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ABSTRACT 
 

 The main aim to formulate this research article is to introduce a modified distribution 

named as Lomax-Power Rayleigh Distribution LPRD. The Lomax distribution and Power 

Rayleigh Distribution are joined together using “Transformed –Transformer Family  

(T-X)” to get the LPRD. The structural properties of LPRD which includes survival rate 

hazard rate function, cumulative hazard rate, mills ratio are derived. Apart from these 

properties, mean, median, mode, harmonic mean and variance are obtained. Expressions 

for moment generating function and characteristic function are framed. The parameters of 

the distribution are estimated by maximum likelihood estimator method. At last Shanon’s 

Entropy and Order statistics of LPRD are derived. The LPRD resulted better fit when 

compared to some other distributions by inserting two bioscience data sets. 
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1. INTRODUCTION 
 

 Rayleigh distribution which was introduced by Lord Rayleigh in (1880) has a wide use 

in many fields of research. This model was basically derived in association with a problem 

in acoustics. It is considered to be the sophisticated one for the formation of new models 

by different statistical techniques using it as a parent distribution. Various authors have 

worked on this model due to its numerous flexible properties to generate new models. This 

flexibility of distribution leads it to many modifications to get more reliable and 

sophisticated models. Howlader and Hossain (1995), Voda (2005), Ahmad et al. (2014), 

Kundu and Raqab (2005), Merovci (2013), Ahmad et al. (2017), Gazal and Hasaballah 

(2017), Ajami and Jahanshahi (2017), Ateeq et al. (2019) and Sofi et al. (2019). Bhat et al. 

(2020), has introduced a new modified version of Rayleigh distribution named as Power 

Rayleigh distribution and Alzaatreh et al. (2013) suggested a general method that permits 

for many existing continuous distributions as the generator. Mathew et al. (2020), 

Nagarjuna et al. (2020), ZeinEldin et al. (2020), Almetwally et al. (2020) and Ijaz et al. 

(2020) recently, worked on Lomax distribution by considering different problems. 
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 Suppose 𝐹(𝑥) and 𝑝(𝑡) are the cumulative distribution function of any random variable 

𝑥 and probability density function of a non-negative continuous random variable 𝑡 

respectively. Then the cumulative distribution function of the generalized distribution 

defined by Alzaatreh is given by; 
 

𝐺(𝑥) = ∫ 𝑝(𝑡)𝑑𝑡
−𝑙𝑜𝑔[1−𝐹(𝑥)]

0

 (1.1) 

 

 The family of distribution defined in equation (1) is called “Transformed-Transformer” 

family or “T-X distribution family” suggested by Alzaatreh et al. (2013). The probability 

density function (pdf) to the cumulative distribution function (cdf) in (1) is given by; 
 

𝑔(𝑥) =
𝑓(𝑥)

1 − 𝐹(𝑥)
𝑝{−𝑙𝑜𝑔(1 − 𝐹(𝑥)} (1.2) 

 

 If a random variable ‘T’ follows Lomax Distribution with parameter θ and λ, we get; 
 

𝑝(𝑡) = 𝜃𝜆(1 + 𝜆𝑡)−(𝜃+1); 𝑡 > 0; 𝜃, 𝜆 > 0 (1.3) 
 

where 𝜃, 𝜆 are shape and scale parameter respectively. 
 

 Using equation (2), we will get the PDF of Lomax-X distribution as under; 
 

𝑔(𝑥) =
𝑓(𝑥)

1 − 𝐹(𝑥)
[𝜃𝜆 {1 + 𝜆 (−𝑙𝑜𝑔(1 − 𝐹(𝑥)))}

−(𝜃+1)

] (1.4) 

 

 In this paper we introduce the Lomax–X family where 𝑋 is the random variable 

following Power Rayleigh Distribution. 

 

2. LOMAX-POWER RAYLEIGH DISTRIBUTION T-X FAMILY 
 

 Suppose 𝑋 is a non-negative random variable following Power Rayleigh Distribution 

with probability density function 𝑓(𝑥) and cumulative distribution function 𝐹(𝑥) 
 

𝑓(𝑥) =
𝛼

𝛽2
𝑥2𝑎−1𝑒

−𝑥2𝛼

2𝛽2  ; 𝛼 > 0, 𝛽 > 0 (2.1) 

 

𝐹(𝑥) = 1 − 𝑒
−𝑥2𝛼

2𝛽2  (2.2) 
 

  Substituting equation (2.1) and (2.2) in equation (1. 4) then the pdf of Lomax-Power 

Rayleigh Distribution (LPRD) is given by; 
 

𝑔(𝑥) =

𝛼
𝛽2 𝑥2𝑎−1𝑒𝑒

−𝑥2𝛼

2𝛽2 

1 − (1 − 𝑒𝑒

−𝑥2𝛼

2𝛽2 
) [

 
 
 

𝜃𝜆 {1 + 𝜆 (−𝑙𝑜𝑔 (1 − (1 − 𝑒𝑒

−𝑥2𝛼

2𝛽2 
)))}

−(𝜃+1)

]
 
 
 

 

 

𝑔(𝑥) =
𝛼

𝛽2
(𝜃𝜆)𝑥2𝛼−1 {1 +

𝜆𝑥2𝛼

2𝛽2
}

−(𝜃+1)

; 𝑥 > 0, 𝛼, 𝛽, 𝜃, 𝜆 > 0 (2.3) 

 

where 𝑛 and 𝛼 are shape, 𝛽 and 𝜃 are scale parameters. 
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 The above equation is said to be Lomax-Power Rayleigh Distribution and is denoted 

by 𝐿𝑃𝑅𝐷(𝑛, α, β, θ). 
 

 The corresponding cdf of 𝐿𝑃𝑅𝐷(𝑛, α, β, θ) is  
 

𝐺(𝑥) = 1 −
(2𝛽2)𝜃

(2𝛽2 + 𝜆𝑥2𝛼)𝜃
. (2.4) 

 

3. STRUCTURAL PROPERTIES OF LOMAX-POWER  

RAYLEIGH DISTRIBUTION 
 

3.1 Survival Function  

 It deals with the probability of survival time t in living organisms and functional time 

in engineering and electronics. The survival function of LPRD is given as  
 

𝑆(𝑥) = 1 − G(x) = 1 − (1 −
(2β2)θ

(2β2 + λx2α)θ
 ) =  

(2β2)θ

(2β2 + λx2α)θ
 (3.1) 

 

3.2 Hazard Rate Function 

  The probability that a component will fail or die in a particular interval of time t. The 

hazard rate function of LPRD is given as  
 

ℎ(𝑥) =
𝑔(𝑥)

𝑆(𝑥)
=

[
𝛼
𝛽2 (𝜃𝜆)𝑥2𝛼−1 {1 +

𝜆𝑥2𝛼

2𝛽2 }
−(𝜃+1)

]

[
(2β2)θ

(2β2 + λx2α)θ]

= 2𝛼𝜆𝜃 (
2𝛽2

𝑥2𝛼
+ 𝜆)

−1

 (3.2) 

 

3.3 Cumulative Hazard Rate  

 The cumulative hazard rate function of LPRD is given by  
 

𝐶𝐻𝑅 = −𝑙𝑜𝑔𝑆(𝑥)  = −𝑙𝑜𝑔 [
(2β2)θ

(2β2 + λx2α)θ
 ] = 𝜃𝑙𝑜𝑔𝜆𝑥2𝛼 (3.3) 

 

3.4 Mills Ratio 

 The Mills ratio of LPRD is 
 

𝑀𝑅 =
𝐺(𝑥)

1 − 𝐺(𝑥)
=

[1 −
(2𝛽2)𝜃

(2𝛽2 + 𝜆𝑥2𝛼)𝜃]

[
(2𝛽2)𝜃

(2𝛽2 + 𝜆𝑥2𝛼)𝜃]

= [
(2𝛽2 + 𝜆𝑥2𝛼)𝜃

(2𝛽2)𝜃
− 1] (3.4) 
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Graphical representation of PDF, CDF, Hazard Rate Function of LPRD for different 

values of parameters  
 

 
Figure 1: Density Plots of LPRD (t-x) for Different Values  

of Shape and Scale Parameters 

 
Figure 2: Distribution Function Plots of (LPRD (t-x)) for Different  

Values of Shape and Scale Parameters 
 

 
Figure 3: Survival Rate Function Plots of (LPRD (t-x)) for  

Different Values of Shape and Scale Parameters 
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Figure 4: Hazard Rate Function Plots of (LPRD (t-x)) for Different  

Values of Shape and Scale Parameters 

 

3.5 Moments 
 Moments are very important statistical measures of a probability model. In this section, 

raw moments of LPRD are derived. If ‘x’ is a random variable following LPRD then 
 

𝜇𝑟
′ = 𝐸(𝑥) = ∫ 𝑥𝑟𝑔(𝑥)𝑑𝑥

∞

0

 

 = ∫ 𝑥𝑟
∞

0

𝛼

𝛽2
(𝜃𝜆)𝑥2𝛼−1 {1 +

𝜆𝑥2𝛼

2𝛽2
}

−(𝜃+1)

𝑑𝑥 

 

 Solving the above equation by making the substitution of {(
𝜆𝑥2𝛼

2𝛽2 ) = 𝑚}, we get; 
 

𝜇𝑟
′ = (

2

λ
)

r
2α

β
r
αθ [

 (θ −
αr
2

) (1 +
αr
2

)

(1 + θ)
] (3.5.1) 

 

 Putting 𝑟 = 1,2,3,4 we get the first four moments of LPRD. 
 

𝜇1
′ = (

2

λ
)

1
2α

β
1
αθ [

 (θ −
α
2
) (1 +

α
2
)

(1 + θ)
] (3.5.2) 

 

𝜇2
′ = (

2

λ
)

1
α

β
2
αθ [

(θ − α)(1 + α)

(1 + θ)
] (3.5.3) 

 

𝜇3
′ = (

2

λ
)

3
2α

β
3
αθ [

 (θ −
3α
2

) (1 +
3α
2

)

(1 + θ)
] (3.5.4) 

 

𝜇4
′ = (

2

λ
)

2
α

β
4
αθ [

(θ − 2α)(1 + 2α)

(1 + θ)
] (3.5.5) 

 

𝜇1
′ Represents the mean of LPRD and  𝜇2 represents the variance of LPRD. Therefore 
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𝜇2 = 𝜇2
′ − (𝜇1

′)2 

= (
2

λ
)

1
α

β
2
αθ [

(θ − α)(1 + α)

(1 + θ)
] − {(

2

λ
)

1
2α

β
1
αθ [

 (θ −
α
2
) (1 +

α
2
)

(1 + θ)
] }

2

 

= (
2

λ
)

1
α

β
2
α

θ

((1 + θ))
2 [(θ − α)(1 + α)(1 + θ)

− θ( (θ −
α

2
))

2

( (1 +
α

2
))

2

]. 

 

 

(3.5.6) 

 

3.6 Harmonic Mean 

 The harmonic mean of LPRD is given by  
 

1

𝐻
= 𝐸 (

1

𝑥
) 

= ∫
1

𝑥
𝑔(𝑥)𝑑𝑥

∞

0

 

= ∫
1

𝑥

∞

0

𝛼

𝛽2
(𝜃𝜆)𝑥2𝛼−1 {1 +

𝜆𝑥2𝛼

2𝛽2
}

−(𝜃+1)

𝑑𝑥 

=
𝜃

𝛽
1
𝛼(2𝜆)

1
2𝛼

[
 (1 −

α
2
) (

α
2

+ θ)

(1 + θ)
]. (3.6) 

 

3.7 Mode and Median of LPRD  

 The mode of LPRD is derived as under  
 

log 𝑔(𝑥) = 𝑙𝑜𝑔 [𝜆𝑥2𝛼−1 (
𝛼𝜃

𝛽2
) (1 +

𝜆𝑥2𝛼

2𝛽2
)

−(𝜃+1)

] (3.7.1) 

 

 Substituting value of g(x) from equation (2.3) in equation (3.7), we get; 
 

= 𝑙𝑜𝑔 (
𝜆𝛼𝜃

𝛽2
) + (2𝛼 − 1)𝑙𝑜𝑔𝑥 − (𝜃 + 1)𝑙𝑜𝑔 (1 +

𝜆𝑥2𝛼

2𝛽2
) (3.7.2) 

 

 Differentiating the above equation w.r.t x, then equating to zero to get the mode of 

LPRD 
 

𝜕𝐿𝑜𝑔 𝐿

𝜕𝑥
=

(2𝛼 − 1)

𝑥
−

2𝜆(𝜃 + 1)𝑥2𝛼−1

(2𝛽2 + 𝜆𝑥2𝛼)
 (3.7.3) 

 

(2𝛼 − 1)

2𝜆(𝜃 + 1)
−

𝑥2𝛼

(2𝛽2 + 𝜆𝑥2𝛼)
= 0 

 

𝑀𝑜 = 𝑥 = (
2𝛽2(2𝛼 − 1)

2𝜆𝜃 − 2𝛼 + 3𝜆
)

1
2𝛼⁄

 (3.7.4) 
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 The median of LPRD is defined as under; 
 

𝑀𝑑 =
1

3
𝑀𝑜 +

2

3
𝜇1

′ (3.7.5) 

 

 Using equations (3.5.2) and (3.7.4) in equation (3.7.5), we get the mode of LPRD as 
 

𝑀𝑑 =
𝟏

𝟑
(

2𝛽2(2𝛼 − 1)

2𝜆𝜃 − 2𝛼 + 3𝜆
)

𝟏
𝟐𝜶⁄

+
𝟐

𝟑
(
2

λ
)

1
2α

β
1
αθ [

 (θ −
α
2
) (1 +

α
2
)

(1 + θ)
]. (3.7.6) 

 

4. MOMENT GENERATING FUNCTION AND  

CHARACTERISTIC FUNCTION 
 

 Here moment generating function and characteristic function of LPRD are derived. 

 

4.1 Moment Generating Function  

 Suppose “x” is a random variable following LPRD, then MGF of ‘x’ is defined as 
 

𝑀𝑥(𝑡) = 𝐸𝑒(𝑡𝑥) 

= ∫ 𝑒(𝑡𝑥)𝑔(𝑥)dx 
∞

0

 

= ∫ 𝑒(𝑡𝑥) [
𝛼

𝛽2
(𝜃𝜆)𝑥2𝛼−1 {1 +

𝜆𝑥2𝛼

2𝛽2
}

−(𝜃+1)

] dx 
∞

0

 

= ∫ {1 + 𝑡𝑥 +
(𝑡𝑥)2

2!
+

(𝑡𝑥)3

3!
− − −} [

𝛼

𝛽2
(𝜃𝜆)𝑥2𝛼−1 {1 +

𝜆𝑥2𝛼

2𝛽2
}

−(𝜃+1)

] 𝑑𝑥
∞

0

 

= ∑
(𝑡)𝑟

𝑟!

𝑛

𝑟=0

𝜇1
′ 

 

𝑀𝑥(𝑡) = ∑
(𝑡)𝑟

𝑟!

𝑛

𝑟=0

(
2

λ
)

1
2α

β
1
αθ [

 (θ −
α
2
) (1 +

α
2
)

(1 + θ)
]. (4.1) 

 

4.2 Characteristic Function  

 Suppose “x” is a random variable following LPRD, then CF of ‘x’ is defined as 
 

𝜙𝑥(𝑡) = 𝐸𝑒(𝑖𝑡𝑥) = ∑
(𝒊𝒕)𝒓

𝒓!

𝒏

𝒓=𝟎

𝜇1
′. (4.2) 

 

5. MAXIMUM LIKELIHOOD ESTIMATION 
 

 To estimate the parameters of a statistical distribution, maximum likelihood estimator 

is the most trendy method. Let 𝑥1, 𝑥2, 𝑥3, 𝑥4, … …… … , 𝑥𝑛 follows LPRD then the 

maximum likelihood estimator L of LPRD is defined as; 
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𝐿 = ∏ 𝑔(𝑥)

𝑛

𝑖=1

 

= ∏ [
𝛼

𝛽2
(𝜃𝜆)𝑥2𝛼−1 {1 +

𝜆𝑥2𝛼

2𝛽2
}

−(𝜃+1)

]

𝑛

𝑖=1

 

 

𝐿 = (
𝛼𝜃𝜆

𝛽2
)

𝑛

∏ 𝑥𝑖
2𝛼−1 (1 +

𝜆𝑥𝑖
2𝛼

2𝛽2
)

−(𝜃+1)𝑛

𝑖=1

 (5.1) 

 

 Applying Log on both sides of Likelihood Function (5.1) to get the Log Likelihood 

function of LPRD as 
 

𝐿𝑜𝑔 𝐿 = 𝐿𝑜𝑔 [(
𝛼𝜃𝜆

𝛽2
)

𝑛

∏ 𝑥𝑖
2𝛼−1 (1 +

𝜆𝑥𝑖
2𝛼

2𝛽2
)

−(𝜃+1)𝑛

𝑖=1

 ] (5.2) 

= 𝐿𝑜𝑔 (
𝛼𝜃𝜆

𝛽2
)

𝑛

+ 𝐿𝑜𝑔 [∏ 𝑥𝑖
2𝛼−1 +

𝑛

𝑖=1

(1 +
𝜆𝑥𝑖

2𝛼

2𝛽2
)

−(𝜃+1)

] 

= 𝑛𝑙𝑜𝑔(𝛼𝜃𝜆) − 2𝑛𝑙𝑜𝑔𝛽 + ∑ 𝐿𝑜𝑔

𝑛

𝑖=1

𝑥𝑖
2𝛼−1 + ∑ 𝐿𝑜𝑔 (

2𝛽2 + 𝜆𝑥𝑖
2𝛼

2𝛽2
)

−(𝜃+1)𝑛

𝑖=1

 

= 𝑛𝑙𝑜𝑔𝛼 + 𝑛𝑙𝑜𝑔 𝜃 + 𝑛𝑙𝑜𝑔 𝜆 − 2𝑛𝑙𝑜𝑔

+ (2𝛼 − 1) ∑𝐿𝑜𝑔𝑥𝑖 − (𝜃 + 1)

𝑛

𝑖=1

∑𝐿𝑜𝑔

𝑛

𝑖=1

(
2𝛽2 + 𝜆𝑥𝑖

2𝛼

2𝛽2
) 

= 𝑛𝑙𝑜𝑔𝛼 + 𝑛𝑙𝑜𝑔 𝜃 + 𝑛𝑙𝑜𝑔 𝜆 − 2𝑛𝑙𝑜𝑔𝛽

+ (2𝛼 − 1) ∑𝐿𝑜𝑔𝑥𝑖 − (𝜃 + 1)

𝑛

𝑖=1

∑𝐿𝑜𝑔

𝑛

𝑖=1

(2𝛽2 + 𝜆𝑥𝑖
2𝛼)

+ (𝜃 + 1) ∑𝐿𝑜𝑔

𝑛

𝑖=1

(2𝛽2) (5.3) 

 

 Differentiating equation (5.3) partially w.r.t 𝛼 we get;  
 

𝜕𝐿𝑜𝑔 𝐿

𝜕𝛼
=

𝑛

𝛼
+ 2∑ 𝐿𝑜𝑔

𝑛

𝑖=1

(𝑥𝑖) − 2(𝜃 + 1)𝜆 ∑𝐿𝑜𝑔

𝑛

𝑖=1

(𝑥𝑖) (5.4) 

 

 Equating 
𝜕𝐿𝑜𝑔 𝐿

𝜕𝛼
= 0 in equation (5.4) to get the estimate of 𝛼; 

 

𝑛

𝛼
= 2(𝜃 + 1)𝜆 ∑𝐿𝑜𝑔

𝑛

𝑖=1

(𝑥𝑖) − 2∑𝐿𝑜𝑔

𝑛

𝑖=1

(𝑥𝑖) 

 

𝑛

𝛼
= 2∑𝐿𝑜𝑔

𝑛

𝑖=1

(𝑥𝑖)[(𝜃 + 1)𝜆 − 1] 
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�̂� =
𝑛

2∑ 𝐿𝑜𝑔𝑛
𝑖=1 (𝑥𝑖)[(𝜃 + 1)𝜆 − 1]

 (5.5) 

 

 Differentiating equation (5.3) partially w.r.t 𝜃 we get;  
 

𝜕𝐿𝑜𝑔 𝐿

𝜕𝜃
=

𝑛

𝜃
− 2𝛼𝜆 ∑𝐿𝑜𝑔

𝑛

𝑖=1

(𝑥𝑖) (5.6) 

 

 Equating 
𝜕𝐿𝑜𝑔 𝐿

𝜕𝜃
= 0 in equation (5.6) to get the estimate of 𝜃; 

 

0 =
𝑛

𝜃
− 2𝛼𝜆 ∑𝐿𝑜𝑔

𝑛

𝑖=1

(𝑥𝑖) 

 

𝑛

𝜃
= 2𝛼𝜆 ∑ 𝐿𝑜𝑔

𝑛

𝑖=1

(𝑥𝑖) 

 

�̂� =
𝑛

2𝛼𝜆 ∑ 𝐿𝑜𝑔𝑛
𝑖=1 (𝑥𝑖)

 (5.7) 

 

 Differentiating equation (5.3) partially w.r.t 𝜆 we get;  
 

𝜕𝐿𝑜𝑔 𝐿

𝜕𝜆
=

𝑛

𝜆
− 2𝛼(𝜃 + 1)∑ 𝐿𝑜𝑔

𝑛

𝑖=1

(𝑥𝑖) (5.8) 

 

 Equating 
𝜕𝐿𝑜𝑔 𝐿

𝜕𝜆
= 0in equation (5.8) to get the estimate of 𝜆; 

 

0 =
𝑛

𝜆
− 2𝛼(𝜃 + 1) ∑𝐿𝑜𝑔

𝑛

𝑖=1

(𝑥𝑖) 

 

𝑛

𝜆
= 2𝛼(𝜃 + 1)∑ 𝐿𝑜𝑔

𝑛

𝑖=1

(𝑥𝑖) 

 

�̂� =
𝑛

2𝛼(𝜃 + 1) ∑ 𝐿𝑜𝑔𝑛
𝑖=1 (𝑥𝑖)

. (5.9) 

 

6. SHANON’S ENTROPY 
 

 If 𝑥1, 𝑥2, 𝑥3, 𝑥4, … … …… , 𝑥𝑛 follows LPRD then Shanon’s Entropy of LPRD is defined 

as; 
 

𝐻(𝑥) = −𝐸[𝐿𝑜𝑔𝑔(𝑥)] = −𝐸 [𝐿𝑜𝑔 {
𝛼

𝛽2
(𝜃𝜆)𝑥2𝛼−1 (1 +

𝜆𝑥2𝛼

2𝛽2
)

−(𝜃+1)

}] 

= −𝐸 (𝐿𝑜𝑔
𝛼𝜃𝜆

𝛽2
) − (2𝛼 − 1)𝐸(𝐿𝑜𝑔𝑥) − (𝜃 + 1)𝐸 [𝐿𝑜𝑔 (1 +

𝜆𝑥2𝛼

2𝛽2
)

−(𝜃+1)

] 

 (6.1) 
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now  
 

𝐸(𝐿𝑜𝑔𝑥) = ∫ (𝑙𝑜𝑔 𝑥)
∞

0

𝑔(𝑥)𝑑𝑥 

= ∫ (𝑙𝑜𝑔 𝑥)
∞

0

[
𝛼

𝛽2
(𝜃𝜆)𝑥2𝛼−1 {1 +

𝜆𝑥2𝛼

2𝛽2
}

−(𝜃+1)

] 𝑑𝑥 

 

=
𝛽2

𝛼𝜆(𝜃 − 1)
 (6.2) 

 

𝐸 (𝐿𝑜𝑔 (1 +
𝜆𝑥2𝛼

2𝛽2
)) = ∫ 𝐿𝑜𝑔 (1 +

𝜆𝑥2𝛼

2𝛽2
) [

𝛼

𝛽2
(𝜃𝜆)𝑥2𝛼−1 (1 +

𝜆𝑥2𝛼

2𝛽2
)

−(𝜃+1)

] 𝑑𝑥
∞

0

 

 

 Making substitution and solving the above integral we get; 
 

𝐸 (𝐿𝑜𝑔 (1 +
𝜆𝑥2𝛼

2𝛽2
)) = 0 (6.3) 

 

 Substituting the values from equation (6.2) and (6.3) in equation (6.1), we get the 

Shanon’s entropy as 
 

𝐻(𝑥) = −(2𝛼 − 1)
𝛽2

𝛼𝜆(𝜃 − 1)
. (6.4) 

 

7. ORDER STATISTICS 
 

 Let 𝑥1, 𝑥2, 𝑥3, 𝑥4, …… … … , 𝑥𝑛 follows LPRD then 𝑘𝑡ℎ of LPRD is defined as; 
 

𝑓𝑥(𝑘)(𝑥) =
𝑛!

(𝑘 − 1)! (𝑛 − 𝑘)!
[𝐺(𝑥)]𝑘−1[1 − 𝐺(𝑥)]𝑛−𝑘𝑔(𝑥) (7.1) 

 

 Substituting the value of 𝑔(𝑥) and 𝐺(𝑥) from (2.3) and (2.4) in (7.1) we get; 
 

𝑓𝑥(𝑘)(𝑥) =
𝑛!

(𝑘 − 1)! (𝑛 − 𝑘)!
[1 −

(2𝛽2)𝜃

(2𝛽2 + 𝜆𝑥2𝛼)𝜃
 ]

𝑘−1

[1

− {1 −
(2𝛽2)𝜃

(2𝛽2 + 𝜆𝑥2𝛼)𝜃
 }]

𝑛−𝑘

[
𝛼

𝛽2
(𝜃𝜆)𝑥2𝛼−1 {1 +

𝜆𝑥2𝛼

2𝛽2
}

−(𝜃+1)

] 

 (7.2) 
 

 Put 𝑘 = 1 in equation (7.2) we get the 1st order statistics of LPRD as  
 

𝑓𝑥(1)(𝑥) = 𝑛 [
(2𝛽2)𝜃

(2𝛽2 + 𝜆𝑥2𝛼)𝜃
]

𝑛−1

 (7.3) 

 

 Put 𝑘 = 𝑛 in equation (7.2) we get the nth order statistics of LPRD as 
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𝑓𝑥(𝑛)(𝑥) =
𝑛!

(𝑛 − 1)! (𝑛 − 𝑛)!
[1 −

(2𝛽2)𝜃

(2𝛽2 + 𝜆𝑥2𝛼)𝜃
 ]

𝑛−1

[1

− {1 −
(2𝛽2)𝜃

(2𝛽2 + 𝜆𝑥2𝛼)𝜃
 }]

𝑛−𝑛

[
𝛼

𝛽2
(𝜃𝜆)𝑥2𝛼−1 {1 +

𝜆𝑥2𝛼

2𝛽2
}

−(𝜃+1)

] 

 

𝑓𝑥(𝑛)(𝑥) = 𝑛 [1 −
(2𝛽2)𝜃

(2𝛽2 + 𝜆𝑥2𝛼)𝜃
 ]

𝑛−1

[
𝛼

𝛽2
(𝜃𝜆)𝑥2𝛼−1 {1 +

𝜆𝑥2𝛼

2𝛽2
}

−(𝜃+1)

]. (7.4) 

 

DATA ANALYSIS 
 

 This section is devoted to demonstrate the importance, flexibility and appropriateness 

of the PRD by means of two real data sets. For illustrating the significance and the 

potentiality of the proposed probability model, we compare the goodness-of-fit of the 

proposed model with the lifetime models. 
 

 For collation purposes the various criterions of goodness-of-fit such as AIC, BIC, AICC 

and HQIC. The statistic with smaller value along with large p-value is considered to be the 

best fit. For analysis purposes, the numerical results are obtained using R software. 

 

Data Set 1: 

 The data set represents the remission times (in months) of a random sample of 128 

bladder cancer patients. The observations are follows 

0.08, 2.09, 2.73, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.22, 3.52, 4.98, 6.99, 

9.02, 13.29, 0.40, 2.26,3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 

7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 

2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 

34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 

7.62, 10.75, 15.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 

4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 

3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 

3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 

3.36, 6.93, 8.65, 12.63, 22.69 
 

The summary of the data is given in Table 1. 

 

Table 1 

Summary of Data 

DATA 1 
Min Mean Median Variance 1st Qu. 3rd Qu. Max 

0.080 9.311 6.050 112.178 3.295 11.678 79.050 
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Plot of empirical Cdf and LPR (t-x) distribution Cdf for the first data set 
 

Estimated sd Estimated Skewness Estimated kurtosis 

10.59141 3.359174 19.24389 

 

Correlation Matrix: 
 

 α Β 𝝀 𝜽 

α 1.000000000 -0.02302501 -0.007090258 -0.81598127 

β -0.023025009 1.00000000 0.998673827 0.05407217 

𝝀 -0.007090258 0.99867383 1.000000000 0.01444231 

𝜽 -0.815981267 0.05407217 0.014442307 1.00000000 
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Table 2 

Goodness-of-Fit Statistics for Data Set 1st 

Distribution −𝒍𝒐𝒈 𝒍 AIC BIC AICC HQIC 𝑲 − 𝑺 p-value 

RD 451.45 957.62 960.44 957.65 958.77 0.39 0.396 

WRD 452.11 959.77 965.42 959.87 962.06 0.40 0.287 

AD 413.47 828.94 831.76 829.14 836.38 0.16 0.025 

WAD 489.35 980.71 983.53 980.91 988.15 0.48 0.349 

IAD 499.23 1007.63 1010.45 1007.83 1015.07 0.49 0.256 

MARD 400.63 803.41 811.88 803.61 806.84 0.06 0.004 

LPRD(t-x) 399.79 800.05 811.33 800.26 801.50 0.04 0.859 

 

Table 3 

The Estimation of Parameters for the First Data Set 

Distribution 
Estimated Parameters 

α β 𝝀 𝜽 

RD 9.9490195 - - - 

WRD - 0.05007203 - -0.1244486 

AD 0.107404257 - - - 

WAD 0.214803804 - - - 

IAD 2.4395558 - - - 

MARD 24.42251460 0.11388888 0.14964964 - 

LPRD(t-x) 3.879059e-01 1.440249e+03 1.287530e+01 2.028223e+04 

 

Data Set II: 

 This data represents the survival times, in weeks of 33 patients suffering from acute 

myelogenous leukemia. The data is as follows: 

65, 156, 100, 134, 16, 108, 121, 4, 39, 143, 56, 26, 22, 1, 1, 5, 65, 56, 65, 17, 7, 

16, 22, 3, 4, 2, 3, 8, 4, 3, 30, 4, 43 

 

The summary of the data is given in Table 4. 

 

Table 4 

Summary of Data 

DATA 2 
Min Mean Median Variance 1st Qu. 3rd Qu. Max 

1.00 40.88 22.00 2181.17 4.00 65.00 156.00 
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Plot of empirical Cdf and LPR (𝑡 − 𝑥) distribution Cdf for the second data set 
 

Estimated sd Estimated Skewness Estimated kurtosis 

46.70302 1.220773 3.349298 

 

Correlation Matrix: 
 

 α β 𝝀 𝜽 

α 1.00000000  0.1446169 0.1215145 0.08912248 

β 0.14461694  1.0000000 0.9562662 0.92716450 

𝝀 0.12151452  0.9562662 1.0000000 0.77906678 

𝜽 0.08912248  0.9271645 0.7790668 1.00000000 
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Table 5 

Goodness-of-Fit Statistics for Data Set 2nd 

Distribution −𝒍𝒐𝒈 𝒍 AIC BIC AICC HQIC 𝑲 − 𝑺 p-value 

RD 227.17 379.27 380.76 379.40 379.77 0.38 0.768 

WRD 229.23 381.34 384.33 381.74 382.34 0.39 0.648 

AD 220.63 349.554 354.044 350.382 351.065 0.33 0.007 

WAD 217.79 437.589 439.086 438.417 443.100 0.29 0.821 

IAD 225.81 366.123 367.619 366.950 371.633 0.37 0.068 

MARD 171.77 345.543 347.039 346.370 351.054 0.19 0.057 

LPRD(t-x) 154.12 315.198 321.184 316.001 314.685 0.07 0.899 

 

Table 6 

The Estimation of Parameters for the Second Data Set 

Distribution 
Estimated Parameters 

α β 𝝀 𝜽 

RD 43.509490 - - - 

WRD - 0.001000 - 43.498617 

AD 0.024468886 - - - 

WAD 0.048926949 - - - 

IAD 6.0070564 - - - 

MARD 22.355941413 0.001000000 0.24451324 - 

LPRD(t-x) 0.71597061 1.22656707 0.09069990 2.00484542 

 

CONCLUSION 
 

 The T-X generator is used in this piece of research to join the two distributions namely 

Lomax and Power Rayleigh Distribution, which formed Lomax–Power Rayleigh (T-X) 

distribution (LPRD). The structural properties, Generating Functions and Shanon’s entropy 

of the said distribution is derived. The Probability density function, Cumulative 

distribution function, reliability function and hazard rate function are represented by 

graphical plots. Finally a real life data set is fitted in the new distribution where the 

distribution performed very well when compared to parallel distributions. 
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