
© 2023 Pakistan Journal of Statistics 299 

Pak. J. Statist. 

2023 Vol. 39(3), 299-312 

 

NEURAL NETWORK CALIBRATION ESTIMATION  

WITH HIGH DIMENSIONAL DATA IN SURVEY SAMPLING:  

EVIDENCE USING MONTE CARLO SIMULATION SCHEME 

 

Laraib Brirah1, Haris Khurram2, Muhammad Ahmed Shehzad1§ 

and Aamna Khan1 

1 Department of Statistics, Bahauddin Zakariya University 

Multan, Pakistan. Email: laraibbrirah786@gmail.com 

       aamnaa@bzu.edu.pk 
2 National University of Computer and Emerging Sciences 

Chiniot-Faisalabad Campus, Pakistan.  

Email: haris.khurram@nu.edu.pk 
§ Corresponding author Email: ahmad.shehzad@bzu.edu.pk 

 

ABSTRACT 
 

 Calibration is commonly used in survey sampling to include auxiliary information  

at the estimation stage. Calibrating the observation weights on the population means  

(or totals) of the auxiliary variables implicitly assumes on a linear superpopulation 

regression model. When auxiliary information is available for all units the population, more 

complex modeling can be handled by means of model calibration .This article explores the 

estimation of finite population totals when auxiliary data is included, either univariate or 

multivariate. In this work we introduce a new type of model calibration nonparametric 

estimator for the finite population mean based on neural network learning. The proposed 

neural network model calibration estimators can handle any linear or nonlinear working 

models. More precisely, we adopt neural network learning to estimate the functional 

relationship between the survey variable and the auxiliary variables. Under suitable 

regularity conditions, the proposed estimators are proven to be design consistent. The 

performance of the proposed estimators for finite-size samples is investigated by means of 

simulation studies. The uniqueness of our work is that we observed the result by single 

auxiliary variable and also by increasing No. of parameters and show the efficient estimator. 
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Highlights of this Paper: 

 We combine artificial neural network learning approach and calibration technique 

to estimate the total of survey variable by using auxiliary information.  

 The aim is to improve the estimate of totals when data have some linear and non-

linear relationship. 

 The presented paper is the part of this project in which, some theoretical and 

mathematical justification and aspect of the proposed approach is presented. 
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1. INTRODUCTION 
 

 In research, sampling is very helpful. Survey sampling consists of selecting a 

representative sample of a population for use as part of a sample survey. The term 

"auxiliary variables" is most frequently used in relation to the use of such variables, which 

are accessible to all units in the population, in ratio estimation, regression estimation, and 

calibration estimation. Auxiliary variables are variables about which information is 

available prior to sampling. Auxiliary information helps survey statisticians improve 

estimates in many ways. A family of estimators called calibration estimators uses a similar 

collection of auxiliary data to generate estimates. It is important to rely on auxiliary 

information to obtain a better estimate of a population statistic. Calibration estimator is 

now widely used in worldwide statistical surveys. The estimator improves estimates by 

using data from auxiliary variables. Wu and Sitter (2001) introduced model calibration, 

where nonlinear parametric regression models and generalized linear regression models 

are used to obtain model-assisted estimators by generalizing the calibration method of 

Deville and Särndal (1992). In this article we extend model calibration by assuming more 

general models than those suggested by Wu and Sitter (2001) and employ neural networks 

to obtain the fitted values to calibrate on. This allows more flexible prediction and 

straightforward insertion of multivariate auxiliary information. 

 

2. CALIBRATION ESTIMATION 
 

 Calibration approach first developed by Deville and Särndal (1992), Wu and Sitter (2001) 

extend the concept of model calibration to generalized linear regression model and non-

parametric regression models. According to the Montanari and Ranalli (2005), the 

calibration procedure is based on linear relationship among the survey variables y and the 

auxiliary variables 𝒙. A calibration approach is a weighting approach that uses auxiliary 

information to calculate what will match the known population value. The model 

calibration is extended to include more general super-population models, and we acquire 

the fitted values for calibration using neural network approach. Using neural network 

learning, we determine the functional relationship among the auxiliary variables 𝑥 and the 

survey variables 𝑦. Although neural networks have been utilized for survey sampling and 

imputation, their use for model calibration is novel. Neural network approach has been 

shown to greatly enhance prediction of the value in a relevant variable in non sampling 

units. This feature, in particular, improves the efficiency of the generated estimators when 

the underlying functional relationship is somewhat complicated. For a finite population 

mean, we propose neural network model calibration estimators. 

 

2.2 Notations and Equations of Calibration Technique  

 Let us considered a sets of 𝑁 units from a finite population 𝑈 labeled as 𝑈 = {1, … , 𝑁}. 

The population (𝑈) size is not always known. From which the probability sample  

𝑠(𝑠 ⊆ 𝑼), 𝑄 auxiliary variables are represented by a vector 𝑥 is known for every unit in 

the population, for instance through census data, administrative registers, remote sensing, 

or prior surveys so the vector is represent as 𝒙𝒌 = (𝑥𝑘1, … , 𝑥𝑘𝑞 … , 𝑥𝑘𝑄)
′
, the auxiliary 

vector is known as ∀𝑖∈ 𝑈. 
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 Let’s say that a sample is taken from a population without replacement and the 

population 𝑈 = {1, … , 𝑁} with a size sampling design 𝑃(. ) this is fixed size design and a 

known inclusion probability. A random sample represented by s of fixed size n taken  

from 𝑈 in accordance with probability sample plan with inclusion probabilities as  

𝜋𝑘 = Pr(𝑘 ∈ 𝑠) satisfy that 𝜋𝑘 > 0, is known as 1st order inclusion probability and  

𝜋𝑘𝑙 = Pr (𝑘, 𝑙 ∈ 𝑠) is known as a 2nd order inclusion probability all 𝑘, 𝑙 ∈ 𝑈. The study 

variable 𝑦𝑘  is the value of variable interest of 𝑦 for 𝑘𝑡ℎ elements of the population which 

additionally has a vector value for an auxiliary variable, and 𝑦𝑘  is known for all 𝑘 ∈ 𝑠. 

Here n is number of observation and number of auxiliary variables is represented by Q. 
 

 According to Deville and Särndal (1992) the calibration of population total of 𝑡𝑦 is, 
 

𝑡̂𝑦 = ∑ 𝑤𝑘𝑦𝑘

𝑠

 (1) 

 

 All chi-squared distance estimators result in asymptotically identical results when the 

distance is calculated using alternative distance measurements in Deville and Särndal 

(1992). The average distance 𝐸𝑝 {
∑ (𝑤𝑘−𝑑𝑘)2

𝑠

𝑑𝑘𝑞𝑘
}. The distance in equation between the initial 

weight 𝑑𝑘 and the new weight 𝑤𝑘  was quite arbitrary chosen as 
 

Ф𝑠(𝑤) =  
∑ (𝑤𝑘 − 𝑑𝑘)2

𝑠

𝑑𝑘𝑞𝑘

 (2) 

 

where 𝑤 = (𝑤𝑘 , 𝑘 ∈ 𝑠) each unit in the sample is given a vector of weights, and the 𝑞𝑘′𝑠 

are well-known positive constants that may be used to account for the variability of the 

observations and are independent of 𝑑𝑘 similarly, 1 𝑞𝑘
⁄ = Positive weight unrelated to 𝑑𝑘 

and the uniform weights 1 𝑞𝑘
⁄ = 1 or 𝑞𝑘 = 1 for all units 𝑘.  

 

 Thus, the resulting estimator of 𝑡𝑦 is  
 

𝑡̂𝑦,𝑤 =  𝑡̂𝑦,𝜋 + (𝒕𝑥 − 𝒕̂𝑥,𝜋)
′
𝑩̂𝒔  (3) 

 

where 𝑡̂𝑥,𝜋 = ∑ 𝑑𝑘𝒙𝑘𝑠  denotes the H.T (Horvitz-Thompson) estimator for the auxiliary 

information of vector 𝒙 and 𝑩̂𝒔 =  𝑻𝑠
−1 ∑ 𝑑𝑘𝑞𝑘𝒙𝒌𝑦𝑘 . Here 𝑩̂𝒔 is represent the weighted 

estimator for the multiple regression coefficients. As a result, 𝑡̂𝑦,𝑤 implicitly assumes that 

the auxiliary variables and the survey variable have a linear connection. Wu and Sitter 

(2001) suggest taking into account more complex models and generalizing calibration 

process by model calibration by noting that "it is the relationship between 𝑦 and 𝑥, 

hopefully captured by the working model that determines how the auxiliary information 

should best be used." 

 

3. ARTIFICIAL NEURAL NETWORK (ANN) MODEL 
 

 The first mathematical model of a neuron was established by Warren McCulloch and 

Walter Pitts in 1943. They establish the fundamental mathematical model for neuron, 

which symbolizes a single cell of brain system that takes input, analyses those inputs and 

produces an output. A neural network learns from training data and increases its accuracy 

over time. By using concepts of biological neuron network, an artificial neuron network 
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(ANN) mimics the organization human brain. ANNs. The neurons are interconnected and 

exchange signals. The nodes may take data and do straightforward operations to do it. 

Other neurons get the outcome of these processes. The activation or node value is its output. 

A neural network has three or more interconnected layers. Input neurons make up the top 

layer. These neurons communicate with the deeper layer, which communicate with the top 

output layer. The hidden layers are the terms for the middle layers. 
 

 Mc-Culloch and Pitts (1943) identified the neuron as a binary threshold unit 
 

𝑦 = 𝑓(𝑥1. 𝑤1 + 𝑥2. 𝑤2 + ⋯ + 𝑥𝑛 . 𝑤𝑛  + 𝑏) = 𝑓 {∑(𝑥𝑘𝑤𝑘 + 𝑏)

𝑛

𝑖=1

} (4) 

 

where 𝑓 is activation function and 𝑏 is denoted as bias. Here 𝑥 denotes the input variables 

and 𝑦 denotes the output variable and 𝑤 denote the weights. This computation is expressed 

as a transfer function. 
 

∑ 𝑤𝑖𝑋𝑖 + 𝑏

𝑛

𝑖=1

. (5) 

 

4. THE NEURAL NETWORK CALIBRATION ESTIMATOR 
 

 In 1996, Nordbotten employed auxiliary data from administrative registries along with 

neural networks for imputation. The use of neural networks calibration is novel, allowing 

enabling more accurate prediction and easier addition of multivariate auxiliary data. Neural 

network, among other things, are a highly well-liked learning technique. Although 

multivariate data may be handled by the programmed quickly and rapidly, neural networks 

are frequently employed in practice. In such a model, there are three components: inputs, 

outputs, and hidden variables-neurons-which transform the information coming from 

inputs into outputs in a nonlinear fashion. Each connection is weighted. Each hidden unit 

receives linear connections of inputs as its input; In order to send signals to the output and 

an activation function called φ(. ) is employed. The final output is created by adding a 

further constant to a linear combination of these signals.  
 

 Assume that the following superpopulation model can adequately represent connection 

among survey variable y and auxiliary variables x using first and second moments, 
 

𝐸ξ(𝑦𝑘)  = 𝑦𝑛𝑛(𝑥𝑘) 𝑓𝑜𝑟 𝑘 = 1,2,3, … , 𝑁 
 

𝑉ξ(𝑦𝑘) = 𝑉(𝑥𝑘) 𝑓𝑜𝑟 𝑘 = 1,2,3, … , 𝑁 
 

𝐶ξ(𝑦𝑘  , 𝑦𝑙) = 0 𝑓𝑜𝑟 𝑘 ≠ 𝑙  
 

 Here 𝑉ξ denotes variance and 𝐶ξ denotes covariance with respect to super population 

models. We suppose that (𝑦1 , 𝑥1), … , (𝑦𝑘 , 𝑥𝑘) are mutually independent.  
 

 Based on these definitions, we can estimate the calibration of the neural network model 

for 𝑡𝑦 
 

𝑡̂𝑦,𝑛𝑛
𝑚𝑐 =  ∑ 𝑦𝑘𝑤𝑘

𝑛

𝑘=1
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 Here 𝑤𝑘  represent the calibrated weights are aimed at minimizing the distance function 

in 𝜑𝑠 =  
∑ (𝑤𝑘−𝑑𝑘)2

𝑠

𝑑𝑘𝑞𝑘
 under the constraints, ∑ 𝑤𝑘

𝑛
𝑘=1 = 1 and ∑ 𝑤𝑘

𝑛
𝑘=1 𝑦̂𝑛𝑛 =  ∑ 𝑦̂𝑛𝑛

𝑛
𝑘=1 . The 

proposed estimator was as a result of applying the method of Deville and Sarndal (1992) 

to generate the ideal weights as 
 

𝑡̂𝑦,𝑛𝑛 
𝑚𝑐 =  𝑡̂𝑦,𝜋 + {∑ 𝑦̂𝑛𝑛

𝑁

𝑘=1

− ∑ 𝑑𝑘

𝑛

𝑘=1

𝑦̂𝑛𝑛} 𝐵̂𝑛𝑛 (6) 

 

 Here  
 

𝐵̂𝑛𝑛 =
∑ 𝑑𝑘

𝑛
𝑘=1 𝑞𝑘(𝑦̂𝑛𝑛 − 𝑦̌𝑛𝑛)(𝑦𝑘 − 𝑦̌)

∑ 𝑑𝑘𝑞𝑘
𝑛
𝑘=1 (𝑦̂𝑛𝑛 − 𝑦̌𝑛𝑛)2

,  

 

𝑦̌𝑛𝑛 =
∑ 𝑑𝑘𝑞𝑘

𝑛
𝑘=1 𝑦̂𝑛𝑛

∑ 𝑑𝑘𝑞𝑘
𝑛
𝑘=1

,  

 

𝑦̌ =
∑ 𝑑𝑘𝑞𝑘𝑦𝑘

𝑛
𝑘=1

∑ 𝑑𝑘𝑞𝑘
𝑛
𝑘=1

, 

 

 

𝑦̂𝑛𝑛 =
∑ 𝑑𝑘𝑞𝑘𝑦̂𝑛𝑛𝑘∈𝑠

∑ 𝑑𝑘𝑞𝑘𝑘∈𝑠

 

 

 Considered  

𝑋 = 𝑦̂𝑛𝑛 −
∑ 𝑑𝑘𝑞𝑘𝑦̂𝑛𝑛𝑘∈𝑠

∑ 𝑑𝑘𝑞𝑘𝑘∈𝑠

,  

 

𝑌 = 𝑦𝑘 −
∑ 𝑑𝑘

𝑛
𝑘=1 𝑞𝑘𝑦𝑘

∑ 𝑑𝑘𝑞𝑘
𝑛
𝑘=1

 

then 

𝛽̂𝑛𝑛 =
∑ 𝑑𝑘𝑞𝑘𝑋𝑌𝑛

𝑖=1

∑ 𝑑𝑘𝑞𝑘(𝑋)2𝑛
𝑖=1

 

 

 Based on the working model, 𝑡̂𝑦,𝑛𝑛 
𝑚𝑐  may be thought of the working model can be  

viewed as a generalized regression estimator is represent as 𝐸ξ(𝑦𝑘) = 𝛼 + 𝛽𝑓(𝒙𝑘). Here 

𝑡̂𝑦,𝑛𝑛 
𝑚𝑐  uses estimates of 𝑦𝑛𝑛(𝒙𝑘) as auxiliary variable in a generalized regression procedure. 

 

4.1 Important Properties and Assumptions of 𝒕̂𝒚,𝒏𝒏 
𝒎𝒄  

 The important design properties of 𝑡̂𝑦,𝑛𝑛, the Taylor series of the fitted values of  

𝑦̂𝑛𝑛 will be used. In order to do this, a set of regularity requirements based on the parameters 

𝜃̂ & 𝜃̃ and the function 𝑦̂𝑛𝑛(. ) in an asymptotic framework is required. We take it for 

granted that there is a list of sampling designs and finite populations, all of which are 

indexed by the letter 𝑣. The population size and the sample size respectively 𝑁𝑣 & 𝑛𝑣 

approach to infinity as 𝑣 → ∞. 
 

 We rely on the following assumptions to justify our theoretical findings. 
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a) Firstly, the errors of 𝜀𝑖are iid and have mean zero and variance 𝑉(𝒙𝒌), uniformly for 

all 𝑁. 

b) Considered  𝒙𝒌 , each 𝑁 has a fixed  𝒙𝒌 in relation to the supperpopulation model ξ .  
c) For each v,  𝒙𝒌 is identically and independently distributed from fixed and an 

unknown distribution for 𝐹(𝑥) = ∫ 𝑓(𝑡1, 𝑡2, … , 𝑡𝑄)𝑑𝒕
𝑥𝑘

−∞
, where 𝑓(∙) is a density 

which is strictly positive. 

d) The survey variables are bound with a probability of 1 at the fourth moment with ξ. 

e) The design rates bounded that is 𝑙𝑖𝑚𝑠𝑢𝑝 𝑛𝑁−1 𝑎𝑠 𝑣 → ∞ =  𝜋 here 𝜋 ∈ (0, 1). 

f) The sampling design 𝑝(𝑠) ensures that the Horvitz-Thompson estimator of the 

population total 𝑡𝑦 is design consistent and asymptotically normally distributed with 

variance 𝑂(𝑛−1). Using the Horvitz-Thompson variance estimator, we can measure 

the variance of any study variable 𝑦 with a bounded fourth moment. 

g) 𝜑 is an activation function in (3.12), in other words, it is a symmetric sigmoid 

function that can be differentiated into any of order, is also assumed to be linearly 

independent for the class of functions {𝜑(𝑏𝑡 + 𝑏0), 𝑏 > 0}  ∪  {𝜑 ≡ 1}. These 

constraints are met by the logistic activation function 𝜑(𝑡) = [1 + exp (−𝑡)]−1; in 

1997, Hwang and Ding (1997) provide more examples of sigmoidal functions 

fulfilling these requirements. 
 

 Theorems require the conditions listed below. The proof of Theorems contains 

descriptions of some of the notations used here. 
 

i. 𝜃̂ = 𝜃̃ + 𝑂𝑝(𝑛−1/2) And 𝜃̃ → 𝜃 

ii. For each 𝒙𝒊 , |𝜕𝑓(𝒙𝒊 , 𝜃)/𝜕𝜃| ≤ ℎ(𝒙𝒊 , 𝜃) for 𝜃 in a neighborhood of 𝜃 and 

∑ ℎ(𝒙𝒊 , 𝜃) = 𝑂(1)𝑁
𝑘=1  

iii. The essential design weights, 𝑑𝑘 =
1

𝜋𝑘
, fulfill the asymptotically normal distribution 

of the Horvitz-Thompson estimator for certain population totals. 

 

4.1.1 Asymptotically Design-Unbiased Estimators:  
 The proposed estimator is Asymptotically Design-Unbiased Estimators as shown by 

Theorem 1. 

 

Theorem 1: Asymptotically Design-Unbiased Estimators  

 Suppose the working-model used to create the estimators are represent above as super-

population models by using condition (i) to (iii) describe above, 𝒕̂𝒚,𝒏𝒏 is equal to 

𝒕̂𝒚𝝅+𝑶𝒑(𝒏−𝟏/𝟐) and are thus asymptotically design-unbiased estimators for 𝒕𝒚. This is also 

approximately model-unbiased under condition (i) see Wu and sitter (2001). 

 

4.1.2 Design Consistency: 
 The proposed estimator is also design consistence as shown in Theorem 2 

 Theorem 2 (Montanari and Ranalli 2005) 𝒕̂𝒚,𝒏𝒏 
𝒎𝒄  is consistence for 𝒕𝒚 in the logic that 

𝒍𝒊𝒎𝒗→∞𝑷(|𝒕̂𝒚,𝒏𝒏 
𝒎𝒄 − 𝒕𝒚| < ∈) = 𝟏 with 𝛏 − 𝐩𝐫𝐨𝐛𝐚𝐛𝐥𝐢𝐭𝐲 1 for any fixed ∈ > 𝟎  

 

4.1.3 Asymptotic Normality:  

 The proposed estimator also asymptotically normal as shown in Theorem 3 
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Theorem 3:  

 The asymptotic distribution of 𝒕̂𝒚,𝒏𝒏 is as under 
 

𝑡̂𝑦,𝑛𝑛 
𝑚𝑐 −  𝑡𝑦

√𝑉(𝑡̃𝑦,𝑛𝑛 
𝑚𝑐  )

 → 𝑁(0,1) 
(7) 

 

where 𝑡̃𝑦.𝑛𝑛
𝑚𝑐  is the population variance of artificial neural network calibration estimator 

 

𝑡̃𝑦,𝑛𝑛
𝑚𝑐 =  𝑡̂𝑦,𝜋 + {∑ 𝑦̃𝑛𝑛

𝑁

𝑘=1

− ∑ 𝑑𝑘

𝑛

𝑘=1

𝑦̃𝑛𝑛} 𝛽𝑛𝑛  (8) 

 

With  
 

𝛽𝑛𝑛  =  
∑ 𝑞𝑘

𝑁
𝑘=1 (𝑦̃𝑛𝑛 − 𝑦̅𝑛𝑛)(𝑦𝑘 − 𝑦̅)

∑ 𝑞𝑘
𝑁
𝑘=1  (𝑦̃𝑛𝑛 − 𝑦̅𝑛𝑛)2

 (9) 

 

And 𝑦̅𝑛𝑛 =  ∑ 𝑦̃𝑛𝑛
𝑁
𝑘=1 , whose design variance is given by  

 

𝑉(𝑡̂𝑦,𝑛𝑛 
𝑚𝑐 ) = ∑ ∑(𝜋𝑘,𝑙 − 𝜋𝑘𝜋𝑙)

𝑁

𝑙

𝑁

𝑘

 
𝐸𝑘

𝜋𝑘

𝐸𝑙

𝜋𝑙

 (10) 

 

where 𝜋𝑘,𝑙 are second order inclusion probabilities, 𝐸𝑘 = 𝑦𝑘 −  𝑦̃𝑛𝑛 𝛽𝑛𝑛 further detail 

available in (Montanari & Ranalli (2005)). 

 

5. SIMULATION STUDIES 
 

 We carry out a Monte Carlo simulation analysis to examine the effectiveness of the 

provided estimators for estimating the total population. The concept and organization of 

our inquiry be inspired by Breidt and Opsomer's (2000) simulation study, which focused 

on a single auxiliary and allowed for comparisons. However, certain elements have also 

been modified and added to offer fresh perspectives on the subject. The simulation research 

examines the behaviors of the following 𝑡𝑦 estimators of population totals. 
 

1. Horvitz-Thompson Estimator (𝑡̂𝑦𝜋) 

2. Calibration Estimator (𝑡̂𝑦,𝑤) 

3. Neural Network Model calibration (𝑡̂𝑦,𝑛𝑛 
𝑚𝑐 ) 

 

 The third estimator, which enables more intricate modelling of the regression function, 

joins the preceding two parametric estimators. Four separate models were used to construct 

the survey variables, and he uni-variate regression function or signal of each of these 

models is unique. We considered the following regression models 
 

 Linear:   𝑦1(𝑥) = 1 + 2(𝑥 − 0.5)  

 Quadratic:  𝑦2(𝑥) = 1 + 2(𝑥 − 0.5)2 

 Exponential:  𝑦3(𝑥) = 𝑒𝑥𝑝(−8𝑥)  
 Cycle 1:   𝑦4(𝑥) = 2 + sin (2 𝜋 𝑥)  
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 With 𝑥 ∈ [0,1]. The selection of such signals where the population 𝑥 is generated as 

independently identically distributed uniform with [0, 1] random variables is described by 

Breidt and Opsomer (2000). Regression function with mean zero and variance one was 

used to produce population values for all survey variables. In simulation study of 1000 we 

use the population of size 1000 and different sample sizes (25, 50, 100, 200) drawn by 

simple random sampling and 𝑥 generated as identically and independently distributed from 

uniform distribution with [0, 1] random variables. The population values for 𝑦 are 

generated from 𝑦𝑘(𝑥) by adding error term in all cases. The R function neuralnet() has 

been used to fit neural networks, which is based on back propagation ('rprop+'). There are 

several software programmes for neural networks, both free and paid like nnet() etc. The 

values of the inputs and outputs scaled to the range [0, 1] and the activation function chose 

the logistic and using single hidden layers by increasing no. of neurons / units. We use 

different no. of parameters (1, 2, 5, and 10) to check the efficiency of the estimators. 

 

5.1 Performance Evaluation Measures 

 Suppose that proposed estimator is 𝑡̂𝑦∗ and the H.T estimator is 𝑡̂𝑦𝜋 then the MSE of 

the estimator 𝑠 time of no. of simulation will be Mean square is define as average squared 

difference between expected values and actual values and it’s represented as 
 

𝑀𝑆𝐸 = 𝑉𝑎𝑟(𝑡̂𝑦∗ ) + 𝑏𝑖𝑎𝑠(𝑡̂𝑦∗ )2 
 

 Here bias is define as 𝑏𝑖𝑎𝑠(𝑡̂𝑦∗ ) = 𝐸(𝑡̂𝑦∗ ) − 𝑡𝑦 
 

 We also calculate the Scaled Mean Square Error to check the efficiency of the 

estimators the formula of SMSE is 
 

𝑆𝑀𝑆𝐸(𝑡̂𝑦∗) =
𝑀𝑆𝐸(𝑡̂𝑦∗)

𝑀𝑆𝐸(𝑡̂𝑦𝜋)𝑉𝑃
 

 

where 𝑀𝑆𝐸(𝑡̂𝑦∗) is the MSE of the estimator s time of no. of simulation of proposed 

estimator and 𝑀𝑆𝐸(𝑡̂𝑦𝜋) is the Horvitz-Thompson estimator, with 𝑆𝑀𝑆𝐸(𝑡̂𝑦∗) the goal is 

to compare an estimator's MSE to its minimum possible value. In light of this, the 

estimator's effectiveness increases when SMSE's value is reduced. 
 

 Proportion of variance is use for comparative analysis. Under the formula below, we 

can calculate the proportion of variance due to noise  
 

𝑉𝑃 = (𝑆𝑦
2 − 𝑆𝑦𝑛𝑛

2 )/𝑆𝑦
2 

 

 In this case, a survey variable has a population variance 𝑆𝑦
2, whereas a signal has a 

population variance of 𝑆𝑦𝑛𝑛
2 . 
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Table 1 

Performance of ANN Calibration Estimator for the Four Models with Single Auxiliary Variable based on MSE 

MSE 

M n p 
Linear Quad Exp Cycle 1 

𝒕̂𝒚𝝅 𝒕̂𝒚,𝒘 𝒕̂𝒚,𝒏𝒏 
𝒎𝒄  𝒕̂𝒚𝝅 𝒕̂𝒚,𝒘 𝒕̂𝒚,𝒏𝒏 

𝒎𝒄  𝒕̂𝒚𝝅 𝒕̂𝒚,𝒘 𝒕̂𝒚,𝒏𝒏 
𝒎𝒄  𝒕̂𝒚𝝅 𝒕̂𝒚,𝒘 𝒕̂𝒚,𝒏𝒏 

𝒎𝒄  

2 

25 1 14637.2 2245.85 60.155 11938.4 1681.27 1445.82 6473.47 3479.38 70.324 6308.04 127.709 16.11 

50 1 5508.55 3007.71 10.608 8366.98 5428.53 28.506 8075.17 7125.67 26.98 380.133 17.223 0.103 

100 1 1616.79 2247.41 12.059 7495.95 6402.72 5.052 5849.32 5541.99 20.26 3849.29 5001.25 0.117 

200 1 1861.16 3740.82 0.006 9758.35 6799.19 1.194 7281.89 6473.57 7.514 7342.84 4097.85 5.051 

3 

25 1 6492.97 270.379 34.905 3879.33 13.505 5.637 1602.86 410.233 8.961 2662.02 691.326 70.026 

50 1 7956.19 513.343 134.199 1938.67 289.631 4.447 1157.57 221.791 2.12 3596.35 203.001 92.037 

100 1 358.966 259.468 45.58 591.041 46.621 0.226 61.978 3.531 2.417 4572.2 765.657 2.07 

200 1 162.498 35.927 14.303 718.12 99.522 1.562 153.386 49.597 0.151 1044.48 497.701 0.034 

4 

25 1 2197.76 629.002 500.775 1244.79 787.369 5.02 158.157 50.51 22.377 12662.2 1016.28 21.608 

50 1 112.882 345.057 87.163 278.01 87.697 2.595 87.744 1.898 0.674 493.891 142.794 32.941 

100 1 1796.69 291.145 27.625 222.849 60.19 1.946 33.072 1.082 0.982 517.261 218.454 0.253 

200 1 1749.01 25.706 0.203 550.55 87.811 0.054 124.133 0.64 0.016 1256.63 45.481 0.427 
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Table 2 

Performance of ANN Calibration Estimator for the Four Models with Single Auxiliary Variable based on SMSE 

MSE 

M n p 
Linear Quad Exp Cycle 1 

𝒕̂𝒚𝝅 𝒕̂𝒚,𝒘 𝒕̂𝒚,𝒏𝒏 
𝒎𝒄  𝒕̂𝒚𝝅 𝒕̂𝒚,𝒘 𝒕̂𝒚,𝒏𝒏 

𝒎𝒄  𝒕̂𝒚𝝅 𝒕̂𝒚,𝒘 𝒕̂𝒚,𝒏𝒏 
𝒎𝒄  𝒕̂𝒚𝝅 𝒕̂𝒚,𝒘 𝒕̂𝒚,𝒏𝒏 

𝒎𝒄  

2 

25 1 4.82 0.737 0.02 1.294 0.182 0.015 1.484 0.798 0.016 4.55 0.092 0.012 

50 1 4.82 2.632 0.009 1.294 0.839 0.004 1.483 1.309 0.004 4.55 0.206 0.001 

100 1 4.82 6.7 0.035 1.294 1.015 0.001 1.484 1.056 0.005 5.912 4.55 0 

200 1 9.689 4.82 0 1.294 1.085 0 1.484 1.066 0.002 8.153 4.55 0.006 

3 

25 1 4.929 0.205 0.026 371.51 1.293 0.539 5.799 1.484 0.032 6.633 1.723 0.174 

50 1 4.928 0.318 0.083 1.293 0.193 0.003 1.484 0.284 0.002 37.498 6.033 0.169 

100 1 6.818 4.928 0.865 16.396 1.293 0.006 26.051 1.484 1.016 39.611 5.89 0.018 

200 1 22.292 4.928 1.962 9.332 1.199 0 4.59 1.805 0 18.657 4.169 0 

4 

25 1 4.857 1.39 1.107 2.042 1.291 0.008 4.66 1.423 0.659 81.856 6.561 0.14 

50 1 4.857 14.847 3.75 11.292 4.096 0.038 68.79 2.488 0.529 6.569 1.81 0.438 

100 1 4.857 0.787 0.075 66.291 4.783 0.042 45.492 1.898 1.721 6.561 4.606 0.008 

200 1 4.857 0.071 0.001 1.292 0.02 0 0.008 1.488 0.0001 181.49 6.57 0.061 
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Table 3 

Performance of ANN Calibration Estimator for the four Models with P= 2,5,10 based on MSE 

MSE 

M n p 
Linear Quad Exp Cycle 1 

𝒕̂𝒚𝝅 𝒕̂𝒚,𝒘 𝒕̂𝒚,𝒏𝒏 
𝒎𝒄  𝒕̂𝒚𝝅 𝒕̂𝒚,𝒘 𝒕̂𝒚,𝒏𝒏 

𝒎𝒄  𝒕̂𝒚𝝅 𝒕̂𝒚,𝒘 𝒕̂𝒚,𝒏𝒏 
𝒎𝒄  𝒕̂𝒚𝝅 𝒕̂𝒚,𝒘 𝒕̂𝒚,𝒏𝒏 

𝒎𝒄  

2 

25 

2 6833.02 5178.06 70.732 5587.14 4401.28 7.571 454.181 387.174 350.412 24912 2370.29 120.952 

5 246549 221917 2404.18 7360.68 1667.04 493.906 3497.34 3354.66 19.133 9453.69 6851.31 43.36 

10 166271 143269 348.917 13154.6 8985.64 2.043 142.541 76.223 69.331 16033.1 8210.78 76.207 

50 

2 6354.1 5484.11 28.896 4345.79 4118.07 18.039 197.234 183.329 0.372 427.926 286.295 45.058 

5 32630.4 31132.1 465.043 7064.74 6106.29 90.695 237.51 225.478 0.851 19640 4197.28 33.321 

10 47322.1 44224.3 2.584 13154.6 10597.1 181.278 3514.58 3017.28 12.53 1459.84 854.17 63.956 

100 

2 9767.71 9469.94 0.876 4373.21 4186.62 3205.05 500.734 483.104 0.004 7615.47 7392.04 845.505 

5 23932.7 23299.2 45.321 5973.97 5557.85 15.219 667.629 629.661 8.028 19.431 13.661 0.127 

10 75611.2 72434.7 14.407 2482.25 1315.16 0.016 464.023 379.041 10.493 1773.83 1229.03 0.194 

200 

2 9767.71 9469.94 0.876 280.057 267.917 0.007 1633.26 1624.58 0.628 2337.96 2225.42 148.16 

5 5009.57 4894.05 19.034 36.95 21.846 3.255 602.376 593.667 0 3774.04 3553.02 0.638 

10 7261.97 7176.78 48.7 4087.22 3706.48 0.138 1312.6 1279.72 4.219 132.021 128.002 0.057 
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Table 4 

Performance of ANN Calibration Estimator for the four Models with P= 2,5,10 based on MSE 

MSE 

M n p 
Linear Quad Exp Cycle 1 

𝒕̂𝒚𝝅 𝒕̂𝒚,𝒘 𝒕̂𝒚,𝒏𝒏 
𝒎𝒄  𝒕̂𝒚𝝅 𝒕̂𝒚,𝒘 𝒕̂𝒚,𝒏𝒏 

𝒎𝒄  𝒕̂𝒚𝝅 𝒕̂𝒚,𝒘 𝒕̂𝒚,𝒏𝒏 
𝒎𝒄  𝒕̂𝒚𝝅 𝒕̂𝒚,𝒘 𝒕̂𝒚,𝒏𝒏 

𝒎𝒄  

2 

25 

2 9.128 6.917 0.094 1.241 0.978 0.002 1.06 0.904 0.818 1.065 0.942 0.005 

5 15.711 14.141 0.153 1.178 0.267 0.079 1.039 0.997 0.006 1.387 1.005 0.006 

10 18.194 15.677 0.038 1.169 1.092 0 1.046 0.559 0.05 1.026 0.526 0.005 

50 

2 9.128 8.417 0.044 1.001 0.949 0.004 1.055 0.981 0.002 1.049 0.702 0.11 

5 15.711 14.989 0.224 1.178 1.018 0.015 1.039 0.987 0.004 1.005 0.215 0.002 

10 18.194 17.003 0.001 1.169 0.941 0.016 1.046 0.898 0.004 1.026 0.6 0.045 

100 

2 9.128 8.85 0.001 1.24 1.185 0.907 1.061 1.018 0 1.05 1.019 0.117 

5 15.711 15.295 0.03 1.178 1.096 0.003 1.035 0.976 0.012 1.008 0.709 0.007 

10 18.194 17.43 0.003 1.169 0.619 0 1.046 0.854 0.024 1.026 0.711 0 

200 

2 9.128 8.85 0.001 1.149 1.099 0 1.055 1.049 0 1.05 0.999 0.067 

5 13.583 13.27 0.051 1.004 0.594 0.088 1.018 1.003 0 1.024 0.964 0 

10 18.194 17.98 0.122 1.169 1.06 0 1.046 1.02 0.003 1.059 1.027 0.001 
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5.2 Results  

 In our study we present the comparison of the performance of the estimators that we 

used in our research work that is H.T estimator, Calibration estimator, and neural network 

calibration estimator. For this purpose we compute bias, mean square error (MSE) and 

scaled mean square (SMSE) of these estimators to compare the efficiency, the smaller the 

SMSE the greater the efficiency of the estimator or in other words the smallest the value 

MSE is good than others. We use Monte Carlo simulation then we analyze the results of 

our estimators.  
 

 Table 1 shows the results for MSE of the estimators when sample size is 25 and No. of 

parameters are (𝑝 = 1) the results of MSE, and SMSE are shown in table 1 and Table 2. 

We are interested in to check the efficiency of the estimators. In our given Table 1 and 2 

the results for neural network calibration we clearly see that the decreasing MSE and also 

decreasing the SMSE as compare to H.T estimator and Calibration estimator. We using 

neural network with signal hidden layer with two units. Neural network calibration 

performs better than others two. In others words calibration estimator is more efficient that 

H.T estimator and neural network calibration estimator is more efficient than calibration 

estimator and H.T estimator. We also check the performance of ANN calibration estimator 

in all four populations’ models by increasing sample size (25, 50, 100, 200), increasing no. 

units in hidden layer (2, 3, 4) with single auxiliary variable then we can clearly see that the 

MSE given in Table 1 decreasing in all cases. In this scenario neural network calibration 

estimator perform much better than others.  
 

 We also observed that by increasing sample size, increasing no. units in hidden layer 

with single auxiliary variable we can see that the neural networks calibration is most 

efficient than others two on the basis of results of MSE and SMSE. Furthermore, Table 3 

and Table 4 shows the results for all four populations by increasing No. of parameters also 

(𝑃 = 2, 5, 10) with single hidden layers with two units and see ANN calibration estimator 

also perform much better for all populations models as compare to calibration estimator 

and H.T estimator. 

 

6. CONCLUSIONS 
 

 The resulting estimators are more efficient when the functional relationship is complex. 

Additionally, we are studying and combining neural network model with model calibration 

estimation for a finite population total. Through neural network learning, we determine the 

functional relationship between the survey variable and the auxiliary variables. There has 

been considerable research on the use of neural networks for solving real-life problems, 

but their application for calibration improved model calibration makes for more flexible 

predictions as well as straightforward insertion of multivariate analytic information. Firstly 

we can see that neural network calibration results are all behave well or more efficient on 

the base of Bias, MSE and SMSE as compare to calibration and H.T estimator, comparable 

in terms of the number of units selected for the hidden layer. All populations benefit from 

neural networks' performance. Overall, compared to the parametric H.T. and Calibration 

estimators, our intended estimator contributed to a good boost in efficiency. The scaled 

mean square error (SMSE) for neural network calibration is for all populations, usually 

very near to zero. We conclude on the base of our results that our results for the neural 

network calibration is always more effective than other methods. We also observe the 
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results by increasing sample size and by increasing no. of parameters and see that neural 

network perform better in all situations and for all populations. The simulation studies are 

conducted for the univariate single variable case and also for multivariate variables and 

show that good gain in efficiency of neural network calibration with respect to the other 

parametric. 
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