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ABSTRACT

This paper introduces a novel approach for estimating the population mean in stratified
sampling while accounting for non-response and measurement error. \WWe propose a
regression-cum-exponential estimator, which combines regression and exponential
functions to estimate the population mean. This estimator is compared to other modified
usual estimators commonly used in stratified sampling such as regression, ratio, and
exponential estimators. This present article provides the expressions for the bias and means
square error of the proposed estimator, considering the joint influence of non-response and
measurement error. The theoretical comparisons between the proposed estimators and the
existing ones to evaluate their respective performances. To further access the efficiency of
the proposed estimators a simulation study is conducted. The results of the study indicate
that the regression-cum-exponential estimator and its class of estimators outperform the
existing estimators when dealing with the joint influence of nonresponse and measurement
error. Overall, the paper introduces a novel approach to address the challenges of
estimating population mean in stratified sampling while soldiering nonresponse and
measurement error, The proposed estimators outperform existing methods in the presence
of these factors, providing valuable insights for researchers and practitioners working with
survey data.

KEYWORDS
Stratified sampling; bias; mean square error; measurement error; non-response;
auxiliary information.

1. INTRODUCTION

In survey research, while conducting a survey researchers may encounter two types of
errors: sampling errors and non-sampling errors. Sampling errors arise from the lack of
representativeness in the selected sample for observation, leading to a deviation between
the sample estimate and the population parameter. These errors typically diminish as the
sample size increases, allowing for a more accurate reflection of the population. Whereas
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non-sampling errors, on the other hand, emerge from a variety of sources including
inadequate frames, inaccurate sampling procedures, errors in coding and decoding,
over reporting or underreporting by participants, incomplete coverage of sample units due
to non-response, and measurement errors. Unlike sampling errors, non-sampling errors do
not reduce with an increase in the sample size. In fact, as the sample size grows, the
potential for non-sampling errors to occur may also increase. To minimize these errors,
researchers should strive for a careful survey design, ensure a representative sample
selection process, use reliable data collection methods, thoroughly train survey
administrators, address non-response issues effectively, and implement quality control
measures throughout the research process.

In survey research, non-response is a prevalent issue that can occur for various reasons,
such as language barriers, unavailability of respondents, or censorship. It is widely
recognized among statistics that ignoring the stochastic nature of non-response can
introduce bias into the data representation. To reduce the impact of nonresponse,
statisticians often employ the subsampling technique and propose various estimation
methods. For example, one approach suggested by [5] involves using subsampling to
modify the treatment of nonresponse in specific survey inquiries. Other scholars such as
[11-13], have discussed the utilization of auxiliary information in conjunction with
complete responses to alleviate non-response bias. Additionally, there are notable work
presented by [1], [7], [9], [19-21] that provide insights into strategies for dealing with
nonresponse. These proactive approaches enable researchers to an account for non-
response and produce reliable findings.

The measurement error in survey research reference to the discrepancy between the
recorded value and the true value of the variable being measured. For instance, in a study
that examines students cumulative grade point average (CGPA) if students are asked to
report their actual CGPA, they may provide inaccurate or round ed figures instead of the
precise value. This disparity between the reported and true CGPA represents the
measurement error. To estimate unknown parameters when measurement error is present,
substantial work has been done by researchers such as [4], [15-18], and many others. Their
contributions have provided valuable insights and techniques for dealing with the impact
of measurement error on parameter estimation in surveys. Similarly, researchers such as
[4], [3], [6] and [7] addressed non-response issues and estimated population parameters by
developing methods for handling nonresponse.

The impact of nonresponse and measurement error on population mean estimation bas
been investigated by several notable researchers ([8], [10], [2], [14]). However, their
studies primarily focused on simple random sampling using signal auxiliary variable. This
study aims to extends these findings and enhance the efficiency of existing estimators by
introducing regression cum exponential estimators for population mean estimation in the
context of stratified random sampling. Furthermore, this study seeks to account for two
non-sampling errors: nonresponse and measurement error. The proposed approach utilizes
a novel combination of linear and exponential functions to develop estimators. Moreover,
this study extends the existing literature by modifying classical ratio, regression, and
exponential estimators to accommodate the presence of nonresponse and measurement.
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After introducing nonresponse, and measurement error and presenting the sampling
strategy and discussing some existing estimators section 4 covers modified ratio,
regression, and exponential estimator for stratified sampling under the joint influence of
measurement error and non-response along with the derivation. In section 5, we propose
regression-cum-exponential estimators using single and two auxiliary variables of a
population mean in the presence of non-response and measurement. The expressions of the
bias and mean square error have been derived. Section 6 provides theoretical comparison
to demonstrate the performance of the proposed regression-cum-exponential estimator. To
support the proposed methodology, a simulation study is presented in section 7. Some
concluding remarks are made in Section 8.

2. SAMPLING STRATEGY

Before presenting the sampling strategy of stratified sampling and estimation
procedures, some basic notations used in this study are defined. Let a population of
size N be divided into L homogenous strata with N, units (h = 1,2,...,L) such that
2%1:1 Np =N.

N: Population size

N,,: Population of size of ht"stratum;
Y/X : Study variable / Auxiliary variable;

Uy /iy : Population mean of Y/ Population mean of X
“Y“/#Xh : Population means in A" stratum;
Hyp iy “Xh(l): Population means of respondents group in ht*stratum;

Ky “Xn(z): Population means of non-respondents group in h"stratum;

2
aYh/az : Population Variances of Y and X respectively in ht" stratum;
Xh

a&h(l), a,%hm: Population Variances from group of respondents in ht* stratum;
aﬁh(z), a}h(z): Population Variances from group of non-respondents in ht" stratum;

Cwl(l). CXh(l): Coefficient of variation for Y and X from group of respondents in
ht? stratum:;

Cyhzy Cxngyy: Coefficient of variation for Y and X from group of non-respondents
in A" stratum;

?: Report values on Y and X for i*" units in ht"stratum;

hi

Yhi

Xhi

Uni = yni — Y : Measurement error on the study variable associated with i
units in ht"stratum;

: True values on Y and X for it" units in ht"stratum;
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Vi = xp; — Xp; - Measurement error on the auxiliary variable associated with it"
units in At stratum;

Us; = yni — Y - Measurement error and non-response on Y associated with it"
units in At stratum;

Vi = x;; — X;; - Measurement error and non-response on X associated with i*"
units in ht"stratum;

af,hm, a&h(z): Population Variances of U and V respectively from the group of
non-respondents;

Pyxn, and Pyxhy: Coefficient of correlation between the study variable and

auxiliary variable for the respondent and non-respondents parts of the
population respectively;

P, = 22 Weight of hthstratum;
N

ny,: sample size in ht"stratum;

Hxesey = Sample mean estimator;

By . .
ﬁ . Sample mean estimator with non-response and measurement error.
X(st)

Now consider,

1
Uy = ZLL:1 Prpiyn, Uy = ZiL:1 Prpixn, tyn = ﬁZ?’:ﬁ Yhi»
N

—1LyL _Nn
Mxn = 5 -Xiza X and P = T2

The measurement error Uy; = yp,; — Yp; and Vy; = x; — Xp,; in the presence of non-
response associated are assumed to have their means zero and the variances af,h(z) and

a&h(z) for the non-respondent part of the population.

Consider a finite population of size N is stratified into L homogenous strata. Let Ny, be
the size of ™" stratum (h = 1,2,3,...L) Such that ¥_, N, = N and (vu;, xp; zs; ) be the
observations of study variable y and auxiliary variable x on the it* unit of ht" stratum,
respectively. Let ¥, and x,, be the sample means of ht" stratum corresponding to the
population means ¥, and X, respectively. Usually, it is not possible to collect complete
information from all the tits selected in the sample n,(X%_, n, = n) Let Ny units from

a sample of n** provide their responses and My units do not. Adapting Hansen and

Np
@. 6> 1) from
fh

Np,, hon-respondents’ group is selected at random, the sampling fraction among the

non-respondent group in the hth stratum. In practice, 73, is usually not integer and has
to be recorded. Following most of the current literature on this topic, let us assume that the

followed-up 13, (c nh(z)) units respond on the second call.

Hurwitz sub-sampling methodology, a sub-sample of size r, (r =
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p is population correlation coefficient between X and Y for the responding and non-

responding part of the population respectively.
3. SOME EXISTING ESTIMATOR

Azeem and Hanif [2] proposed few estimators under the joint influence of nonresponse
and measurement error for estimation of population mean in two-phase sampling. The

(1)

estimators are as follows:

Tonn = o P
A Y ux iy’
and
L i — iy
= 5 () 8
ARZ Y g v+

The mean square error of the estimators are as,
2( 0 (NN N+n

MSE (Tunn) = 2y (€5 + (=) €2 = 2 (s ) Py C )

2( 2 N+ny , N+n

+0uy (Cy(z) + <m) Crzy—2 <N —_ n) pyx(Z)Cy(Z)Cx(2)>

2 2
SZ (N + n) 53 ) o2 (5:@

+4 2(—
2t % N—-n/ px? v?

N-n/ u?)

and

1 /N + 2n\? 5 N + 2n
_(N—n> x_(N—n)'DynyCx

MSE (Tyuz) = Agpty” <C§ + 2
N + 2n\? ) N+n
) Gy~ (—) Pyx@ Ly Cx

oy (€2 4+
o\ Do\ N—-n
2 1(N+2n>2 S2 T o Sia
H ty?  A\N—n/ puy?
(4)

TR T
Tz <My2+4 N-—n/ py®

Sabir and Sanaullah [15] introduced a generalized class of estimator for two phase
sampling if nonresponse and measurement errors are simultaneously present and is as,
()

= &<exp <Mx — lfi) 14 (M" _ “x)> + (@ — @),

Ay + i

(6)

The mean square error of T is given by,

MSE (Tss) = HYZA;/ + Ay - 2pypxwCyy.
Zahid et al. [22] introduced a generalized estimator for sensitive variable under
stratified random sampling in the presence of non-response and measurement error. The

estimator is as,
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L

(X" N AN
Tgz = Z PpymipZpy—7¢ + mon (Xy — %5, —
%, x

h=1 h

+ map (R — Tin {f_h} 2} exp(1—a) <—f;> (7
h

X, + %

The bias and MSE of the estimator Tgz are given as,

_ “tZRyB, e tyC,
Bias(Tgy) = Z P, {(mlh —1)Z, +my, (f hohTh R “)
— Xn Xn

d"'t2B ¢t F, b*t2D 8
+ My —h + M3pMyp U ) ®)
Xn Xn Ryn

L

and
L
MSE(Tgz) = Z Ph{Z_le +mi, Ay +m3,Bhy + 2mymy Gy
h=1
*’ *’ *’ *,
—2mypDpy — ?mZhEhl +,m§hFh1 + 2mgpymypGpq
+ 2mgpmyp Gy — 2m3h1;:1}'

(9)

4. MODIFIED ESTIMATORS

Following Hansen and Hurwitz [8] estimator for estimating mean in the presence of
non-response and measurement error for stratified sampling is given by

to = Ayse) = Z Pyfiyn, (10)
where
Ayn = Wy (ﬁ;h(l) + ﬁz}h(n) +w, (ﬁ;(z)kh) + ﬁ;(z)kh))* wy = nz;l) wy = nz_;z),
ﬁ;h(l) = #@Z?hll) Yhis ﬂun(1) : Z:lhil) Uni, Hy(z)kh : ZL 1 Yhis
ﬁ;h(z)kh = iZizl Yri and ﬂuh(z)kh = iZfL‘l Uni
The expression of the variance tjmay be defined as,
L 2
var(es) = 1§ ) P\ (cyzh * ) + 0 (cm) + ”"(2)) : (11)
1y 1y

h=1

_ (1 1 _ Nnzy _ Whe)(rn—1)
where 4, = (n_h - N_h)'Wh(z) = , 0, = R

Similarly, for the auxiliary variable, the sample mean estimator in the presence of
non-response and measurement is
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L
Fse) = Z Pp L,
i=1

e, = wi(Toney + Brnary) + W2 (@i + B @)

1 Np(1) 1 «"h(1)
—nhmzl 1 xhlvl'th(l) Zl 1 th#x(z)kh =

1 kn ~% _
—Zizl Xp; and Hyh@k, =

Th

where

1 «rp
™ Zl 1 Xhi

Bxncry =
kn

Zi:l Vhi

The modified combined type ratio, exponential and regression estimators are presented

under the belief that the non-response and the measurement error are occurring on both
study and the auxiliary variables under stratified sampling.

Bxn2yky, = k_h

4.1 The Modified Combined Ratio Estimator
The modified combined ratio estimator is given by

ﬁ;( )
tr = = py. (12)
)

In order to obtain the expressions for the bias and the MSE, let us consider

Np Np Np Np
Hy, = Z(Y;;i — pyn), Hyp = Z(X;ku' — pxn), Hyp = Z Up; and Hyp, = Z Vi
i=1 i=1 i=1 i=1

The error terms due to sampling are defined by,

np
. 1P, .
Cy(st) = _Z_(Hyh + Hyn)
Uy e~ np
and
np
. 1P, )
Ex(st) = Ez n_h(HXh + Hyy),

i=1
and the sample means associated with the sampling errors assuming the joint presence of
non-response and measurement error are defined by

ﬁ;(st) = Uy (1 + e;(st)) and ﬁ;(st) =ux(1+ e,’;(st)), such that

E(e) = E (f;(sc)) =0

2 2 Uh
* (2) *
E(ey<st)) - ZP’% An <C§h )"'eh Cr 2 i = Aoy
— [T [
L
E (e ) =Y Pz, + AT o | Ir—
Cxsny) = h A | Cxp, T .“)2( h\ “xp(2) #x = Ay(sty an
h=1
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L
Z Py (lhpxththXh + OnPxyy Cyh(z)th(z)) = Cyysty-
h=1

Now the ratio estimator (12) in terms of e’s is given by

_ Hy (1 + e;(st))
Hy (1 + e;(st))

The expressions of the bias and the MSE are given by
Bias (Tr) = #Y(A:c(st) - C;y(st)) (14)

MSE (TT) = HYZ(A;I(SL') + A:C(St) - ZC;y(st)) (15)

* * _
E (ey<st) ex(sf)) -

:uXv (13)

r

4.2 The Modified Combined Regression Estimator

Treg = ﬁ;(st) + by (“X - ﬁ;(st)) (16)
Express (16) in terms of e’s, we may get

Treg — Uy = ”Ye;(st) - bxﬂXe;(St) (17)
Squaring and applying expectations

* 2 * *

MSE(Treg) = .ulz’Ay(ﬁ) + by ”)Z(Ax(st) -2 bx.UXHYny(st) (18)
Differentiating (18) with respect to ‘b’, we get
_ Hy Cry

:uXAy .
The minimum MSE expression after substituting the value of b, we may get as,
Citia
mMinMSE (Tyeq) = 1 [ : 224G )]

Y(st) - A;(st)

(19)

4.3 Modified Combined Exponential Estimator
:uX - ﬁ;(st)]

- 20
.uX + I’L;C(St) ( )

Tex = iy, exp [

Expressing (20) in terms of ¢’s and expanding up to the first order of approximation,
we may have

Tom e +mer [ S B . e
ex — Hy :uYey(st) 2 eX(St) 2 2 ex(st) 2

*4 * *4
by 2 | Cxey 3 Prlyso [ 2 | Cxen 3
+Z(ex(st) t— T |t |Gty % | (21)
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After solving and applying expectation we may have the expressions of the bias and
the MSE as,

1
BiaS(Tex) = Wy E [A;(st) - C;Y(st):l (22)
_ .2 * J*C(St) _* 23
MSE(Tex) = Uy Ay(st) + 4 CXJ’(st) ( )

5. PROPOSED GENERALIZED ESTIMATORS

This section presents the procedure of mean estimation in stratified sampling using a
single and two auxiliary variables under the existence of two random errors i.e. non-
response and measurement error on both study and auxiliary variables. The proposed
estimators are based on the linear and exponential functions for better description of the
population mean of study variable. The expressions of the bias and MSE of the proposed
estimator under first order of approximation are obtained.

5.1 Proposed Estimator |

A regression-cum-exponential estimator to estimate the population mean of the study
variable using a single auxiliary variable under the existence of nonresponse and
measurement error is proposed following a linear and exponential functions. The form of
the estimator is proposed by

- a 1
o= (B o e ) 2
a(ux + ,uxst) + 2b
where k, and k, are suitably chosen constants whose sum needs not be ‘unity’ for instance,

and a and b are suitable chosen scalars. It is to be noted that the class of estimator
T, reduces to the following set of known estimators present in Table 1.

Ux

Table 1
Class of Estimators
Estimators k1 k2 a B
Toray =y 1 0 0
Tor2)=Kifly,, ke 0 0
s nx—Hxg

Ty (3) =y, XD _—u;ﬁ;j 1 0 1 0

o~k [ (”X_ﬁ;‘st)
Toray=fy, exp —(ux+ﬁ325t)+2b 1 0 1 B

s | (Mx—ﬁjcst)
Tor(s)=fy, €XP 7(#x+l7}5t)+2 1 0 1 1

In order to obtain the expressions of the bias and MSE of T,,,., (24) is expressed in terms
of e’s to the first order of approximation, we may have
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. Ux — I"lX(l + e;(st))
Tpr = kI/J'Y(l + ey(st)) + k2 U
X

a (.“x —pux(1+ e;(st)))

exp (25)
a(px +ux (1 + €5,)) + 2b
By solving we get,
T, =(k, -1 k : 1 e
pr — by = (ks = Dpy + kypy |ey + (1 —v) 5
. €y (e &xcs
_kZ.uXex(St)-l-kl.uY(l - 77) %
*2
Cleyuy (1 — v) “” ey (1 +-(1-v) ) — (26)
b
where v = —.
apx
Applying expectation, we get the bias of T, as,
. C;y(st)
BlaS(Tpr) = (ky — Dpy+kpy (1 —v) o
1 Ay,
_ [kzux(l — V) +kypty (1 +50- v)Z)] o, 27)

Ignoring second-order terms in (27) and taking squares on both sides, we may have

2

(ky — D2 + k2| e +ex(“)(1— )2 — (1 —v)ex, ey
1 1| €yen v V)ex(styse)

(Tpr - :uY)2 = /'4}2’ 4

N—————

2hey (hy — 1) e — X604 _ kZudes
+ 2ky (ky ) €y 2 ( v) (| + 2HxCx(gpy

2

ex.
—2k,uxpy [(k1 — Dey, Tk [e;(st)e;(st) - ét) (1- v)}l, (28)

Taking expectations on both sides of (28), the MSE expression attained is as,

As
MSE(T,,) = 1} [(k1 —1)% + k? < Yoo + ;” A1-v)?-01-v) mm)]

Ay
* (st)
+kZUZ AL xsp — 2kakapixpy {CXJ’(sr) - 21 - v)} (29)

The optimum values of k; and k,, may be obtained as,
1 kyuyT
and k, = Sakv?

UxAs

X(st)

k, = respectively.
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Substituting the values of k;and k, in (29), the minimum MSE expression obtained

| o
)

l "{(SL')

* S * ;S
where G = (Ay(st) it) 1-v)?-(1- v)ny(st)> and T = { Vst ; 9(1— v)}.

(30)

5.2 Proposed Estimator 11

Following a linear and an exponential function of auxiliary variables, a class of
regression-cum-exponential estimators for estimating the population mean based on the
two auxiliary variables is given by

ok c o
Typrr = [Wlﬂ;st +w, (M>] exp [ (‘uz - ‘uZSt) ]' (31)
Ux c(,uz + ,u;st) +2d

where w; and w;, are unknown constants to be determined later such that the MSE of T,,.,
is minimized and ¢ and d are suitably chosen scalars. One can note that the class of
estimator T, shrink to the following set of known estimators present in Table 1.

Table 2
Class of Estimators
Estimators wy w,y
Torry = Hyg, 1
Torr2) = Wally,, Ki
s (uz-0zg,)
Tprr(3)—uystexp m 1 0 1 0
S
. [ (w21,
Torr(ay=Hy, €Xp 7(Mz+ﬁ§st)+2d 1 0 1 d
. [ (uz-7,,)
Torr(5)=Hy, XD (uzeits, ) o2 1 0 1 1

The proposed estimator T,,,.,. is expressed in terms of e’s as,

N Ux — HX(l + e;(st))
Tprr = Wl:uY(1 + ey(st)) + Wy Uy

c (Hz —pz(1+ e;(st)))
c (#z +uy (1 + e;(st))) +2d '

where ﬁ;(st): uy(1+ e;(st)), such that

exp (32)
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E(ez(st))

E(es.,) =|Zhoy PR ian(C2, + n (2 oy + V| = ¢
ez(st) = |Zh=1Pr { A (CZ, + ton|Cy,yt—2 R = Azsty

Eles e =(¥t_ P?(2 Cy,C, +0 C C =C;
Vst €2(st) h=1n \MnPyz, by, Lz, hPYZp ) LY p(2)Czp 2 yz(st)

E (3;(“)9;(“)) = [Zﬁﬂ Pf% (AthZhCZhCZh + ethZh(z)CXh(Z)CZh(z))] = C;z(st)'

By solving we get,

* * *
ez(st) _ eY(st) ez(st)
2 2

Torr — ty = (Wy — Dpy +wypy [e;(st) +(1-v) <

e e
— katix | €3 + w (1-v) (33)

c
where k = —
duz

Applying expectation, we get the bias as,

yz (s t)

BlaS(Tprr) = (w; — Duy—wipy (1 —v) —— —wpux(1 —v) —— XZ(St) (34)

Ignoring second-order terms in (24) and taking squares on both sides, we have

2

2 .2 €2(st) . s
(TPTT - nuY) = ”}2’ [(Wl - 1)2 + le (ey(st) + 4:9 (1 - K)Z + (1 - K)ey(st)ez(st)>

: €2s0) 2
+ 2wy (wy — 1) {ey(st) - 2“ 1- K)} + szuf(ex(st)

2
. - 260

- ZWZMXMY (Wl - 1)ex(st) + Wy ey(st)ez(st) - 2 (1 - K) )

(35)

Applying expectations on both sides of (35), we may attain the MSE to the first order
of approximation as,

A;
* (st)
MSE (T ) = 13 [(Wl - D*+wf <Ay(st) 4 ~(1-10? = (1= mm)]

Cyz
* (st)
+w? .UXAx(St) 2Wo Wy Uy [y {ny(st) -— 21 - K)}. (36)

Differentiate (36) with respect to w, and w,, and equate them to zero, the optimum
values we get,
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1-1L, kipyLy
= ———— and szﬂ VI
X X(st)

Hence the resulting minimum MSE of T, is as,

[ ]
minMSE (Tyy,) = pi |1 — ——| @37)

Y [2
( )
x(st)

A,
* (st) *
L, = (Ay(m +— 2(1-v)?—(1- v)cyz(st)>

and

Crz
* (st)
L, = {cxy(m - =0 v)}.

6. MATHEMATICAL COMPARISONS
i. From (15) and (37), we have

, (1-1Ly)?
MSE (T,) — minMSE(T,,,) = T\ 1+L;>0
(-#)
X(st)
1—L,)?
or% + L; > —1istrue
(-7)
Ax(st)
Under the condition that
Ly >1and Ay # 0.
Where L3 = A*y(st) + A;(St) - 2 ;y(st)'
ii. From (19) and (37), we have
Cy2 1—L,)?
MSE (T,o5) — minMSE(T,,,.) = [A*y(st) - (“)] 4 22) —1>0.
X(st) (1 _ L >
Ax(st)
Cyl 1—1L,)?
or |4, . — Xy (st) + ( 2) > 1is true,
Y(st) A L2
X(st) <1 _ A* 1 )

if L, <land L, > 1.
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iii. From (23) and (37), we have
(1-L,)?

(1-a)
Ax(st)

+ L, > 1 istrue,

MSE (T,,) — minMSE (Ty,) = —1+L,>0.

(1-Ly)*

(1-a%)
Ax(st)

if L, < land 4;

X(st)

or

= 2.

Ax(st) cr

where Ly = A i) +—— = Coyon)

iv. From (30) and (37) we have

1—L,)? 1
minMSE (T,,) — minMSE(T,,.) = Sl Y > 0.

2 2
) o)
X(st) X(st)

is true,

(1-L,) 1

L? > T2
X(st) X(st)

ifAy . =>1.

X(st) =

or

The above four observations displayed presents that the proposed estimator T,
performs better as compared to the estimators T;., Treg, Texp and T,

7. SIMULATION BASED RESULTS AND DISCUSSIONS

In this section, we investigate the efficiency of the proposed generalized estimators.
In this simulation study, we consider two finite populations of N = 4000
generated from multivariate normal distribution with theoretical same mean
[Y,X,Z]asu =[62 45 20]and difference covariances matrices as given below:

Population I:
[36 15 13]
62=|15 20 12],pyx = 0.5568; py; = 0.5926; py, = 0.7353.
113 12 13
Population II:
20 13 13]
62=|13 16 12|,pyx = 0.8034;py, = 0.7202; py, = 0.8262.
113 12 13

For each population, we consider sample size of n=845, iterated 10000 times. The
population is divided into four strata to certain criteria set for the auxiliary variables. The
sample size from each stratum is based on Neyman allocation.

We have computed the absolute relative bias (ARB) for different suggested estimators
by using the following expression:
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|Bias(T;)|

ARB = ,Where i = r,ex,pr,prr.

ARB and MSE values based on these population data set under 30% and 40%
nonresponse rate are given in Table 3-6.

Table 3
ARB result using Stratified Population |
1/k
W: Estimators
1/2 1/3 1/4 1/5
T, 0.000043 | 0.000078 | 0.000113 | 0.000148
30% T, 0.000021 | 0.000039 | 0.000056 | 0.000074
non-response Tpr 0.000008 | 0.000016 | 0.000023 | 0.000030
Torr 0.000002 | 0.000005 | 0.000007 | 0.000010
T, 0.000072 | 0.000134 | 0.000197 | 0.000260
40% T,, 0.000036 | 0.000067 | 0.000098 | 0.000130
non-response Tpr 0.000014 | 0.000026 | 0.000038 | 0.000050
Torr 0.000004 | 0.000008 | 0.000012 | 0.000016
Table 4
ARB result using Stratified Population 11
_ 1/k
W; Estimators
1/2 1/3 1/4 1/5
T, 0.000020 | 0.000036 | 0.000052 | 0.000067
30% T, 0.000010 | 0.000018 | 0.000025 | 0.000034
non-response Ty 0.000005 | 0.000009 | 0.000013 | 0.000016
Torr 0.000001 | 0.000002 | 0.000003 | 0.000005
T, 0.000025 | 0.000047 | 0.000068 | 0.000090
40% T, 0.000012 | 0.000023 | 0.000034 | 0.000045
non-response Ty 0.000006 | 0.000011 | 0.000016 | 0.000022
Torr 0.000001 | 0.000003 | 0.000004 | 0.000005
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Table 5
MSE Result using Stratified Population |
1/k
W2 Estimators
172 1/3 14 1/5

ts 0.2609 0.4726 0.6843 0.8960
T, 0.2893 0.5295 0.7697 1.0099
Treg 0.2196 0.3985 0.5774 0.7562
Tox 0.2206 0.4005 0.5805 0.7604
Tyr 0.2150 0.3909 0.5667 0.7425
30% Tor(2) 0.2608 0.4722 0.6841 0.8960
hon-response Tora) 0.2201 0.4003 0.5805 0.7604
Tor(s) 0.2226 0.4043 0.5860 0.7676
Torr 0.1675 0.2875 0.3133 0.5663
Torr(3) 0.2512 0.4614 0.6438 0.7488
Torra) 0.2560 0.4682 0.6540 0.7513
Torr(s) 0.2681 0.4717 0.6706 0.7890
ts 0.4288 0.8025 1.1762 1.5499
T, 0.4221 0.7908 1.1596 1.5283
Treg 0.3513 0.6578 0.9642 1.2707
Tox 0.3513 0.6578 0.9643 1.2708
Tyr 0.3390 0.6347 0.9303 1.2259
40% non- Tor(3) 0.4281 0.8022 1.1766 1.5506
response Tor(a) 0.3513 0.6578 0.9640 1.2706
Tor(s) 0.3546 0.6640 0.9734 1.2828
Tyrr 0.2777 0.5267 0.7603 1.0256
Torr(3) 0.4227 0.7470 1.1426 1.4222
Torr(a 0.4238 0.7817 1.1459 1.4786
Torr(s) 0.4253 0.7973 1.1653 15019
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Table 6
MSE result using Stratified Population 11
_ 1/k
W2 Estimators
172 1/3 14 1/5

ts 0.1460 0.2596 0.3731 0.4785
T, 0.1437 0.2331 0.3625 0.4232
Treg 0.1198 0.2144 0.3089 0.3970
Tox 0.1218 0.2187 0.3156 0.4061
Tyr 0.1215 0.2180 0.3145 0.3960
30% non- Tor(2) 0.1456 0.2593 0.3730 0.4786
response Tora) 0.1218 0.2187 0.3156 0.4060
Tor(s) 0.1233 0.2213 0.3193 0.4108
Torr 0.0609 0.1093 0.1576 0.2079
Torr(3) 0.1308 0.2314 0.3479 0.4307
Torr(a 0.1314 0.2356 0.3568 0.4464
Torr(s) 0.1391 0.2398 0.3666 0.4544
ts 0.1839 0.3353 0.4867 0.6381
T, 0.1635 0.3271 0.4319 0.5311
Treg 0.1513 0.2774 0.4035 0.5296
Tox 0.1541 0.2833 0.4125 0.5416
Tyr 0.1507 0.2723 0.4110 0.5396
40% non- Tor(3) 0.1838 0.3351 0.4866 0.6382
response Tora) 0.1541 0.2833 0.4125 0.5416
Tor(s) 0.1560 0.2866 0.4173 0.5480
Tyrr 0.1277 0.1415 0.2060 0.2705
Torr(3) 0.1789 0.2971 0.4697 0.5652
Torra 0.1798 0.2975 0.4720 0.5839
Torr(s) 0.1813 0.3084 0.4751 0.5709
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In this simulation study, the results of the comparative analysis between the proposed
estimators, the modified ratio, regression and exponential estimators along with their
respective class of estimator. The evaluation was conducted considering different
populations under study and two nonresponse rates: 30% and 40%. The findings reveal that
the proposed estimator consistently outperforms the alternative estimators in terms of
efficiency. Specifically, examining the mean square error (MSE), it is evident that the
proposed estimators yield smaller MSE values compared to the modified ratio and
regression and exponential estimators as well as the respective classes for estimators.
Furthermore, as the nonresponse rate increases from 2% to 5% the MSE results also
demonstrate an upward trend. This superiority is observed across the range of populations
investigated and holds true for both 30% and 40% nonresponse rates for moderate and high
correlation populations.

Overall, these findings suggest that the proposed estimators may be a more reliable and
effective approach to estimating population mean in the face of non-response bias, and
measurement error, especially when compared to other commonly used estimators.

8. CONCLUSIONS

Based on the simulation results, the findings of the study demonstrate that the
proposed estimators along with their class of estimators outperform the existing estimators
when nonresponse and measurement error are present. The performance of the proposed
estimator is characterized by higher efficiency and smaller increases in means squared
error as the nonresponse rates increase compared to the competitor estimators. These
results provide practical implications for researchers and practitioners engaged in
estimating population parameters while dealing with the combined challenges of
nonresponse and measurement error. The ability of the proposed estimators to
effectively handle the joint presence of nonresponse and measurement error sets them apart
making them a robust and reliable approach for population parameter estimation within
complex survey designs.

Overall, the study’s conclusion highlights the practical importance of the
proposed estimators addressing the challenges posed by nonresponse and measurement
error.
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