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ABSTRACT 
 

 In this article, a modified principal component calibration estimator is proposed by 

using second moments of principal components for estimating the population total in 

survey sampling using simple random sampling. A simulation scheme and real-life 

example are used to evaluate the performance of the proposed estimator. The new estimator 

is more efficient and reduces bias as compared to the conventional principal component 

calibration estimator. 
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1. INTRODUCTION 
 

 Calibration is one of the recently developed techniques in survey sampling literature 

(see Deville and Särndal, 1992; Singh and Mohl, 1996; Särndal, 2007). The auxiliary 

variables are used to obtain efficient sample weights called calibration weights such that 

the weights are the function of auxiliary variables (Deville and Särndal, 1992; Kim and 

Park, 2010; Farrell and Singh 2005). To obtain the calibration estimation these sample 

weights are used further. In survey data, the problem of multicollinearity and dimension 

reduction can be solved by using principal components (PC). Goga and Shehzad (2014), 

Cardot, Goga and Shehzad, (2017), and Rota and Laitila (2017) used a PC calibration 

estimator and discuss its properties for high dimensional multicollinear survey data. Bocci 

and Beaumont (2008) and Goga and Shehzad (2010) discussed the ridge calibration 

estimator to solve the problem of multicollinearity. 
 

 Calibration estimation on different quantiles is discussed by many authors (i.e. 

Kovacevic, 1997; Harms and Duchesne, 2006; Berger and Munoz, 2015). Using moments 

of auxiliary variables in calibration estimation is not a very new concept. Kovacevic (1997) 

used the moment of auxiliary variable in calibration estimation. Moments and their 
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generalization in calibration estimation are introduced and used by Ren and Deville (2000). 

Tracy, Singh and Arnab, (2003) used second order moments-based calibration for 

estimation under stratified random sampling. Harms (2003) used moment-based calibration 

estimation for small area estimation in the European Household Panel survey. Ren (2002) 

suggests that calibration on moments is more efficient. 
 

 The estimation using dimension reduction and for multicollinear data can be improved 

after including second moments of principal components (Cardot, Goga and Shehzad, 

2017) because it contains information about the variation. Using both first and second 

moments jointly can be more attractive in achieving high efficiency. By opening the lead 

provide by Cardot, Goga and Shehzad, (2017) and incorporating Ren and Deville (2000) 

concept we are in this paper introducing a modified version of PC calibration estimation 

by adopting the second moment of PCs at the estimation stage. This modification aims to 

achieve a more efficient estimator of population total when auxiliary variables are of high 

dimension and multicollinear.  
 

 This article is organized as follows. The modification of PC calibration is discussed in 

Section 2. In Section 3 we discussed the measures used to compare the numerical 

performance. Section 4 describes the Simulation scheme and its results. For supporting the 

simulation results Section 5 is developed to perform the said method on a real-life data 

application. Finally, the conclusion is made in Section 6.  

 

2. MODIFIED PRINCIPAL COMPONENT CALIBRATION 
 

 Consider a calibration estimator for population total 𝑡𝑦 = ∑ 𝑦𝑈  is defined by Deville 

and Särndal, 1992 as: 
 

�̂�𝑦 = 𝑤′𝑦𝑠.                   (1) 
 

where w is the calibrated weights and 𝑦𝑠 is the study variable. The weights 𝑤 using  

chi-square distance function is defined as: 
 

𝑤 = 𝑑𝑠 − ∏𝑠
−1𝑋𝑠(𝑋𝑠

′∏𝑠
−1𝑋𝑠)−1(𝑑𝑠

′𝑋𝑠 − 1𝑈
′ 𝑋)′, 

 

where 𝑑𝑠 is the inverse of inclusion probabilities, ∏𝑠 = 𝑑𝑖𝑎𝑔(𝑞𝑘∈𝑠
−1 𝑑𝑘∈𝑠

−1 ) with 𝑞𝑘 as  

a positive quantity and 𝑋𝑠 are auxiliary variables of order 𝑛 × 𝑝 with a property that  

𝑤𝑠
′𝑋𝑠 = 1𝑈

′ 𝑋.  
 

 Assume𝑍 = (𝑧1, . . . , 𝑧𝑟) is first r selected principal components (where 𝑟 ≤ 𝑝). The 

calibration estimator is now based on these principal components is given by:  
 

�̂�𝑦(𝑍)
= 𝑤𝑍

′ 𝑦𝑠,                    (2) 
 

where 𝑤𝑍
′  are the calibrated weights are the function of principal components and  

defined as: 
 

𝑤𝑍 = 𝑑𝑠 − ∏𝑠
−1𝑍𝑠(𝑍𝑠

′∏𝑠
−1𝑍𝑠)−1(𝑑𝑠

′ 𝑍𝑠 − 1𝑈
′ 𝑍)′. 

 

and 𝑤𝑍
′ 𝑍𝑠 = 1𝑈

′ 𝑍. 
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 The variance of the principal components 𝑍 is the eigenvalues 𝜆 of the components 

which is the magnitude of features space included and defined as 
 

𝜆 =
1

𝑁
∑ 𝑍2

𝑈 . 
 

 So, adding this supplementary information improves the PC calibration estimator in 

form of efficiency. Considered, 𝑍2 = (𝑧1
2, . . . , 𝑧𝑟

2) as the second moment of the 𝑟 principal 

components. Now instead of using 𝑍 in calibrated weights, we used a matrix 𝑇, such that 

𝑇 = (𝑍, 𝑍2), having order 𝑁 × 2𝑟. Thus, eq. (2) can be written as: 
 

�̂�𝑦(𝑇)
= �̂�𝑦

(𝑍,𝑍2)
= 𝑤𝑇

′ 𝑦𝑠,                 (3) 

 

where 𝑤𝑇
′  are the calibrated weights based on 𝑇. Finally, 𝑤𝑇

′  is defined as: 
 

𝑤𝑇 = 𝑑𝑠 − ∏𝑠
−1𝑇𝑠(𝑇𝑠

′∏𝑠
−1𝑇𝑠)−1(𝑑𝑠

′ 𝑇𝑠 − 1𝑈
′ 𝑇)′,  

 

𝑤𝑇 = 𝑑𝑠 − ∏𝑠
−1(𝑍, 𝑍2)𝑠((𝑍, 𝑍2)𝑠

′ ∏𝑠
−1𝑇𝑠)−1(𝑑𝑠

′ (𝑍, 𝑍2)𝑠 − 1𝑈
′ (𝑍, 𝑍2))

′
 

 

where 𝑤𝑇
′ 𝑇𝑠 = 1𝑈

′ 𝑇 with: 𝑤𝑇
′ 𝑍𝑠 = 1𝑈

′ 𝑍 and 𝑤𝑇𝑍𝑠
2 = 1𝑈

′ 𝑍2. 

 

3. NUMERICAL EVALUATION 
 

 To compare the performance of modified PC calibration estimator with PC calibration 

estimator one we used different measures defined as follows: 
 

 Bias (B): which is measured for an estimated total �̂�𝑦 as follows: 
 

𝐵(�̂�𝑦) = 𝐸(�̂�𝑦) − 𝑡𝑦. 
 

 Percent Absolute Bias (PAB): which is measured for an estimated total �̂�𝑦 as 

follows: 
 

𝑃𝐴𝐵(�̂�𝑦) =
1

𝑅
|

𝐸(�̂�𝑦)−𝑡𝑦

𝑡𝑦
| × 100  

 

 Mean Absolute Error (MAE): which is measured for an estimated total �̂�𝑦 as 

follows: 
 

𝑀𝐴𝐸(�̂�𝑦) =
∑ |�̂�𝑦−𝑡𝑦|𝑅

𝑖=1

𝑅
  

 

 Root Mean Square Error (RMSE): which is measured for an estimated total �̂�𝑦 as 

follows: 

𝑅𝑀𝑆𝐸(�̂�𝑦) = √∑ (�̂�𝑦 − 𝑡𝑦)
2𝑅

𝑖=1

𝑅
. 

 

Simulation Study  

 A Monte Carlo simulation scheme is carried out to compare the performance of the PC 

calibration estimator with the modified PC calibration estimator. In the data generation 

process, we have followed a similar scheme as used by Clark and Troskie (2006) and Aslam 
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(2014) to generate the collinear variables. Ten correlated auxiliary variables have been 

generated of size 1000 by using the formula: 
 

𝑥𝑖𝑗
= √1 − 𝜃2𝑣𝑖𝑗

+ 𝜃𝑣𝑖 ,𝑝+1
 where 𝑖 = 1,2, … , 𝑁 = 1000; 𝑗 = 1,2, … , 𝑝 = 10 

 

where 𝑣𝑖𝑗
 and 𝑣𝑖,𝑝+1

 are generated as independent standard normal random variates. 𝜃 is a 

controlled value such that 𝜃2 is the correlation between all auxiliary variables. Four 

different levels of correlation are considered to check the performance of our estimator 

between a moderate and high level of multicollinearities by selecting 𝜃 = 0.80, 0.85, 0.90, 

and 0.95. A study variable y is generated in such a manner that it will depend on the 

auxiliary variable. To assure their relationship we simply make a linear combination of all 

auxiliary variables 𝑋 by adding them and to make this relation inexact we add a small 

disturbance term u in this model such that  
 

𝑦 = ∑ 𝑋𝑗
10
𝑗=1 + 𝑢, 

 

where u is independently standard normal distributed variable. Thus, a population total  

of 𝑦 denoted by 𝑡𝑦 is calculated.  
 

 By using PC analysis first five PCs are selected as an auxiliary variable which provides 

approximately 95% variation of the data. These PCs were used in calibration estimation 

process. Similarly, for comparison, we have selected 5, 3 and 2 PCs respectively and used 

these PCs in modified PC calibration estimation process. To check the performance of our 

estimator for small to large sample sizes, four different samples of size 𝑛 = 25, 50, 100, 

and 200 are taken using simple random sampling for each replication. The number of 

replications 𝑅 is set to be 1000 for each sample size under each level of multicollinearity. 

All the data generated including auxiliary variables and study variables are kept fixed in 

each replication. In last, for each scenario, the estimated total �̂�𝑦 is calculated using PC 

calibration and Modified PC calibration estimator for performance evaluation. 

 

5. RESULTS AND DISCUSSION 
 

 Table 1-2 presents the results of different measurements for bias and efficiency of PC 

calibration and modified PC calibration for different no of PCs at different sample sizes 

and different levels of multicollinearity. For a small sample size, the B and PAB are lower 

for the modified PC calibration and there is a considerable reduction in both measurements 

for the case of modified PC calibration. 
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Table 1 

Comparison of Bias of PC Calibration and Modified PC Calibration 

𝜃 N 
𝐵 

(�̂�𝑌𝑍𝑟=5
) 

𝐵 

(�̂�𝑌𝑇𝑟=5
) 

𝐵 

(�̂�𝑌𝑇𝑟=3
) 

𝐵 

(�̂�𝑌𝑇𝑟=2
) 

𝑃𝐴𝐵 

(�̂�𝑌𝑍𝑟=5
) 

𝑃𝐴𝐵 

(�̂�𝑌𝑇𝑟=5
) 

𝑃𝐴𝐵 

(�̂�𝑌𝑇𝑟=3
) 

𝑃𝐴𝐵 

(�̂�𝑌𝑇𝑟=2
) 

0.80 25 -41097.91 11496.00 11260.52 10805.74 27.39 7.66 7.50 7.20 

 50 -20291.96 4968.41 4868.37 4760.21 13.52 3.31 3.24 3.17 

 100 -9436.53 2375.49 2297.76 2272.13 6.29 1.58 1.53 1.51 

 200 -4242.18 925.46 913.07 903.23 2.83 0.62 0.61 0.60 

          

0.85 25 -40462.29 11260.75 11043.01 10588.53 27.39 7.62 7.47 7.17 

 50 -19985.32 4862.10 4766.99 4660.96 13.53 3.29 3.23 3.15 

 100 -9294.81 2330.76 2254.28 2229.08 6.29 1.58 1.53 1.51 

 200 -4176.36 906.65 894.67 884.75 2.83 0.61 0.61 0.60 

          

0.90 25 -39343.51 10882.96 10690.49 10245.27 27.38 7.57 7.44 7.13 

 50 -19440.03 4699.12 4610.00 4507.68 13.53 3.27 3.21 3.14 

 100 -9041.94 2258.93 2184.74 2160.30 6.29 1.57 1.52 1.50 

 200 -4060.66 877.33 865.90 856.05 2.83 0.61 0.60 0.60 

          

0.95 25 -37329.38 10246.26 10088.76 9666.32 27.38 7.52 7.40 7.09 

 50 -18452.62 4429.48 4348.44 4252.45 13.54 3.25 3.19 3.12 

 100 -8583.27 2136.24 2066.21 2043.13 6.30 1.57 1.52 1.50 

 200 -3852.49 828.22 817.60 808.07 2.83 0.61 0.60 0.59 
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Table 2 

 Comparison of Efficiency of PC Calibration and Modified PC Calibration 

𝜃 N 
𝑀𝐴𝐸 

(�̂�𝑌𝑍𝑟=5
) 

𝑀𝐴𝐸 

(�̂�𝑌𝑇𝑟=5
) 

𝑀𝐴𝐸 

(�̂�𝑌𝑇𝑟=3
) 

𝑀𝐴𝐸 

(�̂�𝑌𝑇𝑟=2
) 

𝑅𝑀𝑆𝐸 

(�̂�𝑌𝑍𝑟=5
) 

𝑅𝑀𝑆𝐸 

(�̂�𝑌𝑇𝑟=5
) 

𝑅𝑀𝑆𝐸 

(�̂�𝑌𝑇𝑟=3
) 

𝑅𝑀𝑆𝐸 

(�̂�𝑌𝑇𝑟=2
) 

𝑅𝐸 = 

𝑅𝑀𝑆𝐸(�̂�𝑌𝑇𝑟=5
)

𝑅𝑀𝑆𝐸(�̂�𝑌𝑍𝑟=5
)
 

0.8 25 41097.91 21798.82 19745.39 18005.90 44812.27 28815.79 26055.60 23719.01 0.643 

 50 20291.96 9798.71 9478.02 9141.67 22534.78 12546.99 12204.23 11799.07 0.557 

 100 9436.53 5767.28 5659.29 5580.86 10614.66 7363.46 7216.86 7104.96 0.694 

 200 4242.18 3349.01 3310.97 3289.30 4806.62 4209.05 4169.90 4138.53 0.876 

           

0.85 25 40462.29 21416.53 19400.09 17684.22 44122.20 28334.91 25600.98 23300.42 0.642 

 50 19985.32 9630.42 9315.39 8983.36 22196.64 12323.91 11988.34 11590.31 0.555 

 100 9294.81 5664.87 5560.03 5483.02 10454.25 7235.18 7091.88 6980.77 0.692 

 200 4176.36 3290.63 3253.45 3231.51 4732.73 4136.90 4098.20 4067.21 0.874 

           

0.90 25 39343.51 20775.42 18830.89 17152.06 42905.81 27522.10 24837.19 22602.88 0.641 

 50 19440.03 9346.66 9042.13 8717.51 21593.53 11954.72 11629.94 11243.64 0.554 

 100 9041.94 5494.75 5394.75 5320.11 10168.85 7020.61 6882.42 6773.41 0.690 

 200 4060.66 3192.93 3156.78 3134.81 4602.40 4015.28 3977.50 3947.28 0.872 

           

0.95 25 37329.38 19650.77 17830.35 16230.75 40713.90 26107.91 23499.91 21387.22 0.641 

 50 18452.62 8849.37 8563.01 8253.43 20499.60 11313.27 11006.30 10640.36 0.552 

 100 8583.27 5199.23 5106.77 5035.44 9652.01 6645.62 6515.82 6411.36 0.689 

 200 3852.49 3022.09 2987.65 2966.33 4367.42 3801.77 3765.78 3737.02 0.870 
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An increase in sample size also causes a considerable reduction in B and PAB when we 

use modified PC calibration. Similarly, for different no of selected PCs for modified PC 

calibration, we have a considerable reduction in B and PAB by using less no of PCs as 

compare to the no of selected PC for conventional PC calibration. The modified methods 

can perform better when fewer PCs are selected. Moreover, when collinearity among the 

auxiliary variable becomes severe the B considerably reduces but PAB shows the same 

results for other levels of multicollinearity. 
 

 
𝜃 = 0.80 

 
𝜃 = 0.85 
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𝜃 = 0.90 

 

 
𝜃 = 0.95 

 

Figure 1: Box Plots of the Simulated Total of Modified  

PC Calibration and PC Calibration 
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 For each sample size, both MAE and RMSE for modified PC calibration are lower than 

PC calibration. The increment in sample size makes our modified estimator more efficient 

and it became 26% to 29% more efficient than the conventional estimator. Similarly, for 

the different numbers of selected PCs, the MAE and RMSE of the modified PC calibration 

are the lowest than conventional PC calibration.  
 

 The same situation can be observed for different levels of multicollinearity. As 

multicollinearity among auxiliary information becomes high there is an improvement in 

MAE and RMSE of the modified calibration estimator. Finally, for different no of PCs, at 

each sample size and level of multicollinearity, our modified estimator is considerably 

improved in terms of bias and efficiency. Figure 1 shows the boxplot of the simulated totals 

of simple PC calibration and modified PC calibration with different no. of PCs and different 

levels of multicollinearity. 

 

5. A REAL DATA EXAMPLE 
 

 A real-life example of Boston housing data is also used which was original data by 

Harrison and Rubinfeld, (1978) and also used by different researches and books. This  

data was taken from the data archive at http://lib.stat.cmu.edu/datasets/boston consists of 

14 variables each has 506 observations. Also available in R with the name 

“BostonHousing”. The study variable used by the different researchers is the median value 

of owner-occupied homes in USD 1000, so we also take this variable as our study variable 

(see, i.e. Simlai, 2014; Bargiela, Pedrycz and Nakashima, 2007; Friedman and Wall, 2005; 

Harrison and Rubinfeld, 1979). The remaining 13 variables are used as auxiliary variables 

are as follows: 
 

X1:  Per capita crime rate by town 

X2:  Proportion of residential land zoned for lots over 25,000 sq.ft 

X3:  Proportion of non-retail business acres per town 

X4:  Charles River dummy variable (= 1 if tract bounds river; 0 otherwise) 

X5:  Nitric oxides concentration (parts per 10 million) 

X6:  Average number of rooms per dwelling 

X7:  Proportion of owner-occupied units built prior to 1940 

X8:  Weighted distances to five Boston employment centres 

X9:  Index of accessibility to radial highways 

X10:  Full-value property-tax rate per USD 10,000 

X11:  Pupil-teacher ratio by town 

X12:  1000(B - 0.63)^2 where B is the proportion of blacks by town 

X13:  Percentage of lower status of the population 
 

 We are estimating the total median value of owner-occupied homes in USD 1000. This 

data is a famous data contain high multicollinearity among variables. A small simulation 

scheme is used to verify the results. For that purpose, we consider the data of 506 

observations as our population. After using PCA, seven PCs are selected as auxiliary 

variables which contain approximately 95% of the total variation. A sample of size 𝑛 = 25, 

50, 100, and 200 are take n by using simple random sampling for simulation of size 1000. 

We use identical variations of PC’s, sample size, and simulation size to make a ground 

comparison between real-life examples and Monto Carlo simulation methods. 

http://lib.stat.cmu.edu/datasets/boston
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Table 3 

Comparison of PC Calibration and Modified PC Calibration  

for Boston Housing Data 

N 25 50 100 200 

B (�̂�𝑦(𝑍)
) -4328.534 -1948.801 -799.257 -278.996 

B (�̂�𝑦(𝑇)
) 899.140 278.573 -26.374 1.287 

PAB(�̂�𝑦(𝑍)
) 37.964 17.092 7.010 2.447 

PAB(�̂�𝑦(𝑇)
) 7.886 2.443 0.231 0.011 

MAE(�̂�𝑦(𝑍)
) 4332.634 1953.760 812.877 294.529 

MAE(�̂�𝑦(𝑇)
) 3220.645 1298.045 511.207 263.225 

RMSE(�̂�𝑦(𝑍)
) 5042.689 2401.962 998.522 371.040 

RMSE(�̂�𝑦(𝑇)
) 5011.406 2133.219 673.104 332.453 

𝑅𝐸 =
𝑅𝑀𝑆𝐸(�̂�𝑌(𝑇))

𝑅𝑀𝑆𝐸(�̂�𝑌(𝑍))
 0.994 0.888 0.674 0.896 

 

 Results are shown in Table 3. The comparison shows a significant reduction in the 

biases of our modified PC calibration estimator. The measure of bias decreases as the 

sample size increases. The MAE and RMSE depict that the modified estimator improves 

its efficiency over simple PC calibration. Figure 2 shows the box plot of the simulated total 

of both modified and simple PC calibration. 

 

 

 
Figure 2: Box Plots of the Simulated Total of Boston Housing Data 
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6. SUMMARY AND CONCLUSION 
 

 This article considers a modification in PC calibration by using the second moment of 

PCs. The modified PC calibration estimator is compared with PC calibration using bias, 

PAB, MAE, and RMSE. A simulation scheme and real-life data are used as an example. 

Results show the significant improvement in bias, PAB, RMSE, and MAE of our  

modified estimator for different No. of PCs at each sample size and different levels of 

multicollinearity. It is also concluded that an increase in sample size or levels of 

multicollinearity shows the better performance of our modified PC calibration estimator 

over the PC calibration estimator. Moreover using fewer PCs in modified PC calibration 

also ensure remarkable improvement in the proposed estimator. 
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