇𝑌

2 (
𝑆𝑢(2)

2

𝜇𝑌
2

+ (
𝑁 + 𝑛

𝑁 − 𝑛
)

2 𝑆𝑣(2)
2

𝜇𝑋
2
). (3) 

and  

𝑀𝑆𝐸 (𝑇𝐴𝐻2) = 𝜆2𝜇𝑌
2
(𝐶𝑦

2 +
1

4
(
𝑁 + 2𝑛

𝑁 − 𝑛
)

2

𝐶𝑥
2 − (

𝑁 + 2𝑛

𝑁 − 𝑛
)𝜌𝑦𝑥𝐶𝑦𝐶𝑥) 

+𝜃𝜇𝑌
2 (𝐶𝑦(2)

2 +
1

4
(
𝑁 + 2𝑛

𝑁 − 𝑛
)

2

𝐶𝑥(2)
2 − (

𝑁 + 𝑛

𝑁 − 𝑛
)𝜌𝑦𝑥(2)𝐶𝑦(2)𝐶𝑥(2)) 

+𝜆2𝜇𝑌
2 (

𝑆𝑢
2

𝜇𝑌
2
+

1

4
(
𝑁 + 2𝑛

𝑁 − 𝑛
)

2 𝑆𝑣
2

𝜇𝑋
2
) + 𝜃𝜇𝑌

2 (
𝑆𝑢(2)

2

𝜇𝑌
2

+
1

4
(
𝑁 + 2𝑛

𝑁 − 𝑛
)

2 𝑆𝑣(2)
2

𝜇𝑋
2
). 

 (4) 
 

 Sabir and Sanaullah [15] introduced a generalized class of estimator for two phase 

sampling if nonresponse and measurement errors are simultaneously present and is as, 
 

𝑇𝑆𝑆 =
𝜇̃𝑦

∗

2
(𝑒𝑥𝑝 (

𝜇̃𝑥
∗ − 𝜇̃𝑥

′∗

𝜇̃𝑥
∗ + 𝜇̃𝑥

′∗
) + 𝑒𝑥𝑝 (

𝜇̃𝑥
′∗ − 𝜇̃𝑥

∗

𝜇̃𝑥
′∗ + 𝜇̃𝑥

∗
)) + 𝜔(𝜇̃𝑥

′∗ − 𝜇̃𝑥
∗), (5) 

 

 The mean square error of Tss is given by,  
 

𝑀𝑆𝐸 (𝑇𝑆𝑆) = 𝜇𝑌
2
𝐴𝑦

∗ + 𝜔2𝜇𝑋
2𝐴𝑥

∗ − 2𝜇𝑌𝜇𝑋𝜔𝐶𝑥𝑦
∗ . (6) 

 

 Zahid et al. [22] introduced a generalized estimator for sensitive variable under 

stratified random sampling in the presence of non-response and measurement error. The 

estimator is as, 
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𝑇𝐸𝑍 = ∑ 𝑃ℎ {𝑚1ℎ𝑧ℎ̅
∗ {

𝑋̅ℎ

𝑥̅ℎ
∗′}

𝛼1

+ 𝑚2ℎ(𝑋̅ℎ − 𝑥̅ℎ
∗′
) {

𝑋̅ℎ

𝑥̅ℎ
∗′}

𝛼2𝐿

ℎ=1

+ 𝑚3ℎ(𝑅̅𝑥ℎ − 𝑟̅𝑥ℎ
∗′

) {
𝑋̅ℎ

𝑥̅ℎ
∗′}

𝛼2

} 𝑒𝑥𝑝(1 − 𝛼)(
𝑋̅ℎ − 𝑥̅ℎ

∗′

𝑋̅ℎ + 𝑥̅ℎ
∗′), 

 

 

 

(7) 

 

 The bias and MSE of the estimator TEZ are given as, 
 

𝐵𝑖𝑎𝑠(𝑇𝐸𝑍) = ∑ 𝑃ℎ {(𝑚1ℎ − 1)𝑍̅ℎ + 𝑚1ℎ (
𝑓∗′

𝑡ℎ
2𝑅ℎ𝐵ℎ

𝑋̅ℎ

+
𝑒∗′

𝑡ℎ𝐶ℎ

𝑋̅ℎ

)

𝐿

ℎ=1

+ 𝑚2ℎ (
𝑑∗′

𝑡ℎ
2𝐵ℎ

𝑋̅ℎ

) + 𝑚3ℎ𝑚1ℎ (
𝑐∗′

𝑡ℎ𝐹ℎ

𝑋̅ℎ

+
𝑏∗′

𝑡ℎ
2𝐷ℎ

𝑅̅𝑥ℎ

)} , 

 

 

(8) 

and  
 

𝑀𝑆𝐸(𝑇𝐸𝑍) = ∑ 𝑃ℎ{𝑍̅ℎ
2 + 𝑚1ℎ

2 𝐴ℎ1
∗′

+ 𝑚2ℎ
2 𝐵ℎ1

∗′
+ 2𝑚2ℎ𝑚1ℎ𝐶ℎ1

∗′

𝐿

ℎ=1

− 2𝑚1ℎ𝐷ℎ1
∗′

− 2𝑚2ℎ𝐸ℎ1
∗′

+ 𝑚3ℎ
2 𝐹ℎ1

∗′
+ 2𝑚3ℎ𝑚1ℎ𝐺ℎ1

∗′

+ 2𝑚3ℎ𝑚2ℎ𝐺ℎ1
∗′

− 2𝑚3ℎ𝐼ℎ1
∗′

}. 

 

 

 

(9) 

 

4. MODIFIED ESTIMATORS 
 

 Following Hansen and Hurwitz [8] estimator for estimating mean in the presence of 

non-response and measurement error for stratified sampling is given by 
 

𝑡0
∗ = 𝜇̃𝑦(𝑠𝑡)

∗ = ∑ 𝑃ℎ𝜇̃𝑦ℎ
∗

𝐿

𝑖=1

, (10) 

 

where  

𝜇̃𝑦ℎ
∗ = 𝑤1(𝜇̃𝑦ℎ(1)

∗ + 𝜇̃𝑈ℎ(1)
∗ ) + 𝑤2(𝜇̃𝑦(2)𝑘ℎ)

∗ + 𝜇̃𝑈(2)𝑘ℎ)
∗ ), 𝑤1 =

𝑛ℎ(1)

𝑛ℎ
, 𝑤2 =

𝑛ℎ(2)

𝑛ℎ
, 

𝜇̃𝑦ℎ(1)
∗ =

1

𝑛ℎ(1)
∑ 𝑦ℎ𝑖

𝑛ℎ(1)

𝑖=1
, 𝜇̃𝑈ℎ(1)

∗ =
1

𝑛ℎ
∑ 𝑈ℎ𝑖

𝑛ℎ(1)

𝑖=1
, 𝜇̃𝑦(2)𝑘ℎ

∗ =
1

𝑟ℎ
∑ 𝑦ℎ𝑖

𝑟ℎ
𝑖=1 ,  

𝜇̃𝑦ℎ(2)𝑘ℎ

∗ =
1

𝑟ℎ
∑ 𝑦ℎ𝑖

𝑘ℎ
𝑖=1  and 𝜇̃𝑈ℎ(2)𝑘ℎ

∗ =
1

𝑘ℎ
∑ 𝑈ℎ𝑖

𝑘ℎ
𝑖=1   

 

 The expression of the variance 𝑡0
∗may be defined as,  

 

𝑣𝑎𝑟(𝑡0
∗) = 𝜇𝑌

2 ∑ 𝑃ℎ
2 (𝜆ℎ (𝐶𝑌ℎ

2 +
𝜎𝑈ℎ

2

𝜇𝑌
2 ) + 𝜃ℎ (𝐶𝑌ℎ(2)

2 +
𝜎𝑈ℎ(2)

2

𝜇𝑌
2 )) ,

𝐿

ℎ=1

 (11) 

 

where 𝜆ℎ = (
1

𝑛ℎ
−

1

𝑁ℎ
) ,𝑊ℎ(2) =

𝑁ℎ(2)

𝑁ℎ
, 𝜃ℎ =

𝑊ℎ(2)(𝑟ℎ−1)

𝑛ℎ
. 

 

 Similarly, for the auxiliary variable, the sample mean estimator in the presence of 

non-response and measurement is 
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𝜇̃𝑥(𝑠𝑡)
∗ = ∑𝑃ℎ𝜇̃𝑥ℎ

∗

𝐿

𝑖=1

, 

 

where  

𝜇̃𝑥ℎ
∗ = 𝑤1(𝜇̃𝑥ℎ(1)

∗ + 𝜇̃𝑉ℎ(1)
∗ ) + 𝑤2(𝜇̃𝑥(2)𝑘ℎ)

∗ + 𝜇̃𝑉(2)𝑘ℎ)
∗ ), 

𝜇̃𝑥ℎ(1)
∗ =

1

𝑛ℎ(1)
∑ 𝑥ℎ𝑖

𝑛ℎ(1)

𝑖=1
,  𝜇̃𝑉ℎ(1)

∗ =
1

𝑛ℎ
∑ 𝑉ℎ𝑖

𝑛ℎ(1)

𝑖=1
, 𝜇̃𝑥(2)𝑘ℎ

∗ =
1

𝑟ℎ
∑ 𝑥ℎ𝑖

𝑟ℎ
𝑖=1 , 

𝜇̃𝑥ℎ(2)𝑘ℎ

∗ =
1

𝑟ℎ
∑ 𝑥ℎ𝑖

𝑘ℎ
𝑖=1  and 𝜇̃𝑉ℎ(2)𝑘ℎ

∗ =
1

𝑘ℎ
∑ 𝑉ℎ𝑖

𝑘ℎ
𝑖=1  

 

 The modified combined type ratio, exponential and regression estimators are presented 

under the belief that the non-response and the measurement error are occurring on both 

study and the auxiliary variables under stratified sampling.  
 

4.1 The Modified Combined Ratio Estimator  

 The modified combined ratio estimator is given by 
 

𝑡𝑟 =
𝜇̃𝑦(𝑠𝑡)

∗

𝜇̃𝑥(𝑠𝑡)
∗

𝜇𝑋. (12) 

 

 In order to obtain the expressions for the bias and the MSE, let us consider 
 

𝐻𝑌ℎ
∗ = ∑(𝑦ℎ𝑖

∗ − 𝜇𝑌ℎ),

𝑛ℎ

𝑖=1

𝐻𝑋ℎ
∗ = ∑(𝑥ℎ𝑖

∗ − 𝜇𝑋ℎ)

𝑛ℎ

𝑖=1

, 𝐻𝑈ℎ
∗ = ∑𝑈ℎ𝑖

∗

𝑛ℎ

𝑖=1

and 𝐻𝑉ℎ
∗ = ∑𝑉ℎ𝑖

∗

𝑛ℎ

𝑖=1

 

 

 The error terms due to sampling are defined by, 
 

𝑒𝑦(𝑠𝑡)
∗ =

1

𝜇𝑌

∑
𝑃ℎ

𝑛ℎ

(𝐻𝑌ℎ
∗ + 𝐻𝑈ℎ

∗ )

𝑛ℎ

𝑖=1

 

and 

𝑒𝑥(𝑠𝑡)
∗ =

1

𝜇𝑋

∑
𝑃ℎ

𝑛ℎ

(𝐻𝑋ℎ
∗ + 𝐻𝑉ℎ

∗ )

𝑛ℎ

𝑖=1

, 

 

and the sample means associated with the sampling errors assuming the joint presence of 

non-response and measurement error are defined by  
 

𝜇̃𝑦(𝑠𝑡)
∗ = 𝜇𝑌 (1 + 𝑒𝑦(𝑠𝑡)

∗ ) and 𝜇̃𝑥(𝑠𝑡)
∗ = 𝜇𝑋(1 + 𝑒𝑥(𝑠𝑡)

∗ ), such that  

𝐸 (𝑒𝑦(𝑠𝑡)
∗ ) = 𝐸 (𝑒𝑥(𝑠𝑡)

∗ ) = 0,  

𝐸 (𝑒𝑦(𝑠𝑡)
∗ )

2

= [∑ 𝑃ℎ
2

𝐿

ℎ=1

{𝜆ℎ (𝐶𝑌ℎ
2 +

𝜎𝑈ℎ
2

𝜇𝑦
2
) + 𝜃ℎ (𝐶𝑌ℎ(2)

2 +
𝜎𝑈ℎ(2)

2

𝜇𝑦
2

)}] = 𝐴𝑦(𝑠𝑡)
∗ , 

𝐸 (𝑒𝑥(𝑠𝑡)
∗ )

2

= [∑ 𝑃ℎ
2

𝐿

ℎ=1

{𝜆ℎ (𝐶𝑋ℎ
2 +

𝜎𝑉ℎ
2

𝜇𝑋
2 ) + 𝜃ℎ (𝐶𝑋ℎ(2)

2 +
𝜎𝑉ℎ(2)

2

𝜇𝑋
2 )}] = 𝐴𝑥(𝑠𝑡)

∗  and  
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𝐸 (𝑒𝑦(𝑠𝑡)
∗ 𝑒𝑥(𝑠𝑡)

∗ ) = [∑ 𝑃ℎ
2

𝐿

ℎ=1

(𝜆ℎ𝜌𝑋𝑌ℎ
𝐶𝑌ℎ

𝐶𝑋ℎ
+ 𝜃ℎ𝜌𝑋𝑌ℎ(2)

𝐶𝑌ℎ(2)𝐶𝑋ℎ(2)
)] = 𝐶𝑥𝑦(𝑠𝑡)

∗ . 

 

 Now the ratio estimator (12) in terms of e’s is given by  
 

𝑇𝑟 =
𝜇𝑌 (1 + 𝑒𝑦(𝑠𝑡)

∗ )

𝜇𝑌 (1 + 𝑒𝑥(𝑠𝑡)
∗ )

𝜇𝑋, (13) 

 

 The expressions of the bias and the MSE are given by  
 

𝐵𝑖𝑎𝑠 (𝑇𝑟) = 𝜇𝑌(𝐴𝑥(𝑠𝑡)
∗ − 𝐶𝑥𝑦(𝑠𝑡)

∗ ) (14) 
 

𝑀𝑆𝐸 (𝑇𝑟) = 𝜇𝑌
2
(𝐴𝑦(𝑠𝑡)

∗ + 𝐴𝑥(𝑠𝑡)
∗ − 2𝐶𝑥𝑦(𝑠𝑡)

∗ ) (15) 

 

4.2 The Modified Combined Regression Estimator 
 

𝑇𝑟𝑒𝑔 = 𝜇̃𝑦(𝑠𝑡)
∗ + 𝑏𝑥 (𝜇𝑋 − 𝜇̃𝑥(𝑠𝑡)

∗ ) (16) 
 

 Express (16) in terms of e’s, we may get 
 

𝑇𝑟𝑒𝑔 − 𝜇𝑌 = 𝜇𝑌𝑒𝑦(𝑠𝑡)
∗ − 𝑏𝑥𝜇𝑋𝑒𝑥(𝑠𝑡)

∗  (17) 
 

 Squaring and applying expectations 
 

𝑀𝑆𝐸(𝑇𝑟𝑒𝑔) = 𝜇𝑌
2𝐴𝑦(𝑠𝑡)

∗ + 𝑏𝑥
2𝜇𝑋

2𝐴𝑥(𝑠𝑡)
∗ − 2 𝑏𝑥𝜇𝑋𝜇𝑌𝐶𝑥𝑦(𝑠𝑡)

∗  (18) 
 

 Differentiating (18) with respect to ‘b’, we get 
 

𝑏𝑥 =
 𝜇𝑌𝐶𝑥𝑦

𝜇𝑋𝐴𝑦

. 

 

 The minimum MSE expression after substituting the value of b, we may get as,  

 

𝑚𝑖𝑛𝑀𝑆𝐸(𝑇𝑟𝑒𝑔) = 𝜇𝑌
2 [𝐴𝑦(𝑠𝑡)

∗ −
𝐶𝑥𝑦(𝑠𝑡)

∗2

𝐴𝑥(𝑠𝑡)
∗

] (19) 

 

4.3 Modified Combined Exponential Estimator 
 

𝑇𝑒𝑥 = 𝜇̃𝑦𝑠𝑡
∗ 𝑒𝑥𝑝 [

𝜇𝑋 − 𝜇̃𝑥(𝑠𝑡)
∗

𝜇𝑋 + 𝜇̃𝑥(𝑠𝑡)
∗

], (20) 

 

 Expressing (20) in terms of e’s and expanding up to the first order of approximation, 

we may have  
 

𝑇𝑒𝑥 = 𝜇𝑌 + 𝜇𝑌𝑒𝑦(𝑠𝑡)
∗ −

𝜇𝑌

2
(𝑒𝑥(𝑠𝑡)

∗ −
𝑒𝑥(𝑠𝑡)

∗2

2
) −

𝜇𝑌𝑒𝑦(𝑠𝑡)
∗

2
(𝑒𝑥(𝑠𝑡)

∗ −
𝑒𝑥(𝑠𝑡)

∗2

2
) 

+
𝜇𝑌

4
(𝑒𝑥(𝑠𝑡)

∗2
+

𝑒𝑥(𝑠𝑡)
∗4

4
− 𝑒𝑥(𝑠𝑡)

∗3
) +

𝜇𝑌𝑒𝑦(𝑠𝑡)
∗

4
(𝑒𝑥(𝑠𝑡)

∗2
+

𝑒𝑥(𝑠𝑡)
∗4

4
− 𝑒𝑥(𝑠𝑡)

∗3
), 

 

 

 

(21) 
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 After solving and applying expectation we may have the expressions of the bias and 

the MSE as, 
 

𝐵𝑖𝑎𝑠(𝑇𝑒𝑥) =  𝜇𝑌

1

2
[𝐴𝑥(𝑠𝑡)

∗ − 𝐶𝑥𝑦(𝑠𝑡)
∗ ] (22) 

 

𝑀𝑆𝐸(𝑇𝑒𝑥) = 𝜇𝑌
2 [𝐴𝑦(𝑠𝑡)

∗ +
𝐴𝑥(𝑠𝑡)

∗

4
− 𝐶𝑥𝑦(𝑠𝑡)

∗ ] (23) 

 

5. PROPOSED GENERALIZED ESTIMATORS 
 

 This section presents the procedure of mean estimation in stratified sampling using a 

single and two auxiliary variables under the existence of two random errors i.e. non-

response and measurement error on both study and auxiliary variables. The proposed 

estimators are based on the linear and exponential functions for better description of the 

population mean of study variable. The expressions of the bias and MSE of the proposed 

estimator under first order of approximation are obtained. 

 

5.1 Proposed Estimator I 

 A regression-cum-exponential estimator to estimate the population mean of the study 

variable using a single auxiliary variable under the existence of nonresponse and 

measurement error is proposed following a linear and exponential functions. The form of 

the estimator is proposed by 
 

𝑇𝑝𝑟 = [𝑘1𝜇̃𝑦𝑠𝑡
∗ + 𝑘2 (

𝜇𝑋 − 𝜇̃𝑥𝑠𝑡
∗

𝜇𝑋

)] 𝑒𝑥𝑝 [
𝑎(𝜇𝑋 − 𝜇̃𝑥𝑠𝑡

∗ )

𝑎(𝜇𝑋 + 𝜇̃𝑥𝑠𝑡
∗ ) + 2𝑏

], (24) 

 

where 𝑘1 and 𝑘2 are suitably chosen constants whose sum needs not be ‘unity’ for instance, 

and a and b are suitable chosen scalars. It is to be noted that the class of estimator 

𝑇𝑝𝑟 reduces to the following set of known estimators present in Table 1.  

 

Table 1 

Class of Estimators  

Estimators k1 k2 a B 

𝑇𝑝𝑟(1)=𝜇̃𝑦𝑠𝑡
∗  1 0 0 0 

𝑇𝑝𝑟(2)=𝑘1𝜇̃𝑦𝑠𝑡
∗  k1 0 0 0 

𝑇𝑝𝑟(3)=𝜇̃𝑦𝑠𝑡
∗ 𝑒𝑥𝑝 [

𝜇𝑋−𝜇̃𝑥𝑠𝑡
∗

𝜇𝑋+𝜇̃𝑥𝑠𝑡
∗ ] 1 0 1 0 

𝑇𝑝𝑟(4)=𝜇̃𝑦𝑠𝑡
∗ 𝑒𝑥𝑝 [

(𝜇𝑋−𝜇̃𝑥𝑠𝑡
∗ )

(𝜇𝑋+𝜇̃𝑥𝑠𝑡
∗ )+2𝑏

] 1 0 1 B 

𝑇𝑝𝑟(5)=𝜇̃𝑦𝑠𝑡
∗ 𝑒𝑥𝑝 [

(𝜇𝑋−𝜇̃𝑥𝑠𝑡
∗ )

(𝜇𝑋+𝜇̃𝑥𝑠𝑡
∗ )+2

] 1 0 1 1 

 

 In order to obtain the expressions of the bias and MSE of 𝑇𝑝𝑟, (24) is expressed in terms 

of e’s to the first order of approximation, we may have 
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𝑇𝑝𝑟 = [𝑘1𝜇𝑌(1 + 𝑒𝑦(𝑠𝑡)
∗ ) + 𝑘2 (

𝜇𝑋 − 𝜇𝑋(1 + 𝑒𝑥(𝑠𝑡)
∗ )

𝜇𝑋

)] 

𝑒𝑥𝑝 [
𝑎 (𝜇𝑋 − 𝜇𝑋(1 + 𝑒𝑥(𝑠𝑡)

∗ ))

𝑎 (𝜇𝑋 + 𝜇𝑋(1 + 𝑒𝑥(𝑠𝑡)
∗ )) + 2𝑏

] (25) 

 

 By solving we get, 
 

𝑇𝑝𝑟 − 𝜇𝑌 = (𝑘1 − 1)𝜇𝑌 + 𝑘1𝜇𝑌 [𝑒𝑦(𝑠𝑡)
∗ + (1 − 𝑣)

𝑒𝑥(𝑠𝑡)
∗

2
] 

−𝑘2𝜇𝑋𝑒𝑥(𝑠𝑡)
∗ +𝑘1𝜇𝑌(1 − 𝑣)

𝑒𝑦(𝑠𝑡)
∗ 𝑒𝑥(𝑠𝑡)

∗

2
 

−𝑘2𝜇𝑋(1 − 𝑣)
𝑒𝑥(𝑠𝑡)

∗2

2
+𝑘1𝜇𝑌 (1 +

1

2
(1 − 𝑣)2)

𝑒𝑥(𝑠𝑡)
∗2

2
, (26) 

where 𝑣 =
𝑏

𝑎𝜇𝑋
. 

 

 Applying expectation, we get the bias of 𝑇𝑝𝑟 as, 
 

 

𝐵𝑖𝑎𝑠(𝑇𝑝𝑟) = (𝑘1 − 1)𝜇𝑌+𝑘1𝜇𝑌(1 − 𝑣)
𝐶𝑥𝑦(𝑠𝑡)

∗

2

− [𝑘2𝜇𝑋(1 − 𝑣)+𝑘1𝜇𝑌 (1 +
1

2
(1 − 𝑣)2)]

𝐴𝑥(𝑠𝑡)
∗

2
. 

 

 

(27) 

 

 Ignoring second-order terms in (27) and taking squares on both sides, we may have  
 

(𝑇𝑝𝑟 − 𝜇𝑌)
2

= 𝜇𝑌
2 [(𝑘1 − 1)2 + 𝑘1

2 (𝑒𝑦(𝑠𝑡)
∗2

+
𝑒𝑥(𝑠𝑡)

∗2

4
(1 − 𝑣)2 − (1 − 𝑣)𝑒𝑥(𝑠𝑡)

∗ 𝑒𝑦(𝑠𝑡)
∗ )

+ 2𝑘1(𝑘1 − 1) {𝑒𝑦(𝑠𝑡)
∗ −

𝑒𝑥(𝑠𝑡)
∗

2
(1 − 𝑣)}] + 𝑘2

2𝜇𝑋
2𝑒𝑥(𝑠𝑡)

∗2
 

−2𝑘2𝜇𝑋𝜇𝑌 [(𝑘1 − 1)𝑒𝑥(𝑠𝑡)
∗ + 𝑘1 {𝑒𝑦(𝑠𝑡)

∗ 𝑒𝑥(𝑠𝑡)
∗ −

𝑒𝑥(𝑠𝑡)
∗2

2
(1 − 𝑣)}], (28) 

 

 Taking expectations on both sides of (28), the MSE expression attained is as, 
 

𝑀𝑆𝐸(𝑇𝑝𝑟) = 𝜇𝑌
2 [(𝑘1 − 1)2 + 𝑘1

2 (𝐴𝑦(𝑠𝑡)
∗ +

𝐴𝑥(𝑠𝑡)
∗

4
(1 − 𝑣)2 − (1 − 𝑣)𝐶𝑥𝑦(𝑠𝑡)

∗ )] 

+𝑘2
2𝜇𝑋

2𝐴𝑥(𝑠𝑡)
∗ − 2𝑘2𝑘1𝜇𝑋𝜇𝑌 {𝐶𝑥𝑦(𝑠𝑡)

∗ −
𝐴𝑥(𝑠𝑡)

∗

2
(1 − 𝑣)}.  (29) 

 

 The optimum values of 𝑘1 and 𝑘2, may be obtained as, 
 

𝑘1 =
1

(1 + 𝐺 −
𝑇2

𝐴𝑥(𝑠𝑡)
∗ )

  and  𝑘2 =
𝑘1𝜇𝑌𝑇

𝜇𝑋𝐴𝑥(𝑠𝑡)
∗

 respectively. 
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 Substituting the values of 𝑘1and 𝑘2 in (29), the minimum MSE expression obtained  

is as,  
 

𝑚𝑖𝑛𝑀𝑆𝐸(𝑇𝑝𝑟) = 𝜇𝑌
2

[
 
 
 
 

1 −
1

(1 + 𝐺 −
𝑇2

𝐴𝑥(𝑠𝑡)
∗ )

]
 
 
 
 

. (30) 

 

where 𝐺 = (𝐴𝑦(𝑠𝑡)
∗ +

𝐴𝑥(𝑠𝑡)
∗

4
(1 − 𝑣)2 − (1 − 𝑣)𝐶𝑥𝑦(𝑠𝑡)

∗ ) and 𝑇 = {𝐶𝑥𝑦(𝑠𝑡)
∗ −

𝐴𝑦(𝑠𝑡)
∗

2
(1 − 𝑣)}. 

 

5.2 Proposed Estimator II 

 Following a linear and an exponential function of auxiliary variables, a class of 

regression-cum-exponential estimators for estimating the population mean based on the 

two auxiliary variables is given by 
 

𝑇𝑝𝑟𝑟 = [𝑤1𝜇̃𝑦𝑠𝑡
∗ + 𝑤2 (

𝜇𝑋 − 𝜇̃𝑥𝑠𝑡
∗

𝜇𝑋

)] 𝑒𝑥𝑝 [
𝑐(𝜇𝑍 − 𝜇̃𝑧𝑠𝑡

∗ )

𝑐(𝜇𝑍 + 𝜇̃𝑧𝑠𝑡
∗ ) + 2𝑑

], (31) 

 

where 𝑤1 and 𝑤2  are unknown constants to be determined later such that the MSE of 𝑇𝑝𝑟𝑟 

is minimized and c and d are suitably chosen scalars. One can note that the class of 

estimator 𝑇𝑝𝑟 shrink to the following set of known estimators present in Table 1.  

 

Table 2 

Class of Estimators  

Estimators 𝒘𝟏 𝒘𝟐 C d 

𝑇𝑝𝑟𝑟(1) = 𝜇̃𝑦𝑠𝑡
∗  1 0 0 0 

𝑇𝑝𝑟𝑟(2) = 𝑤1𝜇̃𝑦𝑠𝑡
∗  k1 0 0 0 

𝑇𝑝𝑟𝑟(3)=𝜇̃𝑦𝑠𝑡
∗ 𝑒𝑥𝑝 [

(𝜇𝑍−𝜇̃𝑧𝑠𝑡
∗ )

(𝜇𝑍+𝜇̃𝑧𝑠𝑡
∗ )

] 1 0 1 0 

𝑇𝑝𝑟𝑟(4)=𝜇̃𝑦𝑠𝑡
∗ 𝑒𝑥𝑝 [

(𝜇𝑍−𝜇̃𝑧𝑠𝑡
∗ )

(𝜇𝑍+𝜇̃𝑧𝑠𝑡
∗ )+2𝑑

] 1 0 1 d 

𝑇𝑝𝑟𝑟(5)=𝜇̃𝑦𝑠𝑡
∗ 𝑒𝑥𝑝 [

(𝜇𝑍−𝜇̃𝑧𝑠𝑡
∗ )

(𝜇𝑍+𝜇̃𝑧𝑠𝑡
∗ )+2

] 1 0 1 1 

 

 The proposed estimator 𝑇𝑝𝑟𝑟 is expressed in terms of e’s as, 
 

𝑇𝑝𝑟𝑟 = [𝑤1𝜇𝑌(1 + 𝑒𝑦(𝑠𝑡)
∗ ) + 𝑤2 (

𝜇𝑋 − 𝜇𝑋(1 + 𝑒𝑥(𝑠𝑡)
∗ )

𝜇𝑋

)] 

𝑒𝑥𝑝 [
𝑐 (𝜇𝑍 − 𝜇𝑍(1 + 𝑒𝑧(𝑠𝑡)

∗ ))

𝑐 (𝜇𝑍 + 𝜇𝑍(1 + 𝑒𝑧(𝑠𝑡)
∗ )) + 2𝑑

], 

 

 

 

(32) 

 

where 𝜇̃𝑧(𝑠𝑡)
∗ = 𝜇𝑍(1 + 𝑒𝑧(𝑠𝑡)

∗ ), such that  
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𝐸 (𝑒𝑧(𝑠𝑡)
∗ ) = 0,  

𝐸 (𝑒𝑧(𝑠𝑡)
∗ )

2

= [∑ 𝑃ℎ
2𝐿

ℎ=1 {𝜆ℎ (𝐶𝑍ℎ
2 +

𝜎𝑀ℎ
2

𝜇𝑦
2 ) + 𝜃ℎ (𝐶𝑌ℎ(2)

2 +
𝜎𝑀ℎ(2)

2

𝜇𝑦
2 )}] = 𝐴𝑧(𝑠𝑡)

∗ ,  

𝐸 (𝑒𝑦(𝑠𝑡)
∗ 𝑒𝑧(𝑠𝑡)

∗ ) = [∑ 𝑃ℎ
2𝐿

ℎ=1 (𝜆ℎ𝜌𝑌𝑍ℎ
𝐶𝑌ℎ

𝐶𝑍ℎ
+ 𝜃ℎ𝜌𝑌𝑍ℎ(2)

𝐶𝑌ℎ(2)𝐶𝑍ℎ(2)
)] = 𝐶𝑦𝑧(𝑠𝑡)

∗  

and 

𝐸 (𝑒𝑥(𝑠𝑡)
∗ 𝑒𝑧(𝑠𝑡)

∗ ) = [∑ 𝑃ℎ
2𝐿

ℎ=1 (𝜆ℎ𝜌𝑋𝑍ℎ
𝐶𝑍ℎ

𝐶𝑍ℎ
+ 𝜃ℎ𝜌𝑋𝑍ℎ(2)

𝐶𝑋ℎ(2)𝐶𝑍ℎ(2)
)] = 𝐶𝑥𝑧(𝑠𝑡)

∗ . 
 

 By solving we get, 
 

𝑇𝑝𝑟𝑟 − 𝜇𝑌 = (𝑤1 − 1)𝜇𝑌 + 𝑤1𝜇𝑌 [𝑒𝑦(𝑠𝑡)
∗ + (1 − 𝑣) (

𝑒𝑧(𝑠𝑡)
∗

2
−

𝑒𝑦(𝑠𝑡)
∗ 𝑒𝑧(𝑠𝑡)

∗

2
)]

− 𝑘2𝜇𝑋 (𝑒𝑥(𝑠𝑡)
∗ +

𝑒𝑥(𝑠𝑡)
∗ 𝑒𝑧(𝑠𝑡)

∗

2
(1 − 𝑣)) 

 

 

(33) 

where 𝜅 =
𝑐

𝑑𝜇𝑍
. 

 

 Applying expectation, we get the bias as, 
 

𝐵𝑖𝑎𝑠(𝑇𝑝𝑟𝑟) = (𝑤1 − 1)𝜇𝑌−𝑤1𝜇𝑌(1 − 𝑣)
𝐶𝑦𝑧(𝑠𝑡)

∗

2
− 𝑤2𝜇𝑋(1 − 𝑣)

𝐶𝑥𝑧(𝑠𝑡)
∗

2
. (34) 

 

 Ignoring second-order terms in (24) and taking squares on both sides, we have  
 

(𝑇𝑝𝑟𝑟 − 𝜇𝑌)
2

= 𝜇𝑌
2 [(𝑤1 − 1)2 + 𝑤1

2 (𝑒𝑦(𝑠𝑡)
∗2

+
𝑒𝑧(𝑠𝑡)

∗2

4
(1 − 𝜅)2 + (1 − 𝜅)𝑒𝑦(𝑠𝑡)

∗ 𝑒𝑧(𝑠𝑡)
∗ )

+ 2𝑤1(𝑤1 − 1) {𝑒𝑦(𝑠𝑡)
∗ −

𝑒𝑧(𝑠𝑡)
∗

2
(1 − 𝜅)}] + 𝑤2

2𝜇𝑋
2𝑒𝑥(𝑠𝑡)

∗2

− 2𝑤2𝜇𝑋𝜇𝑌 [(𝑤1 − 1)𝑒𝑥(𝑠𝑡)
∗ + 𝑤1 {𝑒𝑦(𝑠𝑡)

∗ 𝑒𝑧(𝑠𝑡)
∗ −

𝑒𝑧(𝑠𝑡)
∗2

2
(1 − 𝜅)}], 

 (35) 
 

 Applying expectations on both sides of (35), we may attain the MSE to the first order 

of approximation as, 
 

𝑀𝑆𝐸(𝑇𝑝𝑟𝑟) = 𝜇𝑌
2 [(𝑤1 − 1)2 + 𝑤1

2 (𝐴𝑦(𝑠𝑡)
∗ +

𝐴𝑧(𝑠𝑡)
∗

4
(1 − 𝜅)2 − (1 − 𝜅)𝐶𝑦𝑧(𝑠𝑡)

∗ )] 

+𝑤2
2𝜇𝑋

2𝐴𝑥(𝑠𝑡)
∗ − 2𝑤2𝑤1𝜇𝑋𝜇𝑌 {𝐶𝑥𝑦(𝑠𝑡)

∗ −
𝐶𝑥𝑧(𝑠𝑡)

∗

2
(1 − 𝜅)}. (36) 

 

 Differentiate (36) with respect to 𝑤1 and 𝑤2, and equate them to zero, the optimum 

values we get, 
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𝑤1 =
1 − 𝐿2

(1 −
𝐿1
2

𝐴𝑥(𝑠𝑡)
∗ )

 and  𝑤2 =
𝑘1𝜇𝑌𝐿1

𝜇𝑋𝐴𝑥(𝑠𝑡)
∗

. 

 

 Hence the resulting minimum MSE of 𝑇𝑝𝑟𝑟 is as,  
 

𝑚𝑖𝑛𝑀𝑆𝐸(𝑇𝑝𝑟𝑟) = 𝜇𝑌
2

[
 
 
 
 

1 −
(1 − 𝐿2)

2

(1 −
𝐿1
2

𝐴𝑥(𝑠𝑡)
∗ )

]
 
 
 
 

. (37) 

where  

𝐿1 = (𝐴𝑦(𝑠𝑡)
∗ +

𝐴𝑧(𝑠𝑡)
∗

4
(1 − 𝑣)2 − (1 − 𝑣)𝐶𝑦𝑧(𝑠𝑡)

∗ ) 

and  

𝐿2 = {𝐶𝑥𝑦(𝑠𝑡)
∗ −

𝐶𝑥𝑧(𝑠𝑡)
∗

2
(1 − 𝑣)}. 

 

6. MATHEMATICAL COMPARISONS 
 

i. From (15) and (37), we have  
 

𝑀𝑆𝐸 (𝑇𝑟) − 𝑚𝑖𝑛𝑀𝑆𝐸(𝑇𝑝𝑟𝑟) =
(1 − 𝐿2)

2

(1 −
𝐿1
2

𝐴𝑥(𝑠𝑡)
∗ )

− 1 + 𝐿3 > 0 

or
(1 − 𝐿2)

2

(1 −
𝐿1
2

𝐴𝑥(𝑠𝑡)
∗ )

+ 𝐿3 > −1 is true 

 

 Under the condition that  
 

𝐿3 > 1 and 𝐴𝑥(𝑠𝑡)
∗ ≠ 0. 

 

 where 𝐿3 = 𝐴𝑦(𝑠𝑡)
∗ + 𝐴𝑥(𝑠𝑡)

∗ − 2𝐶𝑥𝑦(𝑠𝑡)
∗ . 

 

ii. From (19) and (37), we have  
 

𝑀𝑆𝐸 (𝑇𝑟𝑒𝑔) − 𝑚𝑖𝑛𝑀𝑆𝐸(𝑇𝑝𝑟𝑟) = [𝐴𝑦(𝑠𝑡)
∗ −

𝐶𝑥𝑦(𝑠𝑡)
∗2

𝐴𝑥(𝑠𝑡)
∗

] +
(1 − 𝐿2)

2

(1 −
𝐿1
2

𝐴𝑥(𝑠𝑡)
∗ )

− 1 > 0. 

or [𝐴𝑦(𝑠𝑡)
∗ −

𝐶𝑥𝑦(𝑠𝑡)
∗2

𝐴𝑥(𝑠𝑡)
∗

] +
(1 − 𝐿2)

2

(1 −
𝐿1
2

𝐴𝑥(𝑠𝑡)
∗ )

> 1 is true,  

if 𝐿1 < 1and 𝐿2 > 1. 
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iii. From (23) and (37), we have  
 

𝑀𝑆𝐸 (𝑇𝑒𝑥) − 𝑚𝑖𝑛𝑀𝑆𝐸(𝑇𝑝𝑟𝑟) =
(1 − 𝐿2)

2

(1 −
𝐿1
2

𝐴𝑥(𝑠𝑡)
∗ )

− 1 + 𝐿4 > 0. 

or 
(1 − 𝐿2)

2

(1 −
𝐿1
2

𝐴𝑥(𝑠𝑡)
∗ )

+ 𝐿4 > 1  is true, 

 if 𝐿1 < 1and 𝐴𝑥(𝑠𝑡)
∗ ≥ 2. 

 where 𝐿4 = 𝐴𝑦(𝑠𝑡)
∗ +

𝐴𝑥(𝑠𝑡)
∗

4
− 𝐶𝑥𝑦(𝑠𝑡)

∗  

 

iv. From (30) and (37) we have  
 

𝑚𝑖𝑛𝑀𝑆𝐸(𝑇𝑝𝑟) − 𝑚𝑖𝑛𝑀𝑆𝐸(𝑇𝑝𝑟𝑟) =
(1 − 𝐿2)

2

(1 −
𝐿1
2

𝐴𝑥(𝑠𝑡)
∗ )

−
1

(1 + 𝐺 −
𝑇2

𝐴𝑥(𝑠𝑡)
∗ )

> 0. 

or 
(1 − 𝐿2)

2

(1 −
𝐿1
2

𝐴𝑥(𝑠𝑡)
∗ )

>
1

(1 + 𝐺 −
𝑇2

𝐴𝑥(𝑠𝑡)
∗ )

 is true,  

 if 𝐴𝑥(𝑠𝑡)
∗ ≥ 1. 

 

 The above four observations displayed presents that the proposed estimator 𝑇𝑝𝑟𝑟 

performs better as compared to the estimators 𝑇𝑟, 𝑇𝑟𝑒𝑔, 𝑇𝑒𝑥𝑝 and 𝑇𝑝𝑟. 

 

7. SIMULATION BASED RESULTS AND DISCUSSIONS 
 

 In this section, we investigate the efficiency of the proposed generalized estimators.  

In this simulation study, we consider two finite populations of 𝑁 = 4000  

generated from multivariate normal distribution with theoretical same mean 
[𝑌, 𝑋, 𝑍] as 𝜇 = [62 45 20] and difference covariances matrices as given below: 
 

Population I: 

𝜎2 = [
36 15 13
15 20 12
13 12 13

] , 𝜌𝑌𝑋 = 0.5568; 𝜌𝑌𝑍 = 0.5926; 𝜌𝑌𝑍 = 0.7353. 

 

Population II: 

𝜎2 = [
20 13 13
13 16 12
13 12 13

] , 𝜌𝑌𝑋 = 0.8034; 𝜌𝑌𝑍 = 0.7202; 𝜌𝑌𝑍 = 0.8262. 

 

 For each population, we consider sample size of n=845, iterated 10000 times. The 

population is divided into four strata to certain criteria set for the auxiliary variables. The 

sample size from each stratum is based on Neyman allocation.  
 

 We have computed the absolute relative bias (ARB) for different suggested estimators 

by using the following expression: 
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𝐴𝑅𝐵 =
|𝐵𝑖𝑎𝑠(𝑇𝑖)|

𝑌̅
, 𝑤ℎ𝑒𝑟𝑒 𝑖 = 𝑟, 𝑒𝑥, 𝑝𝑟, 𝑝𝑟𝑟. 

 

 ARB and MSE values based on these population data set under 30% and 40% 

nonresponse rate are given in Table 3-6. 

 

Table 3 

ARB result using Stratified Population I 

W2 Estimators 
1/k 

1/2 1/3 1/4 1/5 

30%  

non-response 

𝑇𝑟 0.000043 0.000078 0.000113 0.000148 

𝑇𝑒𝑥 0.000021 0.000039 0.000056 0.000074 

𝑇𝑝𝑟 0.000008 0.000016 0.000023 0.000030 

𝑇𝑝𝑟𝑟 0.000002 0.000005 0.000007 0.000010 

40%  

non-response 

𝑇𝑟 0.000072 0.000134 0.000197 0.000260 

𝑇𝑒𝑥 0.000036 0.000067 0.000098 0.000130 

𝑇𝑝𝑟 0.000014 0.000026 0.000038 0.000050 

𝑇𝑝𝑟𝑟 0.000004 0.000008 0.000012 0.000016 

 

Table 4 

ARB result using Stratified Population II 

W2 Estimators 
1/k 

1/2 1/3 1/4 1/5 

30% 

non-response 

𝑇𝑟 0.000020 0.000036 0.000052 0.000067 

𝑇𝑒𝑥 0.000010 0.000018 0.000025 0.000034 

𝑇𝑝𝑟 0.000005 0.000009 0.000013 0.000016 

𝑇𝑝𝑟𝑟 0.000001 0.000002 0.000003 0.000005 

40% 

non-response 

𝑇𝑟 0.000025 0.000047 0.000068 0.000090 

𝑇𝑒𝑥 0.000012 0.000023 0.000034 0.000045 

𝑇𝑝𝑟 0.000006 0.000011 0.000016 0.000022 

𝑇𝑝𝑟𝑟 0.000001 0.000003 0.000004 0.000005 
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Table 5 

MSE Result using Stratified Population I 

W2 Estimators 
1/k 

1/2 1/3 1/4 1/5 

30% 

non-response 

𝑡0
∗ 0.2609 0.4726 0.6843 0.8960 

𝑇𝑟 0.2893 0.5295 0.7697 1.0099 

𝑇𝑟𝑒𝑔 0.2196 0.3985 0.5774 0.7562 

𝑇𝑒𝑥 0.2206 0.4005 0.5805 0.7604 

𝑇𝑝𝑟 0.2150 0.3909 0.5667 0.7425 

𝑇𝑝𝑟(2) 0.2608 0.4722 0.6841 0.8960 

𝑇𝑝𝑟(4) 0.2201 0.4003 0.5805 0.7604 

𝑇𝑝𝑟(5) 0.2226 0.4043 0.5860 0.7676 

𝑇𝑝𝑟𝑟 0.1675 0.2875 0.3133 0.5663 

𝑇𝑝𝑟𝑟(3) 0.2512 0.4614 0.6438 0.7488 

𝑇𝑝𝑟𝑟(4) 0.2560 0.4682 0.6540 0.7513 

𝑇𝑝𝑟𝑟(5) 0.2681 0.4717 0.6706 0.7890 

40% non-

response 

𝑡0
∗ 0.4288 0.8025 1.1762 1.5499 

𝑇𝑟 0.4221 0.7908 1.1596 1.5283 

𝑇𝑟𝑒𝑔 0.3513 0.6578 0.9642 1.2707 

𝑇𝑒𝑥 0.3513 0.6578 0.9643 1.2708 

𝑇𝑝𝑟 0.3390 0.6347 0.9303 1.2259 

𝑇𝑝𝑟(3) 0.4281 0.8022 1.1766 1.5506 

𝑇𝑝𝑟(4) 0.3513 0.6578 0.9640 1.2706 

𝑇𝑝𝑟(5) 0.3546 0.6640 0.9734 1.2828 

𝑇𝑝𝑟𝑟 0.2777 0.5267 0.7603 1.0256 

𝑇𝑝𝑟𝑟(3) 0.4227 0.7470 1.1426 1.4222 

𝑇𝑝𝑟𝑟(4) 0.4238 0.7817 1.1459 1.4786 

𝑇𝑝𝑟𝑟(5) 0.4253 0.7973 1.1653 1.5019 
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Table 6 

MSE result using Stratified Population II 

W2 Estimators 
1/k 

1/2 1/3 1/4 1/5 

30% non-

response 

𝑡0
∗ 0.1460 0.2596 0.3731 0.4785 

𝑇𝑟 0.1437 0.2331 0.3625 0.4232 

𝑇𝑟𝑒𝑔 0.1198 0.2144 0.3089 0.3970 

𝑇𝑒𝑥 0.1218 0.2187 0.3156 0.4061 

𝑇𝑝𝑟 0.1215 0.2180 0.3145 0.3960 

𝑇𝑝𝑟(2) 0.1456 0.2593 0.3730 0.4786 

𝑇𝑝𝑟(4) 0.1218 0.2187 0.3156 0.4060 

𝑇𝑝𝑟(5) 0.1233 0.2213 0.3193 0.4108 

𝑇𝑝𝑟𝑟 0.0609 0.1093 0.1576 0.2079 

𝑇𝑝𝑟𝑟(3) 0.1308 0.2314 0.3479 0.4307 

𝑇𝑝𝑟𝑟(4) 0.1314 0.2356 0.3568 0.4464 

𝑇𝑝𝑟𝑟(5) 0.1391 0.2398 0.3666 0.4544 

40% non-

response 

𝑡0
∗ 0.1839 0.3353 0.4867 0.6381 

𝑇𝑟 0.1635 0.3271 0.4319 0.5311 

𝑇𝑟𝑒𝑔 0.1513 0.2774 0.4035 0.5296 

𝑇𝑒𝑥 0.1541 0.2833 0.4125 0.5416 

𝑇𝑝𝑟 0.1507 0.2723 0.4110 0.5396 

𝑇𝑝𝑟(3) 0.1838 0.3351 0.4866 0.6382 

𝑇𝑝𝑟(4) 0.1541 0.2833 0.4125 0.5416 

𝑇𝑝𝑟(5) 0.1560 0.2866 0.4173 0.5480 

𝑇𝑝𝑟𝑟 0.1277 0.1415 0.2060 0.2705 

𝑇𝑝𝑟𝑟(3) 0.1789 0.2971 0.4697 0.5652 

𝑇𝑝𝑟𝑟(4) 0.1798 0.2975 0.4720 0.5839 

𝑇𝑝𝑟𝑟(5) 0.1813 0.3084 0.4751 0.5709 
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 In this simulation study, the results of the comparative analysis between the proposed 

estimators, the modified ratio, regression and exponential estimators along with their 

respective class of estimator. The evaluation was conducted considering different 

populations under study and two nonresponse rates: 30% and 40%. The findings reveal that 

the proposed estimator consistently outperforms the alternative estimators in terms of 

efficiency. Specifically, examining the mean square error (MSE), it is evident that the 

proposed estimators yield smaller MSE values compared to the modified ratio and 

regression and exponential estimators as well as the respective classes for estimators. 

Furthermore, as the nonresponse rate increases from 2% to 5% the MSE results also 

demonstrate an upward trend. This superiority is observed across the range of populations 

investigated and holds true for both 30% and 40% nonresponse rates for moderate and high 

correlation populations.  

 

 Overall, these findings suggest that the proposed estimators may be a more reliable and 

effective approach to estimating population mean in the face of non-response bias, and 

measurement error, especially when compared to other commonly used estimators. 

 

8. CONCLUSIONS 
 

 Based on the simulation results, the findings of the study demonstrate that the  

proposed estimators along with their class of estimators outperform the existing estimators 

when nonresponse and measurement error are present. The performance of the proposed 

estimator is characterized by higher efficiency and smaller increases in means squared  

error as the nonresponse rates increase compared to the competitor estimators. These 

results provide practical implications for researchers and practitioners engaged in 

estimating population parameters while dealing with the combined challenges of 

nonresponse and measurement error. The ability of the proposed estimators to  

effectively handle the joint presence of nonresponse and measurement error sets them apart 

making them a robust and reliable approach for population parameter estimation within 

complex survey designs.  
 

 Overall, the study’s conclusion highlights the practical importance of the  

proposed estimators addressing the challenges posed by nonresponse and measurement 

error.  
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