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ABSTRACT 
 

 In case of wild observations or non-normality, using the usual ratio type estimator will 

be the worst. Using modified maximum likelihood estimators (MMLEs) Oral and Kadilar 

(2011) made robust ratio-type estimators to deal with the issue. A generalized least squares 

estimator (GLSE) based on order statistics can be more appropriate. In this paper, a family 

of proposed ratio-type estimators (PRTEs) using GLSE is advised. The situation is focused 

especially, if the errors follow the non-normal (symmetric or skewed) distribution. The 

performance of PRTEs is evaluated via simulation by the mean square error (MSE) and the 

relative efficiencies (RE). 
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1. INTRODUCTION 
 

 In survey sampling, estimation of the characteristics of the population using sample 

information has been a demanding task for survey statisticians. The objective of sample 

selection is to attain fairly precise results regarding population parameters based on the 

sample. The simplest mean estimator of the population is the simple random sample (SRS) 

mean when no additional information is used. It is often the case that an auxiliary variable 

z  positively related to the main variable of the study y  is also available. In such 

circumstances, one of the most customary methods of estimation is the classical ratio 

method. The estimator of the population mean in this method is given as, 
 

  
r

y
y Z

z
 ,                   (1.1) 

 

where y  and z  are the sample means of the study variable y  and the auxiliary variable

z , and Z  is the population mean of the auxiliary variable z . The ry
 
is widely applied 
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for estimating the population mean 
1

/
M

l
l

Y y M


  when Z  is known. The MSE of ry  is 

given by 
 

  2MSE( ) var( ) 2 cov( , ) var( )ry y R y z R z   ,         (1.2) 
 

where 
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cov( , ) zy

f
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 ; /f m M ; m  and 

M are the sample and population sizes, 2
zS and 2

yS  are variances of the population of z  

and y , respectively; zyS  is the covariance of the population between z  and y ; /R Y Z  

is the population ratio. By utilizing available information about the population parameters 

like zV (coefficient of variation),
 2( )z (kurtosis) and  (population coefficient of 

correlation between z  and y ) into (1.1), efficiency may be enhanced (Singh & Tailor, 

2003). Merging the estimators to form a general class specified by Ray and Singh (1981), 

Kadilar and Cingi (2004) recommended the subsequent different ratio-type estimators 

known as Kadilar-Cingi estimators (KCEs) in the SRS context: 
 

  
ˆ ( )

( )
( )

L
KCj j j

j j

y Z z
y Z
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, for 1,2,...,5j          (1.3) 

 

where 
2ˆ /L zy zs s   is the estimator of regression coefficient that is estimated by least 

square (LS) estimation method; 1 1  , 1 0  ; 2 1  , 2 zV  ; 3 1  , 3 2( )z   ;

4 2( )z  , 4 zV  ; 5 zV  , 5 2( )z   . The MSE of (1.3) is obtained by applying the 

Taylor series approximation up to the first order as,  
 

  2 2 2 2 2 2MSE( ) (1 ) / ( 2 2 2 )KCj KCj z L KCj z L z KCj zy L zy yy f m R S R S S R S S S         , 

 

where 2/L zy zS S  and 
j

KCj
j j

Y
R

Z



  

for 1,2,...,5.j   

 

 Although KCjy  are beneficial in estimating Y  but they are somewhat responsive to 

outliers. However, it is essential to adjust the ratio estimators to do not a response to outliers 

or non-normality. In literature the ratio estimators are robustified in different attempts 

regarding the existence of outliers; see (Farrel & Barrera 2006; Oral & Oral 2011; Kumar 

& Chhaparwal 2017). Kadilar et al. (2007) robustified the KCEs by using Huber’s M 

estimator. It was concluded that M estimation can enhance the efficiency of (1.3). Oral and 

Kadilar (2011) improved the efficiencies of KCEs using MMLE methodology in KCEs. 

Comparing MMLE to M estimators, Islam and Tiku 2004 proved that the MMLEs can 

provide better results when the errors follow a long-tailed symmetric (LTS) family. 

Moreover, Azaz et al. (2019) highlighted several problems with MMLE’s weight function 

and suggested using the Generalized Least Squares Estimation (GLSE) instead of MMLE 

for the robustification process in SRS. 
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 In this study, applying GLSE to an ordered sample by Lloyd (1952), the mean 

estimation of a non-normal population with auxiliary information is emphasized. To 

produce robust estimates the GLSE can be taken as an alternative to MMLEs. Because 

MMLEs can be proved ineffective if the maximum likelihood estimators (MLEs) are in 

explicit form, as in the case of Laplace distribution. In skewed distribution e.g. Weibull 

distribution, MMLEs do not exist when the shape parameter is less than 1. Whereas, Fisher 

information can only be defined if the shape parameter of Weibull distribution is greater 

than 2; have a look (Islam et. al, 2001). So, GLSE is introduced to deal with these issues. 
 

 Integrating the GLSE into (1.3) a family of PRTEs is formed not only to deal with non-

normality but also to improve efficiency. Moreover, PRTEs are robust in the presence of 

outliers. 

 

2. PROPOSED A FAMILY OF RATIO-TYPE ESTIMATORS  

UNDER NON-NORMALITY OF ERRORS 
 

 In the linear regression model 
 

  l l ly z e  ,1 l m                  (2.1) 
 

let error term ( le ) is from a family of symmetric or skewed distributions, let 1 2, ,..., me e e

be a SRS from the parent distribution. Let (1) (2) ( ),..., me e e   be the order statistics of 

the random sample 1 2, ,..., me e e . Let 
( )

( )
l

l

e
u 


 or 

[ ] [ ]
( )

l l
l

y z
u





 be the standardized 

variate, [ ] [ ]( , )l ly z  may be called concomitants of ( )lu , 1 l m  . Let ( )( )l lE u   , 

( )var( )l llu    and ( ) ( )cov( , )l h lhz z    for 1,2,...,l m , 1,2,...,h m . Further, let us 

denote (1) (2) ( )y ( , ,..., )my y y  , (1) (2) ( )α ( , ,..., )m     , (1) (2) ( )z ( , ,..., )mz z z   and 

[ ]lh   for 1,2,...,l m , 1,2,...,h m . The best linear unbiased estimator (BLUE) of 

and   can be derived by minimizing the quadratic form as given below 
 

  1( ) (y AΘ) (y AΘ)Q      , where A [z α]  and Θ ( , )T      (2.2) 
 

minimizing the (2.2) the BLUE of  and  are derived as under 
 

  
1 1 1 1

1 1 1 2

α αz α zαˆ y
α αz z (α z)

GL
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1 1 1 1

1 1 1 2

z zα z αz
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α αz z (α z)
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                       (2.3) 
 

 The variance and covariance of these estimators may be found as, 
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2
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, 

and 

  
1

2

1 1 1 2

α zˆ ˆcov( , )
α αz z (α z)

GL GL



  

  
     

      
. 

 

 Consider the linear regression model (2.1), suppose that the error term ( le ) is from a 

family of Laplace distribution given by Farnoosh and Jafarpour (2005) as, 
 

  ( ) : ( , ) [ / ]
2

f e L Exp e


    


, where e y z  ,  e     (2.4) 

 

where   is the scale parameter and   is the sharply peaked parameter. The coefficient of 

kurtosis suggested by Farnoosh and Jafarpour (2005) for (2.4) is 
4 4( ) 24 /

e
E  


. The 

coefficient of kurtosis of (2.4) that we consider in this study is 24 for 1  .  
 

 Let 
[ ] [ ]

( )
l l

l

y z
u





 and 1  , using the values of α  and   tabulated by 

Govindarajulu (1966) for (1,1)L  and following Lloyd’s method, we may calculate the 

values of the estimator ˆ
GL  from (2.3). 

 

 For the linear regression model (2.1) if the error term follows the LTS family 
 

  

2
1

( ) : ( , ) 1
1/ 2 1/ 2

p

p e
f e LTS p e

kk p


 

        
     

   (2.5) 

 

where the shape parameter is p ,
 

2 3k p   and p  should be greater than 2. The kurtosis 

of (2.5) is 
 2

3

1 2 / k
 


 for k   then (2.5) follow to normal distribution. The 

expressions of likelihood equations for (2.5) are in the form of the complex functions
2( ) /{1 (1/ ) }l l lg u u k u  , where /l lu e  , 1 l m  , and do not expressed in closed 

form. The robust MMLEs are attained as the likelihood equations are written in the form 

of the ordered variates ( ) ( ) /l lu e  , the functions ( )( )lg u  are restored with their linear 

approximations and the resultant equations are evaluated for parameters. The solutions of 

the equations are explicit functions of the concomitant observations [ ] [ ]( , )l ly z , 1 l m   

as, 
 

  ˆ ˆ
T D C     and 

2 4
ˆ

4 ( 2)

F F mG

m m

 
 


,           (2.6) 

where 
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  2
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l l l l
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    ,        (2.7) 

 

  [ ] [ ]
1

(2 / ) ( )
m

l l l
l

G p k y D z


   , 2
[ ] [ ]

1

(2 / ) ( )
m

l l l
l

F p k y D z


   , 

 

  3 2 2(2 / ) / [1 (1/ ) ]l l lk k     , 2 2 2([1 (1/ ) ] / [1 (1/ ) ]l l lk k      . 
 

 The magnitudes of α  and   are tabularized by Tiku and Kumra (1981) of the LTS 

family for 10p   Using of α  and  , following Lloyd’s method and MMLEs, we may 

calculate the values of estimators ˆ
GL  from (2.3) and ˆ

T  from (2.6), respectively. 
 

 Yet again for model (2.1), assume le  tag on the family of skewed distributions, namely, 

Weibull distribution as 
 

  
( )f e : 1( , ) ( / ) exp( ( / ) )p pW p p e e     ,   0 e       (2.8) 

 

where p  is the shape parameter. The (2.8) for 1p  ,
 

1p   and 2p   become reversed 

J-shaped, the exponential distribution and the Rayleigh distribution, respectively. 

Therefore, it is applied mostly in practical fields due to its elasticity for fitting data which 

follow the distributions away from symmetry. The behavior of skewness and kurtosis of 

(2.8) are given below. 
 

p  1.5 2 2.5 3 4 6 

1 1    1.064 0.631 0.358 0.168 -0.087 -0.158 

2  4.365 3.246 2.858 2.705 2.752 2.538 
 

 The equations of ML from (2.8) may be written in the forms of the ordered variate  

( )lu , 1 l m   and involve unyielding functions 1
( ) ( )( )l lg u u ; 

1
( ) ( )( ) p
l lg u u  . The 

solutions of likelihood equations are obtained in a similar manner discussed for LTS as, 
 

  ˆ ˆ
T D C                       (2.9) 
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 Note that 0l   for all 1p  . The MML estimator ̂  is always real and positive. The 

MMLEs given in (2.9) and (2.10) by Islam, Tiku and Yildirim (2001) are extremely 

efficient and robust as compared to their competing LS estimators when the error term is 

from (2.8). The MMLE methodology for (2.8) provides an efficient estimator when the 

shape parameter is greater than 2. The Fisher information is also described only when the 

shape parameter is greater than 2. Therefore, it is necessary to employ an alternate method 

for the case 0 2p  , such as GLS. Let 
[ ] [ ]

( )
l l

l

y z
u





 be the standardized order 

statistics from (2.8), the GLS estimator of   and   are derived on the same lines as given 

in (2.3)-(2.4), where the elements of   and α  are regenerated using Lieblein’s expression 

for (2.8) to nine decimal places for 15n   and p  1, 2 and 3.5. We calculate the ˆ
T  and 

ˆ
GL  following (2.9) and (2.3) if the error term is from ( , )W p  . 

 

 Now using the generalized least square (GLS) estimation ˆ
GL  is obtained following 

(2.3) when the error is following (1, )L   or ( , )LTS p   or ( , )W p   and using MMLE,
 
ˆ

T

is computed following (2.6) when the error is following ( , )LTS p   and ˆ
T  is obtained 

following (2.9) when the error term follows ( , ),W p   to attain efficient estimators under 

non-normal distributions, proposed a family of ratio-type estimators as, 
 

  
ˆ ( )

( )t
prjt j j

j j

y Z z
y Z

z

 
   

  
, 1,2,...,5j   and 1,2t        (2.12) 

 

where 1
ˆ ˆ

T   , 2
ˆ ˆ

GL   , j  and the values of j  are the same as given above. The MSEs 

of (2.12) may be evaluated in a similar way given in Kadilar and Cingi (2004) as, 
 

  2 2 2 2 2 2( ) (1 ) / ( 2 2 2 )prjt KCj z t KCj z t z KCj zy t zy yMSE y f m R S R S S R S S S         , 

 

where 1 T   ; 2 GL    are obtained over the whole population and KCjR  for 

1,2,...,5j   are the same as given above. It is important to note that Oral and Kadilar 

(2011) proposed ratio-type estimators using MMLE methodology are the special case of 

(2.12) when the error term is from ( , )LTS p   and 1
ˆ ˆ

T   . 
 

 To set the conditions when the (2.12) are more efficient than the KCEs KCjy , we solve 

the inequalities 
 

  ( ) ( )prjt KCjMSE y MSE y  for 1,2,...,5j  , 1,2t         (2.13) 

 

 The solutions of (2.13) as, 
 

  2 0KCj t LR     , if 0KCjR   

 

  0 2t L KCjR     , if 0KCjR               (2.14) 
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for 1,2,...,5, 1,2j t   respectively. Hence when condition (2.13) is fulfilled, the proposed 

estimators (2.14) are provided better results as compared to the KCEs given in (1.3). 
 

Comment:  

 In practical life, there is a possibility that the magnitude of the shape parameter p  in 

(2.5) and (2.8) may not be available in advance. In this situation, a Q-Q plot will be 

constructed by plotting the fractiles of the population in opposition to the ordered 

observations of the variable of interest. An approximate straight line points out the 

plausible distribution of error. Through the prescribed procedure, suitable values of p  can 

be selected. 

 

3. SIMULATIONS 
 

 In this section for the simulation study, we assume the model l l ly z e  , in which 

le  and lz  independently generated, and calculate ly  for 1,2,...,l M . Let errors 

1 2, ,..., Me e e  be random observation from a population from (2.4) or (2.5) or (2.8) and let 

M  denotes bivariate population consisting of 1 1 2 2( , ),( , ),...,( , )M Mx y x y x y . To calculate 

the MSEs of (2.12), we have to compute 1prjy  and 2prjy  ( 1,2,...,5j  ) for all possible 

M
S

m


 
 

 SRS of size m  from M , drawn from the population (2.5) or (2.8) and from 

(2.4), (2.5) and (2.8), respectively. Since S  is large enough, therefore, conducting a Monte 

Carlo studies as, taking 100M   in each replication and z  is from (0,1)U  and suppose 

1   with no loss of generality. To decide the parametric value of 
2 2(1/12) 1/ 1e

    
 

such that 0.70  .
 
From the replicated population 100  picked at random 25000N   of 

all the possible 
100

m




 
 SRS of size 5,10m   and 15, which provide 25000 values of 1prjy

and 2prjy  ( 1,2,...,5j  ). To compare the (2.12) in the form of efficiencies for a given m  

we determine the values of the MSEs, 
 

  
2

1

( ) ( ) / ( 1,2)
N

prjt prjt
k

MSE y y Y N t


   and 
2

1

( ) ( ) /
N

KCj KCj
k

MSE y y Y N


    

                       (3.1) 

where 
1

/
M

l
l

Y y M


  . We take 1   in each replication with no loss of generality. It is 

assumed that the condition (2.14) is satisfied for all populations. The values of the relative 

efficiencies may be computed as  ( ) / ( )jt KCj prjtE MSE y MSE y ( 1,2,...,5)j   and 

( 1,2)t  . Where the MSEs are obtained from (2.8), and give the results in Table 1-3. 

Seeing as Table 1, a family of proposed ratio type estimators (2.12) is more efficient than 
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the KCEs (1.3). All the 2jE  values ( 1,2,...,5j  ) slightly decrease for increasing the 

sample sizes.  
 

 In view of Table 2, it may be concluded that the proposed estimators 2prjy , given in 

(2.12) for 2t  , are most efficient than the Oral and Kadilar estimators 1prjy  and the KCEs 

under the LTS family for 2.5p   (for conciseness, we consider the value of shape 

parameter 2.5 only). 
 

 From Table 3, it is clear that 1p   the family of PRTEs (2.12) (based on MMLE 

methodology) does not exist but they exist for GLS. Since (2.12) 1p   using GLS not only 

exist but also provides efficient results as compared to their competing estimators (1.3). 

Further, when the shape parameter p  is increased from 1 the proposed estimators based 

on GLS are the most efficient among the proposed estimators (2.12) based on MMLE and 

the KCEs (1.3) in this study. 

 

Table 1 

Efficiencies under the Population when
 

~ (1, )e L   

m  12E  22E  32E  42E  52E  

5 1.466212 1.202601 1.144655 1.245044 1.128423 

10 1.248147 1.115067 1.070192 1.144685 1.056823 

15 1.171657 1.08017 1.043782 1.102904 1.032572 

 

Table 2 

Efficiencies under the Population e ~ ( , )LTS p   

m  1pr ty  2pr ty  3pr ty  4pr ty  5pr ty  

5 
𝐸𝑗1 1.024583 1.013687 1.010112 1.01604 1.009031 

𝐸𝑗2 1.352614 1.177721 1.119948 1.217095 1.103137 

10 
𝐸𝑗1 1.022215 1.013334 1.010329 1.015305 1.009427 

𝐸𝑗2 1.225589 1.120399 1.084019 1.144168 1.073096 

15 
𝐸𝑗1 1.017283 1.01062 1.008077 1.012227 1.007298 

𝐸𝑗2 1.14668 1.074802 1.046809 1.09240 1.038205 
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Table 3 

Efficiencies under the Population when ( , )e W p   

 m  1pr ty  2pr ty  3pr ty  4pr ty  5pr ty  

1p   

5 
𝐸𝑗1 - - - - - 

𝐸𝑗2 3.883701 2.50833 1.688257 2.912046 1.43312 

10 
𝐸𝑗1 - - - - - 

𝐸𝑗2 3.515879 2.599499 1.491376 3.148643 1.195488 

15 
𝐸𝑗1 - - - - - 

𝐸𝑗2 3.802927 2.605158 1.37496 3.304044 1.08122 

2p   

5 
𝐸𝑗1 1.347028 1.397311 1.41083 1.38561 1.409593 

𝐸𝑗2 5.625179 4.629629 3.401895 4.998856 2.909491 

10 
𝐸𝑗1 1.268436 1.322325 1.334074 1.3078 1.329715 

𝐸𝑗2 3.701511 3.626139 2.569918 3.903596 2.163619 

15 
𝐸𝑗1 1.25223 1.311403 1.322921 1.296032 1.317817 

𝐸𝑗2 3.440089 3.392128 2.393679 3.656412 2.014284 

3.5p   

5 
𝐸𝑗1 3.381481 3.565652 3.640328 3.461170 3.580654 

𝐸𝑗2 5.521005 6.194745 5.463336 6.037743 4.854723 

10 
𝐸𝑗1 2.161697 2.503059 2.590530 2.404802 2.561859 

𝐸𝑗2 3.551816 4.383657 3.849291 4.255842 3.423090 

15 
𝐸𝑗1 1.966566 2.259643 2.309175 2.181329 2.273262 

𝐸𝑗2 3.18949 3.821161 3.284711 3.762029 2.918652 

 

4. ROBUSTNESS OF A FAMILY OF PROPOSED  

RATIO-TYPE ESTIMATORS 
 

 More often outliers occur in sample observations. They may be unnoticed because 

nowadays much data is processed by computer without careful inspection or screening. 

Therefore, it is essential to employ a robust estimator that will not look for outliers but will 

reduce their effect if present. So, under the few data anomalies, the performance of (2.12) 

is assessed. In this section, taking 1  , 1   with no loss of generality and study the 

robustness properties of a family of PRTEs given in (2.12) as follows; firstly, it is assumed 

that z  is from (0,1)U , and le  is from (1, )L  . We determine 

1) True model (1,1)L  

2) Dixon’s outlier model; om m observations from (1,1)L  and om  (we do not know 

which) from (1,4)L , where om is calculated from the formula 
1

10 2

m 
 

 
 

3) Contaminated model; 0.90 (1,1) 0.10 (1,4)L L  
 

 To recognize that model (1), may be considered as the true population model for 

comparisons purpose and the other models (2)-(3) are elected as its probable substitute. In 

Dixon’s outlier model (2), we adopt the procedure to inject the outliers into each sample 
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rather than the generated populations so that all the samples drawn from 100  contain 

outliers. In estimating ˆ
GL , we calculate the (2.5) and use it in models (1)-(3).With the 

attention that all models have the same variance as that of y , standardized the generated 

' s
le ( 1,2,...,i M ) in all models. The replicated MSEs of (2.12) for 2t   and their 

corresponding efficiencies 2jE  for 1,2,...,5j  , are given in Tables 3 and 4, respectively. 

 

 If le  in the model (2.1) is from (2.5,1)LTS  and z  is from (0,1)U  then the robustness 

properties of (2.12) following the below models 
 

4) True model (2.5,1)LTS  

5) Dixon’s model; om m  values from (2.5,1)LTS  and om  (we do not know which) 

from (2.5,4)LTS
 
where |1/ 2 /10 |om m  . 

6) Contaminated model: 0.90 (2.5,1) 0.10 (2.5,4)LTS L  
 

 

 For comparison purposes, we assume that model (4) is the population model, and 

models (5)-(6) are its alternatives. The replicated MSEs of the family of proposed ratio 

type estimators (2.12) and the efficiencies jtE  under model (4)-(6) are given in Table 5. 

 

 Further, assuming that le  is follows an asymmetric family (2.8) and z  is from 

(0,1)U . To determine our population model as 
 

7) True model: (2.5,1)W  

8) Dixon’s model; om m  values from (2.5,1)W and om  (we do not know which) 

from (2.5,4)W
 
where |1/ 2 /10 |om m  .

 
9) Contamination model: 0.90 (2.5,1) 0.10 (1.3,1)W W  

10) Mis-specified model: (5,1)W . 
 

 Let model (7) is taken as the population model and all the models (8)-(10) are elected 

as its probable substitutes. The replicated MSEs of the proposed estimators are computed 

with the above-mentioned procedure and the efficiencies jtE  under model (7)-(10) are 

calculated and results are given in Table 6.  
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Table 4 

Efficiencies under Models (1)-(3) for the Laplace Family 

m  1pr ty  2pr ty  3pr ty  4pr ty  5pr ty  

True Model (1) 

5 
𝐸𝑗2 1.391889 1.189135 1.129618 1.229872 1.11235 

𝑀𝑆𝐸(𝑦
𝑝𝑟𝑗2

) 0.382723 0.245226 0.227687 0.26257 0.224337 

10 
𝐸𝑗2 1.25747 1.100418 1.044556 1.136851 1.027878 

𝑀𝑆𝐸(𝑦
𝑝𝑟𝑗2

) 0.092588 0.086054 0.08618 0.086799 0.086576 

15 
𝐸𝑗2 1.215512 1.076187 1.022408 1.110328 1.006109 

𝑀𝑆𝐸(𝑦
𝑝𝑟𝑗2

) 0.072633 0.069295 0.069848 0.069538 0.070278 

Dixon Model (2) 

5 
𝐸𝑗2 1.236214 1.111619 1.079184 1.135602 1.070284 

𝑀𝑆𝐸(𝑦
𝑝𝑟𝑗2

) 0.386443 0.272525 0.257082 0.286679 0.253687 

10 
𝐸𝑗2 1.092396 1.041309 1.026710 1.051484 1.022478 

𝑀𝑆𝐸(𝑦
𝑝𝑟𝑗2

) 0.167352 0.158763 0.156911 0.160344 0.156511 

15 
𝐸𝑗2 1.049366 1.016025 1.004206 1.023659 1.000592 

𝑀𝑆𝐸(𝑦
𝑝𝑟𝑗2

) 0.106298 0.104028 0.103713 0.104405 0.103696 

Contaminated Model (3) 

5 
𝐸𝑗2 1.345613 1.189369 1.127896 1.229251 1.109553 

𝑀𝑆𝐸(𝑦
𝑝𝑟𝑗2

) 0.379202 0.244599 0.227424 0.26185 0.224248 

10 
𝐸𝑗2 1.29306 1.119954 1.058797 1.15995 1.040578 

𝑀𝑆𝐸(𝑦
𝑝𝑟𝑗2

) 0.112496 0.102329 0.101945 0.103642 0.102285 

15 
𝐸𝑗2 1.212375 1.076992 1.023788 1.110594 1.007617 

𝑀𝑆𝐸(𝑦
𝑝𝑟𝑗2

) 0.072537 0.069143 0.069651 0.06941 0.070065 

 

 Table 4 shows that the (2.12) are more efficient than their corresponding KCEs (1.3) 

following the true model, and they sustain high efficiencies for the probable substitutes. In 

other words, the proposed estimators (2.12) are robust to plausible deviations from the true 

population. 
 

 Given Table 6, it may be analyzed that the (2.12) are remarkably efficient than the 

KCEs (1.3) under the true model (4), and are more efficient and robust under the models 

(7)-(10). Moreover, the proposed estimators (2.12) for 2t   are the most efficient among 

the proposed estimators (2.12) for 1t   and the KCEs (1.3). 
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Table 5 

Efficiencies under Models (4)-(6) for LTS Family 

m  1pr ty  2pr ty  3pr ty  4pr ty  5pr ty  

True Model (4) 

5 

𝐸𝑗1 1.0256 1.01595 1.01214 1.01841 1.01098 

𝐸𝑗2 1.4768 1.20923 1.14323 1.25639 1.12454 

𝑀𝑆𝐸(𝑦
𝑝𝑟𝑗2

) 0.3628 0.24117 0.22428 0.25754 0.22100 

10 

𝐸𝑗1 1.02697 1.01473 1.01026 1.01758 1.00890 

𝐸𝑗2 1.30089 1.12062 1.05917 1.16117 1.04094 

𝑀𝑆𝐸(𝑦
𝑝𝑟𝑗2

) 0.1157 0.10467 0.10414 0.10611 0.10444 

15 

𝐸𝑗1 1.022465 1.012904 1.008839 1.015376 1.007564 

𝐸𝑗2 1.231262 1.081996 1.024953 1.118417 1.007746 

𝑀𝑆𝐸(𝑦
𝑝𝑟𝑗2

) 0.071799 0.068308 0.068873 0.068563 0.069313 

Dixon Model (5) 

5 

𝐸𝑗1 1.02842 1.01156 1.00853 1.01395 1.00773 

𝐸𝑗2 1.44316 1.14850 1.10421 1.18486 1.09278 

𝑀𝑆𝐸(𝑦
𝑝𝑟𝑗2

) 0.38257 0.27169 0.25600 0.28596 0.25252 

10 

𝐸𝑗1 1.00796 1.00362 1.00230 1.00453 1.00192 

𝐸𝑗2 1.09007 1.04136 1.02646 1.05157 1.02211 

𝑀𝑆𝐸(𝑦
𝑝𝑟𝑗2

) 0.16586 0.15747 0.15565 0.15902 0.15527 

15 

𝐸𝑗1 1.005395 1.002648 1.001742 1.00326 1.001478 

𝐸𝑗2 1.055003 1.0186 1.00571 1.026944 1.001776 

𝑀𝑆𝐸(𝑦
𝑝𝑟𝑗2

) 0.104682 0.102416 0.10214 0.102779 0.102139 

Contaminated Model (6) 

5 

𝐸𝑗1 1.0427 1.026045 1.019664 1.030099 1.017702 

𝐸𝑗2 1.42599 1.19739 1.130847 1.243535 1.11171 

𝑀𝑆𝐸(𝑦
𝑝𝑟𝑗2

) 0.330986 0.231848 0.21822 0.245456 0.215762 

10 

𝐸𝑗1 1.035815 1.021229 1.015016 1.024991 1.013058 

𝐸𝑗2 1.289697 1.115898 1.054223 1.156224 1.035858 

𝑀𝑆𝐸(𝑦
𝑝𝑟𝑗2

) 0.114783 0.104372 0.10409 0.105674 0.104481 

15 

𝐸𝑗1 1.029174 1.016603 1.011063 1.019916 1.00930 

𝐸𝑗2 1.207157 1.075773 1.023081 1.108775 1.00697 

𝑀𝑆𝐸(𝑦
𝑝𝑟𝑗2

) 0.073445 0.069935 0.070416 0.070224 0.070825 
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Table 6 

Efficiencies under Models (7)-(10) for Weibull Distribution 

m   1pr ty  2pr ty  3pr ty  4pr ty  5pr ty  

True Model (7)
 

5 

𝐸𝑗1 2.0869 2.0680 2.1027 2.0378 2.0951 

𝐸𝑗2 5.9551 5.3028 4.1428 5.5129 3.5809 

𝑀𝑆𝐸(𝑦
𝑝𝑟𝑗2

) 1.3838 0.3138 0.2410 0.4186 0.2382 

10 

𝐸𝑗1 1.6010 1.7314 1.7614 1.6949 1.7499 

𝐸𝑗2 3.6506 3.9711 3.0528 4.0848 2.6131 
𝑀𝑆𝐸(𝑦

𝑝𝑟𝑗2
) 0.3957 0.1408 0.1196 0.1756 0.1216 

15 

𝐸𝑗1 1.5254 1.6561 1.6812 1.6216 1.6685 

𝐸𝑗2 3.3160 3.5930 2.7731 3.7068 2.3877 

𝑀𝑆𝐸(𝑦
𝑝𝑟𝑗2

) 0.2474 0.0990 0.08602 0.1206 0.0876 

Dixon Model (8)
 

5 

𝐸𝑗1 2.1707 1.9884 1.9185 2.0075 1.8773 

𝐸𝑗2 6.0530 4.2223 3.1179 4.7062 2.7275 

𝑀𝑆𝐸(𝑦
𝑝𝑟𝑗2

) 1.2115 0.3387 0.2835 0.4181 0.2806 

10 

𝐸𝑗1 1.5634 1.5367 1.4692 1.5548 1.4344 

𝐸𝑗2 3.0773 2.5454 1.9753 2.7933 1.7740 

𝑀𝑆𝐸(𝑦
𝑝𝑟𝑗2

) 0.3822 0.2002 0.1848 0.2246 0.1859 

15 

𝐸𝑗1 1.4807 1.4882 1.4343 1.4973 1.4030 

𝐸𝑗2 2.8154 2.4349 1.8970 2.6490 1.7012 
𝑀𝑆𝐸(𝑦

𝑝𝑟𝑗2
) 0.2458 0.1367 0.1278 0.1522 0.1292 

Contamination (9)  

5 

𝐸𝑗1 2.3932 1.9867 1.8908 2.0231 1.8414 

𝐸𝑗2 8.2663 4.1191 2.9198 4.7319 2.5297 

𝑀𝑆𝐸(𝑦
𝑝𝑟𝑗2

) 1.2115 1.1729 0.3568 0.3104 0.4309 

10 

𝐸𝑗1 1.5956 1.5774 1.5103 1.5921 1.4732 

𝐸𝑗2 3.3370 2.7169 2.0326 3.0155 1.7977 

𝑀𝑆𝐸(𝑦
𝑝𝑟𝑗2

) 0.3106 0.3845 0.1938 0.1819 0.2176 

15 

𝐸𝑗1 1.4689 1.4564 1.3941 1.4717 1.3618 

𝐸𝑗2 2.7599 2.2736 1.7633 2.5022 1.5879 

𝑀𝑆𝐸(𝑦
𝑝𝑟𝑗2

) 0.1847 0.2573 0.1539 0.1474 0.1680 

Misspecification (10)  

5 

𝐸𝑗1 6.2277 6.0993 6.1209 5.8460 5.8355 

𝐸𝑗2 6.4918 7.1599 7.2218 6.6447 6.6865 
𝑀𝑆𝐸(𝑦

𝑝𝑟𝑗2
) 3.1854 0.6182 0.3664 0.9191 0.3363 

10 

𝐸𝑗1 2.8121 3.4975 3.6383 3.2972 3.5432 

𝐸𝑗2 3.4916 4.6365 4.4725 4.3445 4.1003 

𝑀𝑆𝐸(𝑦
𝑝𝑟𝑗2

) 1.1079 0.3259 0.2184 0.4466 0.2060 

15 

𝐸𝑗1 2.4634 2.9731 3.0299 2.8372 2.9445 

𝐸𝑗2 3.1243 3.9251 3.6692 3.7605 3.3670 

𝑀𝑆𝐸(𝑦
𝑝𝑟𝑗2

) 0.7470 0.2589 0.1851 0.3394 0.1763 
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5. CONCLUSIONS 
 

 Mostly in practical fields, error terms in simple linear regression models deviate from 

normality due to outliers. As a result, KCEs are seriously affected. To cope with it Oral 

and Kadilar incorporated MMLEs (using LTS family and generalized logistic distribution 

of error) into KCEs to enhance the efficiencies. In certain situations, the applicability of 

the MMLE methodology is restricted or ineffective e.g. If the error follows the Weibull 

distribution or Laplace distribution. In this study, the GLSEs (Lloyd, 1952) are planned to 

meet above mention situation. The GLS estimators are derived for the case if the error term 

follows the LTS family. By integrating the GLS estimator into KCEs, a family of ratio-

type estimators is proposed, whose performance is better than the ratio-type estimators 

based on MMLEs suggested by Oral and Kadilar (2011) for small sample sizes and their 

classical counterpart advised by Kadilar and Cingi (2004). The results are extended for the 

case when the error term follows skewed distribution i.e. Weibull distribution. It is shown 

that the family of proposed ratio-type estimators is more efficient and robust than the ratio-

type estimators proposed by Oral and Kadilar (2011) and Kadilar and Cingi (2004). By 

knowing the features of Laplace distribution discussed by Farnoosh and Jafarpour (2005), 

we further extended the results for the case when the error term is from Laplace 

distribution, which is widely used for robustness study, and concluded that PRTEs are more 

efficient and robust than the Kadilar and Cingi (2004) estimators.  
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