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ABSTRACT 
 

 A new three-parameter distribution called logistic exponential-Poisson (LEP) 

distribution is proposed as a special sub-model of the newly LE power-series family. The 

failure rate of the LEP model can be increasing or decreasing. Explicit algebraic 

formulations of the LEP model such as quantile, ordinary moments and associated 

measures, mean residual life, moment generating function, and density of order statistics 

are derived. The LEP parameters are estimated using the maximum likelihood technique. 

To examine the behavior of maximum likelihood estimates, a complete Monte Carlo 

simulation analysis is employed. The applicability of the LEP distribution is evaluated 

using a real-life dataset, showing its more efficient results than well-known competing 

probability distributions. 
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1. INTRODUCTION 
 

 Probability models are widely used and have considerable significance in a variety of 

fields, including income and wealth, management sciences, evolutionary biology, 

computer sciences, and actuarial science. For modeling natural issues, the probability 

distributions are suitable for prediction and forecast. 
 

 The classical probability distributions are often employed for modeling; however, they 

may not always produce adequate fits for heavy-tailed and skewed data. As a result, there 

is a need to improve the flexibility of existing probability models by introducing new 

parameters. There are several approaches in the literature for adding parameters to the 

parent model. Among them, combining power series distributions with continuous lifetime 

models and compounding of discrete models (Tahir and Cordeiro, 2015).  
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 The exponential distribution is a popular model in literature however its limited 

characteristics. Hence, its use in reliability analysis is limited due to its constant hazard rate 

(hr). It is not suitable for modeling monotone and non-monotonic hr behaviors. These 

drawbacks motivated many authors to introduce extended versions of the exponential 

distribution to enhance its capabilities. For example, Lan and Leemis (2008) proposed the 

logistic exponential (LE) distribution. The cdf of the LE distribution has the form 
 

𝐺(𝑥) = 1 −
1

1 + (𝑒𝜆𝑥 − 1)𝛼
, 𝑥 > 0. (1) 

 

where 𝜆 > 0 and 𝛼 > 0 are the scale and shape parameters.  
 

 The associated probability density function (pdf) is 
 

𝑔(𝑥) =
𝛼𝜆𝑒𝜆𝑥(𝑒𝜆𝑥 − 1)

𝛼−1

[1 + (𝑒𝜆𝑥 − 1)𝛼]2
. (2) 

 

 The random variable (rv) with pdf (2), is denoted by 𝑋~LE(𝛼, 𝜆). 
 

 There are two types of systems are the series system and parallel system and they are 

very important in the design of compound models. Assume that a system contains N 

subsystems at a given time supposed to be independent, identical and distributed (iid), 

where Yi symbolized subsystem with a lifetime of the ith and every subsystem contains 𝛼 

parallel units, so that if subsystem will fail all the system ultimately fails.  
 

 The random variables (rvs) 𝑌 = min(𝑌1, 𝑌2, … , 𝑌𝑁) or 𝑌 = max(𝑌1, 𝑌2, … , 𝑌𝑁) can be 

adopted in generating numerous models with identical components that arise in series or 

parallel systems and comprise various biological and industrial applications. 
 

 A discrete rv N is said to have a power-series family (which is truncated at zero) if its 

probability mass function (pmf) takes the form  
 

𝑃𝑛 = 𝑃(𝑁 = 𝑛) =
𝑎𝑛𝜃

𝑛

𝐶(𝜃)
, 𝑛 = 1,2, …,  

 

where 𝑎𝑛 ≥ 0, 𝐶(𝜃) = ∑ 𝑎𝑛𝜃
𝑛∞

𝑛=1 , for 𝜃 ∈ (0, 𝑆) is finite and its first three derivatives are 

𝐶′(. ), 𝐶′′(. ) and 𝐶′′′(. ). More details about it are found in Noack (1950). This family of 

distributions comprises several distributions including the binomial, negative binomial, 

logarithmic, Poisson, and geometric distributions. 
 

 The power-series distributions are compounded with many continuous models to 

introduce several compounding families of distributions. For example, Morais and Barreto-

Souza (2011) introduced the Weibull power-series distributions. Mahmoudi and Sepahdar 

(2013) derived the exponentiated Weibull-Poisson distribution which has some sub-models 

such as complementary exponential-Poisson, Rayleigh-Poisson, generalized exponential-

Poisson, complementary Weibull-Poisson, and exponentiated Rayleigh-Poisson. Bagheri 

et al. (2016) introduced modified Weibull power-series distribution. Mendoza et al. (2016) 

introduced the exponentiated log-logistic geometric distribution. Gui et al. (2017) 

introduced the complementary Lindley-geometric distribution. Hassan and Abd-Allah 

(2019) introduced the inverse power Lomax-Poisson distribution. Elbatal et al. (2019) 

proposed the generalized Burr XII power series family. 
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 The main motivation behind this work is to introduce a new logistic-exponential power-

series (LEPS) family. The LEPS family is generated from the power-series of logistic-

exponential distributions with a zero truncated-geometric distribution. Some mathematical 

properties are derived, including moments and associated measures, reliability properties, 

and expressions of order statistics. The three-parameter LE-Poisson (LEP) distribution is 

studied with some details. The LEP parameters are estimated via the maximum likelihood, 

and the estimators’ behavior is demonstrated using a comprehensive simulation study. 

Additionally, a real-life dataset from medical field is utilized to explore the flexibility of 

the LEP distribution as compared to the parent and some competing probability 

distributions. 
 

 The article is organized in seven sections. Section 2 is devoted to the derivation of the 

LEPS model. Section 3 contains the derivation of the LEP model and its mathematical 

properties. The reliability characteristics are presented in Section 4. The LEPS parameters 

are estimated, and a simulation study is given in Section 5. The application of the LEPS 

distribution is given in Section 6. We conclude the paper in Section 7.  

 

2. THE LEPS FAMILY 
 

 Let 𝑌1, 𝑌2, … , 𝑌𝑁 be 𝑁 independent LE rvs. The LEPS family of the  

𝑟𝑣 = min{𝑌1, 𝑌2, … , 𝑌𝑁} is defined by the cdf 
 

𝐹(𝑥) = 1 −
𝐶 (

𝜃
1 + (𝑒𝜆𝑥 − 1)𝛼

)

𝐶(𝜃) 
, 𝑥 > 0, 

(3) 

 

where 𝜆 > 0 and 𝛼 > 0 are the scale and shape parameters and 𝜃 > 0. 
 

 The associated pdf of the LEPS family reduces to 
 

𝑓(𝑥) =
𝜃𝛼𝜆𝑒𝜆𝑥(𝑒𝜆𝑥 − 1)

𝛼−1
 

[1 + (𝑒𝜆𝑥 − 1)𝛼]2
 
𝐶′ (

𝜃
1 + (𝑒𝜆𝑥 − 1)𝛼

)

𝐶(𝜃) 
, 𝑥 > 0. 

(4) 

 

 The hf function (hrf) of 𝑋 is  
 

ℎ(𝑥) =
𝜃𝛼𝜆𝑒𝜆𝑥(𝑒𝜆𝑥 − 1)

𝛼−1
 

[1 + (𝑒𝜆𝑥 − 1)𝛼]2

𝐶′ (
𝜃

1 + (𝑒𝜆𝑥 − 1)𝛼
)

𝐶 (
𝜃

1 + (𝑒𝜆𝑥 − 1)𝛼
) 
. (5) 

 

Proposition 1.  

 The limiting distribution of LEPS with parameters (𝛼, 𝜆, 𝜃) when 𝜃 → 0 +. 
 

lim
𝜃 →0+

𝐹(𝑥) = lim
𝜃 →0+

[1 −
𝐶[𝜃 − 𝜃𝐺(𝑥)]

𝐶(𝜃)
]

= lim
𝜃 →0+

1 − lim
𝜃 →0+

∑ 𝑎𝑛 (
𝜃

1 + (𝑒𝜆𝑥 − 1)𝛼
)
𝑛

∞
𝑛=1

∑ 𝑎𝑛𝜃
𝑛∞

𝑛=1

. 
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 By using 𝐿′𝐻o𝑝𝑖𝑡𝑎𝑙′𝑠 𝑟𝑢𝑙𝑒, we obtain 

lim
𝜃 →0+

𝐹(𝑥) = lim
𝜃 →0+

1 − lim
𝜃 →0+

𝑎1 (
1

1 + (𝑒𝜆𝑥 − 1)𝛼
)
1

                            

+∑ 𝑎𝑛𝜃
𝑛−1 (

1
1 + (𝑒𝜆𝑥 − 1)𝛼

)
𝑛

∞
𝑛=2

𝑎1 +∑ 𝑎𝑛𝜃
𝑛−1∞

𝑛=2

. 

 

 Hence, 

lim
𝜃 →0+

𝐹(𝑥) = [1 − 𝐺(𝑥)] = [1 −
1

1 + (𝑒𝜆𝑥 − 1)𝛼
], 

 

which is the LE distribution with pdf (2). 

 

Proposition 2.  

 The densities of the LEPS class is expressed as an infinite number mixture of the density 

of order statistics of the LE with pdf (2). 

 

Proof:  

 We know that 𝐶′(𝜃) = ∑ 𝑛𝑎𝑛𝜃
𝑛−1.∞

𝑛=1  Therefore,  
 

𝑓(𝑥) = 𝜃𝑔(𝑥)
𝐶′(𝜃[1 − 𝐺(𝑥)])

𝐶(𝜃)
= ∑

𝑎𝑛𝜃
𝑛

𝐶(𝜃)

∞

𝑛=1

𝑛𝜃𝛼𝜆𝑒𝜆𝑥(𝑒𝜆𝑥 − 1)
𝛼−1

 

[1 + (𝑒𝜆𝑥 − 1)𝛼]2
 

 [
𝜃

1 + (𝑒𝜆𝑥 − 1)𝛼
]
𝑛

= ∑𝑃(𝑁 = 𝑛)

∞

𝑛=1

 𝑔(1)(𝑥; 𝑛). 

 

where 𝑔(1)(𝑥; 𝑛) is the pdf of 𝑋(1) = min(𝑋1, 𝑋2, … , 𝑋𝑛), and it is specified by 
 

𝑔(1)(𝑥; 𝑛) = 𝑛𝑔(𝑥)[1 − 𝐺(𝑥)]
𝑛−1 =

𝑛𝛼𝜆𝑒𝜆𝑥(𝑒𝜆𝑥 − 1)
𝛼−1

[1 + (𝑒𝜆𝑥 − 1)𝛼]𝑛−1
[1 + (𝑒𝜆𝑥 − 1)

𝛼
]
−2
. 

 (6) 
 

 Equation (6) represents the pdf of the exponentiated-LE (ELE) model and it can adopt 

to derive mathematical properties of the LEPS distribution directly from those of the ELE 

distribution.  

 

Proposition 3.  

 The limits of the hrf is 
 

lim
𝜃 →0+

ℎ(𝑥) = {

∞ 0 < 𝛼 < 1,
𝛼𝜆𝜃𝐶′(𝜃)

𝐶(𝜃)
 𝛼 = 1,

0 𝛼 > 1.

 

 

Proof:  

 For lim
𝜃 →0+

ℎ(𝑥), we have  
 

lim
𝜃 →0+

𝐶′ (
𝜃

1 + (𝑒𝜆𝑥 − 1)𝛼
) = 𝐶′(𝜃), lim

𝜃 →0+
𝐶 (

𝜃

1 + (𝑒𝜆𝑥 − 1)𝛼
) = 𝐶(𝜃), 
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lim
𝜃 →0+

𝜃𝛼𝜆𝑒𝜆𝑥 =  𝜃𝛼𝜆, lim
𝜃 →0+

[1 + (𝑒𝜆𝑥 − 1)
𝛼
]
2
= 1. 

 

lim
𝜃 →0+

(𝑒𝜆𝑥 − 1)
𝛼−1

= {
∞ 0 < 𝛼 < 1,
1 𝛼 = 1,
0 𝛼 > 1.

 

 

 Table 1 gives some special cases of the PS distributions. 

 

Table 1 

Some useful quantities of PS distributions 

Distribution 𝒂𝒏 𝑪(𝜽) 𝑪′(𝜽) 𝑪′′(𝜽) 𝑪(𝜽)−𝟏 𝚯 

Binomial (
m
n
) (θ + 1)m − 1 m(θ + 1)m−1 

m(m− 1)

(θ + 1)2−m
 (θ + 1)

1
m
−1 θ ∈ (0,1) 

Poisson 𝑛!−1 eθ − 1 eθ eθ ln(θ + 1) θ ∈ (0,∞) 

Geometric 1 𝜃(1 − 𝜃)−1 (1 − 𝜃)−2 2(1 − 𝜃)−3 𝜃(1 + 𝜃)−1 θ ∈ (0,1) 

Logarithmic 𝑛−1 − ln(1 − 𝜃) (1 − 𝜃)−1 (1 − 𝜃)−2 1 − e−θ θ ∈ (0,1) 

 
3. THE LEP DISTRIBUTION AND ITS PROPERTIES 

 

 The LEP distribution is a special case of the LEPS family with 𝑎𝑛  = 𝑛!
−1 and 𝐶(𝜃)  =

 eθ − 1. The cdf of LEP model is  
 

𝐹(𝑥) =
𝑒𝜃 − 𝜃𝑒−1−(𝑒

𝜆𝑥−1)
𝛼

𝑒𝜃 − 1
 , 𝑥 > 0, 𝜃, 𝛼, 𝜆 > 0. (7) 

 

 The pdf of the LEP modle reduces to  
 

𝑓(𝑥) =
𝜃𝛼𝜆𝑒𝜆𝑥(𝑒𝜆𝑥 − 1)

𝛼−1
𝑒
(

𝜃

1+(𝑒𝜆𝑥−1)
𝛼)

 

[1 + (𝑒𝜆𝑥 − 1)𝛼]2(𝑒𝜃 − 1)
. 

(8) 

 

 We plot some pdf curves of the LEP model in Figure. 
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Figure 1: LEP density plots for some parameter values 

 

 It is found, from Figure 1, that the LEP model is flexible due to its shape behavior. The 

density function is mainly categorized into three subfamilies. In the first subfamily when 

𝛼 < 1 all density curves are exponentially decreasing behavior and start from the infinite 

point. In the second subfamily 𝛼 = 1, the density curves show exponentially decreasing 

behavior but start from a specific point on the y-axis. In the third subfamily, the density 

curves start from the origin and display unimodal behavior for all combinations of 

parameters. It is also observed that all the curves approach zero when 𝑥 becomes large for 

all combinations of parameters.  
 

3.1 Mode 

 To determine the mode of the LEP model, firstly, we calculated the first derivative of 

the log of the pdf (2) as follows 
 

𝑑log 𝑓(𝑥)

𝑑𝑥
=
𝜆 {[1 + (𝑒𝜆𝑥 − 1)

𝛼
]
2
+ 𝛼𝑒𝜆𝑥 [(𝑒𝜆𝑥 − 1)

2𝛼
+ (𝑒𝜆𝑥 − 1)

𝛼

𝜃 − 1]}

(1 − 𝑒𝜆𝑥)[(𝑒𝜆𝑥 − 1)𝛼 + 1]2
. 

 

 Then, by setting 𝑑log 𝑓(𝑥)/𝑑𝑥 = 0, and solving with respect to 𝑥, we have the mode 

of the LEP model. The exact solution of this equation is not simple, and it can be obtained 

numerically. 
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Table 2 

The mode values of the LEP model for 𝛼 = 1.2 and some selected parameters 

𝝀 
𝜽 

0.1 0.2 0.5 0.7 0.9 1.5 3.0 

0.2 0.166197 0.171814 0.189932 0.202992 0.216767 0.261836 0.391411 

0.5 0.415494 0.429535 0.474831 0.50748 0.541919 0.65459 0.978528 

1.0 0.83098 0.85907 0.94966 1.01496 1.083838 1.30918 1.95706 

1.5 1.24648 1.28860 1.42449 1.52244 1.62575 1.96377 2.93558 

5.0 4.15494 4.29536 4.74832 5.0748 5.41919 6.5459 9.78528 

7.5 6.23241 6.44304 7.12248 7.61221 8.12879 9.16425 14.6779 

10.0 8.30988 8.59071 9.49663 10.1499 10.8384 13.0918 19.5706 

 

 Table 2 shows that the mode increases with the increase in 𝜃 and the mode is also 

increase with the increase in 𝜆. 

 

3.2 Linear Representation 

 For the LEP model, we introduce a linear representation for its cdf (7) and pdf (8) to 

simplify the calculations of its statistical properties. We have two cases of the cdf (7) as 

follows 
 

𝐹(𝑥) =  
1

𝑒𝜃−1
[𝑒𝜃 − ∑

𝜃𝑘

𝑘!
((𝑒𝜆𝑥 − 1)

𝛼
+ 1)

−𝑘
∞
𝑘=0 ]. 

 

 Then 
 

𝐹(𝑥) =

{
 
 
 
 

 
 
 
 

1

𝑒𝜃 − 1

[
 
 
 
 𝑒𝜃 − ∑

(−1)𝑗𝜃𝑘

𝑘!
(
𝑘 + 𝑗 − 1

𝑗
)

∞

𝑘,𝑗,𝑚=0

          

(
𝑚 + 𝛼(𝑗 + 𝑘) − 1

𝛼(𝑗 + 𝑘) − 1
) 𝑒−𝑥[𝑚𝜆+𝛼𝜆(𝑗+𝑘)]

]
 
 
 
 

, (𝑒𝜆𝑥 − 1)
𝛼
> 1,

1

𝑒𝜃 − 1

[
 
 
 
 𝑒𝜃 − ∑

(−1)𝑗+𝑚𝜃𝑘

𝑘!
(
𝑘 + 𝑗 − 1

𝑗
)

∞

𝑘,𝑗,𝑚=0

                                     (
𝛼𝑗
𝑚
) 𝑒−𝑥[𝑚𝜆−𝛼𝜆𝑗]]

 
 
 
 

,  (𝑒𝜆𝑥 − 1)
𝛼
< 1.

 

 

 Additionally, we have two cases of the pdf (8) which can be represented in terms of 

exponential (Ex) densities as follows 
 

𝑓(𝑥) =

{
 
 

 
 ∑ 𝜙𝑘,𝑗,𝑚

′ ℎ1(𝑥)

∞

𝑘,𝑗,𝑚=0

, (𝑒𝜆𝑥 − 1)
𝛼
> 1,

∑ 𝜙𝑘,𝑗,𝑚
∗ ℎ2(𝑥)

∞

𝑘,𝑗,𝑚=0

, (𝑒𝜆𝑥 − 1)
𝛼
< 1,

 

 

where 

𝜙𝑘,𝑗,𝑚
′ =

(−1)𝑗𝜃𝑘

(𝑒𝜃 − 1)𝑘!
(
𝑘 + 𝑗 − 1

𝑗
) (
𝑚 + 𝛼(𝑗 + 𝑘) − 1

𝛼(𝑗 + 𝑘) − 1
), 
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𝜙𝑘,𝑗,𝑚
∗ =

(−1)𝑗+𝑚𝜃𝑘

(𝑒𝜃 − 1)𝑘!
(
𝑘 + 𝑗 − 1

𝑗
) (
𝛼𝑗
𝑚
), 

 

and ℎ1(𝑥) and ℎ2(𝑥) are two Ex densities with respective scale parameters 𝑚𝜆 +
𝛼𝜆(𝑗 + 𝑘) and 𝑚𝜆 − 𝛼𝜆𝑗.  
 

3.3 Quantile Function and Moments 

 By Equating the cdf (7) to 𝑝 and solving it with respect to 𝑥, we have the quantile 

function of the LEP model as follows 
 

𝑄(𝑝) =
1

𝜆
log {[

𝜃

log(𝑒𝜃 − 𝑒𝜃𝑝 + 𝑝)
− 1]

1
𝛼
+ 1} , 0 < 𝑝 < 1. 

 

The ith moment of the LEP model is defined by  
 

𝜇𝑖 = ∫ 𝑥𝑖  𝑓(𝑥)𝑑𝑥
∞

0

= 

{
 
 

 
 ∑ 𝜙𝑘,𝑗,𝑚

′
𝑖!

[𝑚𝜆 + 𝛼𝜆(𝑗 + 𝑘)]𝑖

∞

𝑘,𝑗,𝑚=0

, (𝑒𝜆𝑥 − 1)
𝛼
> 1,

∑ 𝜙𝑘,𝑗,𝑚
∗

𝑖!

[𝑚𝜆 − 𝛼𝜆𝑗]𝑖

∞

𝑘,𝑗,𝑚=0

, (𝑒𝜆𝑥 − 1)
𝛼
< 1.

  

 

 The moments can be used to calculate different measures such as the mean (𝜇1), 

variance (Var), coefficients of skewness (CS), and kurtosis (CK). Table 3 reports some 

values of these measures for some selected values of the LEP parameters. 
 

 The moment-generating function of the LEP model is defined by  
 

𝑀𝐺(𝑡) = ∫ 𝑒𝑡𝑥 𝑓(𝑥)𝑑𝑥
∞

0

= 

{
 
 

 
 ∑ 𝜙𝑘,𝑗,𝑚

′
𝑚𝜆 + 𝛼𝜆(𝑗 + 𝑘)

𝑚𝜆 + 𝛼𝜆(𝑗 + 𝑘) − 𝑡

∞

𝑘,𝑗,𝑚=0

, (𝑒𝜆𝑥 − 1)
𝛼
> 1,

∑ 𝜙𝑘,𝑗,𝑚
∗

𝑚𝜆 − 𝛼𝜆𝑗

𝑚𝜆 − 𝛼𝜆𝑗 − 𝑡

∞

𝑘,𝑗,𝑚=0

, (𝑒𝜆𝑥 − 1)
𝛼
< 1.

 

 

 By replacing each 𝑡 by 𝑖𝑡 in the previous equation, we obtain the LEP characteristic 

function. 
 

3.4 Incomplete Moments 
 One of the most important properties of the statistical models is the ith incomplete 

moments, and it is determined for the LEP model as follows 
 

𝑙Δ𝑖(𝑡) = ∫ 𝑥𝑖 𝑓(𝑥)𝑑𝑥
𝑡

0

=

{
 
 

 
 ∑ 𝜙𝑘,𝑗,𝑚

′
𝛾[𝑟 + 1, (𝑚𝜆 + 𝛼𝜆(𝑗 + 𝑘))𝑡]

[𝑚𝜆 + 𝛼𝜆(𝑗 + 𝑘)]𝑖

∞

𝑘,𝑗,𝑚=0

, (𝑒𝜆𝑥 − 1)
𝛼
> 1,

∑ 𝜙𝑘,𝑗,𝑚
∗

𝛾[𝑟 + 1, (𝑚𝜆 − 𝛼𝜆𝑗)𝑡]

[𝑚𝜆 − 𝛼𝜆𝑗]𝑖

∞

𝑘,𝑗,𝑚=0

, (𝑒𝜆𝑥 − 1)
𝛼
< 1,

 

 

where 𝛾(𝑎, 𝑧) = ∫ 𝑡𝑎−1𝑒−𝑡𝑑𝑡.
𝑡

0
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 The first incomplete moment, (Δ1), can be used to determine some other statistical 

properties of the LEP model as follows: 
 

 The mean deviation about the mean is calculated as follows  
 

𝜓1 = 2𝜇1𝐹(𝜇1) − 2Δ1(𝜇1). 
 

 The mean deviation about the median is calculated as follows  
 

𝜓2 = 2𝜇1 − 2Δ1(𝑀),𝑀 = 𝑄(1 2⁄ ). 
 

 The mean residual life function is calculated as follows  
 

𝜓3(𝑡) =
1 − Δ1(𝑡)

𝑆(𝑡) − 𝑡
. 

 

 Mean inactivity time is calculated as follows  
 

𝜓4(𝑡) = 𝑡 −
Δ1(𝑡)

𝐹(𝑡)
. 

 

Table 3 

Mean, Var, CS, and CK values for some selected parameters 

𝜶 𝝀 𝜽 Mean Var CS CK 

0.15 

0.1 0.25 4.832347 123.2820 2.498334 7.382903 

0.75 0.5 5.017194 69.42540 2.099458 5.928127 

1.5 2.0 1.345442 10.29580 3.598499 19.96240 

4.0 3.0 0.305365 0.852884 4.775595 35.79031 

0.8 

0.1 0.25 9.543069 105.5806 1.496145 0.687679 

0.75 0.5 1.306708 2.483134 2.297743 11.78684 

1.5 2.0 0.405654 0.354484 3.184870 25.34902 

4.0 3.0 0.108901 0.031343 3.944437 53.50582 

1.5 

0.1 0.25 8.036446 38.43936 1.699458 0.545613 

0.75 0.5 1.021835 0.662133 1.927931 23.67680 

1.5 2.0 0.372132 0.104644 2.426464 54.97953 

4.0 3.0 0.113708 0.010150 2.749437 162.3016 

5 

0.1 0.25 7.157168 9.299233 1.246459 3.623164 

0.75 0.5 0.912710 0.056738 0.833523 1430.925 

1.5 2.0 0.411543 0.011240 0.861423 3445.179 

4.0 3.0 0.113708 0.010150 2.749437 162.3016 

 

3.5 Inequality Curves 

 The Lorenz, Bonferroni, and Zenga curves are key inequality curves, and they are used 

to analyze income and poverty in reliability, medicine, demography, insurance, and 

economics. They are determined for the LEP model, respectively, as follows 
 

𝑰𝟏 =
Δ1(𝑥𝑝)

𝜇1
, 𝑰2 =

I1
𝑝
 , 𝑰3 =

I1 − 𝑝

𝑝(1 − I1)
 and 𝐹(𝑥𝑝) = 𝑝. 

 



The Logistic Exponential Poisson Distribution with Mathematical… 322 

4. RELIABILITY ANALYSIS OF LEP DISTRIBUTION 
 

 In this section, we explore the reliability characteristics of the LEP distribution. The 

mathematical expressions of hrf, survival function (sf), reverse-hrf, and cumulative-hrf are 

derived. The pattern of failure rate is checked on the lower and upper limits of the 

distribution. We present the plots of the hrf.  
 

 The sf of the LEP distribution is  
 

𝑆(𝑥) =
𝑒

𝜃

1+(𝑒𝜆𝑥−1)
𝛼

− 1

𝑒𝜃 − 1
. 

(9) 

 

 The hrf of the LEP model is 
 

ℎ(𝑥) =
𝜃𝛼𝜆𝑒𝜆𝑥(𝑒𝜆𝑥 − 1)

𝛼−1
𝑒
(

𝜃

1+(𝑒𝜆𝑥−1)
𝛼)

 

(𝑒

𝜃

1+(𝑒𝜆𝑥−1)
𝛼

− 1) (1 + (𝑒𝜆𝑥 − 1)𝛼)2

. (10) 

 

 The hrfr plots of the LEP model are given in Figure 2. 

 

 
Figure 2: LEPD hrf plots for some selected parameter values 

 

 The shape of the failure rate is very important for analyzing lifetime data sets. From 

Figure 2, it is interesting to observe different shapes of the LEP hrf. In the first subfamily, 

for 𝛼 ≤ 1, the failure rate of LEP shows exponentially decreasing behavior (starting from 

a specific point on the y-axis and moving towards zero). In the second subfamily, the hrf 

curves show inverted bathtub behavior. 
 

 The reverse-hrf and b cumulative-hrf take the forms 
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𝑟𝐹(𝑥) =
𝜃𝛼𝜆𝑒𝜆𝑥(𝑒𝜆𝑥 − 1)

𝛼−1
𝑒
(

𝜃

1+(𝑒𝜆𝑥−1)
𝛼)

 

(𝑒𝜃 − 𝑒

𝜃

1+(𝑒𝜆𝑥−1)
𝛼

) (1 + (𝑒𝜆𝑥 − 1)𝛼)2

 (11) 

and  

𝐻(𝑥) = − log

(

 
𝑒

𝜃

1+(𝑒𝜆𝑥−1)
𝛼

− 1

𝑒𝜃 − 1

)

 . (12) 

 

5. ESTIMATION OF PARAMETERS 
 

 In this section, the maximum likelihood (ML) method is applied to estimate the 

unknown LEP parameters. Additionally, to examine the behavior of estimated parameters 

a Monte Carlo simulation results for different 𝑛 at some parameter groupings are provided. 

 

5.1 Maximum Likelihood Estimation 

 The log-likelihood function of the LEP distribution is  
 

𝑙 = ln(𝛼𝜆𝜃) + 𝜆∑𝑥𝑖

𝑛

𝑖=1

+ (𝛼 − 1)∑ln(𝑒𝜆𝑥𝑖 − 1)

𝑛

𝑖=1

+∑
𝜃

1 + (𝑒𝜆𝑥𝑖 − 1)𝛼

𝑛

𝑖=1

− 𝑛 ln(𝑒𝜃 − 1) −  2∑ ln(1 + (𝑒𝜆𝑥 − 1)
𝛼
)

𝑛

𝑖=1

, 

(13) 

 

 The ML estimates (MLEs) of the LEP parameters are determined by equating the 

nonlinear equations 
𝜕 ln 𝑙

𝜕𝛼
= 0,

𝜕 ln 𝑙

𝜕𝜆
= 0,

𝜕 ln 𝑙

𝜕𝜃
= 0, simultaneously.  

 

𝜕𝑙

𝜕𝛼
=
𝑛

𝛼
+∑ln(𝑒𝜆𝑥𝑖 − 1)

𝑛

𝑖=1

− 2∑
(𝑒𝜆𝑥𝑖 − 1)

𝛼
ln(𝑒𝜆𝑥𝑖 − 1)

1 + (𝑒𝜆𝑥𝑖 − 1)𝛼

𝑛

𝑖=1

−∑
(𝑒𝜆𝑥𝑖 − 1)

𝛼
ln(𝑒𝜆𝑥𝑖 − 1)

(1 + (𝑒𝜆𝑥𝑖 − 1)𝛼)2

𝑛

𝑖=1

, 

(14) 

 

𝜕𝑙

𝜕𝜆
=
𝑛

𝜆
+ (𝛼 − 1)∑

𝑥𝑖𝑒
𝜆𝑥𝑖

ln(𝑒𝜆𝑥𝑖 − 1)

𝑛

𝑖=1

− 2𝛼∑
(𝑒𝜆𝑥𝑖 − 1)

𝛼−1
𝑒𝜆𝑥𝑖𝑥𝑖

1 + (𝑒𝜆𝑥𝑖 − 1)𝛼

𝑛

𝑖=1

 

+∑(𝑥𝑖 −
(𝑒𝜆𝑥𝑖 − 1)

𝛼−1
𝑒𝜆𝑥𝑖𝛼𝑥𝑖

(1 + (𝑒𝜆𝑥𝑖 − 1)𝛼)2
)

𝑛

𝑖=1

 (15) 

and 

𝜕𝑙

𝜕𝜃
= 𝑛 (−1 +

1

1 − 𝑒𝜃
+
1

𝜃
) +∑

1

1 + (𝑒𝜆𝑥𝑖 − 1)𝛼

𝑛

𝑖=1

. (16) 

 

  



The Logistic Exponential Poisson Distribution with Mathematical… 324 

5.2 Monte Carlo Simulation 

 Simulation experiments are provided to investigate the performance of the MLEs of the 

LEP parameters. The simulation results are replicated for N=10,000 times for each 𝑛 

(sample size) of 20, 50, 100, 200, and 300. Performance of the MLEs of the LEP parameters 

is checked based on the mean square errors (MSE). 
 

 The following sets of parameter values are used to derive random numbers from the 

LEP model using its qf.  

 𝛼 = 0.5, 𝜆 = 0.5, 𝜃 = 0.25 

 𝜆 = 0.5, 𝛼 = 0.5, 𝜃 = 0.5 

 𝜃 = 0.75, 𝛼 = 0.5, 𝜆 = 0.5  
 𝜆 = 0.5, 𝜃 = 0.9, 𝛼 = 0.5 

 

 The results of these simulations including the MLEs and their MSE are reported in 

Table 4. The MLEs are consistent. Table 4 elaborate that MSE of all parameters decrease 

with an increase in sample size. Also, the MSE for all parameters of the observed model 

increases with the increment in the parameters.  

 

Table 4 

The AE, and MSEs based on the simulation 

𝒏 Parameter 
Set I Set II Set III Set IV 

MLEs MSE MLEs MSE MLEs MSE MLEs MSE 

20 

𝛼 0.5214 0.0174 0.5233 0.1675 0.5197 0.0182 0.5229 0.0169 

𝜆 0.6730 0.2429 0.6374 0.2106 0.6538 0.2033 0.6536 0.1887 

𝜃 0.4199 0.1126 0.4235 0.0891 0.4328 0.1803 0.4068 0.3328 

50 

𝛼 0.5066 0.0063 0.5111 0.0073 0.5031 0.0063 0.5172 0.0069 

𝜆 0.5541 0.0524 0.5606 0.0573 0.5731 0.0620 0.5356 0.0506 

𝜃 0.4553 0.0859 0.4671 0.0462 0.4507 0.1380 0.4786 0.2250 

100 

𝛼 0.5026 0.0032 0.5042 0.0031 0.5017 0.0031 0.5045 0.0033 

𝜆 0.5403 0.0299 0.5261 0.0247 0.5360 0.0267 0.5368 0.0284 

𝜃 0.4674 0.0732 0.4803 0.0267 0.4687 0.1045 0.4705 0.2115 

200 

𝛼 0.5030 0.0015 0.5039 0.0018 0.5003 0.0017 0.5068 0.0017 

𝜆 0.5132 0.0117 0.5151 0.0125 0.5210 0.0123 0.5002 0.0109 

𝜃 0.4895 0.0697 0.4893 0.1367 0.4783 0.0875 0.4967 0.1753 

300 

𝛼 0.5002 0.0011 0.4998 0.0012 0.5035 0.0010 0.5030 0.0010 

𝜆 0.5137 0.0082 0.5113 0.0070 0.5091 0.0080 0.5063 0.0081 

𝜃 0.4852 0.0635 0.4931 0.0078 0.4948 0.0732 0.4967 0.1719 

 

6. APPLICATION OF LEPD 
 

 In this section, the LEP distribution is fitted to a real-life data set about cancer. The data 

is given in Lee and Wang (2003), and it represents remission times (in months) of a random 

sample of 128 bladder cancer patients. The observations are;  

0.08, 3.48, 2.09, 4.87, 8.66, 6.94, 13.11, 0.20, 23.63, 2.23, 4.98, 3.52, 6.97, 

13.29, 9.02, 0.40, 3.57, 2.26, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 
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6.93, 8.65, 12.63, 22.69, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 

2.02, 3.31, 4.51, 6.54, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 

18.10, 1.46, 4.40, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 

17.14, 79.05, 1.35, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 

43.01, 1.19, 2.75, 4.26, 5.41, 25.82, 2.87, 5.62, 5.85, 5.06, 7.09, 9.22, 13.80, 

25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 2.87, 5.62, 5.85, 8.26, 8.53, 

12.03, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 

5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 

2.69, 4.18, 5.34, 7.59 and 10.66.  
 

 For comparison purposes, we considered the LE, Weibull-geometric (WG), Marshal-

Olkin logistic (MOL), and inverse Weibull (IW) distributions as competitor distributions. 

The fitted model parameters are estimated using the ML approach. The model selection 

criteria such as Akaike information criteria (AIC), Bayesian information criteria (BIC), 

Anderson -Darling (AD), Cramer von-Misses (CVM), and Kolmogorov-Smirnov (K-S) 

tests are used. The p-value (K-S p-value) of the K-S test is also provided. 
 

 The box and TTT plots are reported in Figure 3. The MLEs and goodness-of-fit 

measures are explored in Table 5. The fitted pdf, cdf, sf, and PP plots over the observed 

data set are displayed in Figure 4.  

 

 
Figure 3: Box and TTT plots of bladder cancer data 
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Table 5 

Findings from bladder cancer data 

Model MLE AIC BIC CVM AD K-S 
K-S  

p-value 

LEP 

𝛼 = 1.28280 

𝜃 = 3.22035 

𝜆 = 0.04609 

825.6480 834.2040 0.0166 0.1271 0.0324 0.9993 

MOL 

𝛼 = 1.84726 

𝜃 = 0.14207 

𝜆 = 0.03807 

844.5723 857.0134 0.0169 0.1275 0.0325 0.9962 

WG 

𝛼 = 2.60284 

𝑝 = 0.93530 

𝜆 = 0.02878 

826.1844 834.7405 0.2045 0.1716 0.0323 0.9991 

LE 
𝛼 = 1.16342 

𝜆 = 0.01007 
829.2507 834.9548 0.1133 0.6274 0.1975 0.0554 

IW 
𝛼 = 1.75207 

𝜆 = 0.04310 
892.0015 897.7056 0.9787 6.1183 0.1408 0.0125 

 

 Based on the model selection measures given in Table 5, the LEP model has smaller 

values of AIC and BIC, ADF, CVM, and KS measures and largest p-value. Hence, the 

proposed LEP distribution provides the best fit as compared to competing distributions. 

Further, Figure 4 also shows and supports the findings in Table 5. Hence, it is observed 

that the LEP distribution provides better fits to bladder cancer data. 
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Figure 4: Empirical and pdf, cdf, sf, and PP plots for bladder cancer data 

 

7. CONCLUSION 
 

 A new three-parameter logistic exponential Poisson (LEP) distribution is proposed as 

a special case of the newly introduced logistic exponential power-series family. Some 

mathematical properties are derived. The parameters of LEP model are estimated using a 

common approach, the maximum likelihood estimation. The behavior of estimators is 

assessed using a comprehensive simulation study. We draw samples considering the 

different combinations of parameters and different sample sizes. For the application of LEP 

distribution, we fit a real-life data set related to bladder cancer data. The proposed 

distribution provides better fit as compared to competing distributions. 
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