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ABSTRACT 
 

 In this paper, point and interval estimations under modified Weibull (𝑀𝑊) distribution 

have been studied based on progressive first-failure censored scheme. The Bayes estimates 

(𝐵𝐸′𝑠) have been computed based on squared error (𝑆𝐸) and (Linex) loss functions and 

using Markov Chain Monte Carlo (𝑀𝐶𝑀𝐶) algorithm. Also, based on this censoring 

scheme, the interval estimation problem of the parameters of 𝑀𝑊 distribution have been 

studied. A Monte Carlo simulation study has been carried out to compare the performances 

of the different methods by computing the mean squared errors (𝑀𝑆𝐸′𝑠). Finally, point and 

interval estimates for all parameters have been studied based on a real data set as an 

illustrative example. 
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1. INTRODUCTION 
 

 The Weibull distribution is one of the most popular and widely used models of failure 

time in life testing and reliability theory. The Weibull distribution are shown to be useful 

for modeling and analysis of life time data in medical, biological and engineering sciences. 

Applications of the Weibull distribution in various fields are given in Zaharim et al. [23], 

Gotoh et al. [6], Shamilov et al. [16], Vicen-Bueno et al. [21], Niola et al. [15] and Green 

et al. [7]. A great deal of research is done on estimating the parameters of the Weibull 

distribution using both classical and Bayesian techniques, and a very good summary of this 

work can be found in Johnson et al. [10]. Hossain and Zimmer [8] have discussed some 

comparisons of estimation methods for Weibull parameters using complete and censored 

samples. Jaheen and Harbi[9] studied the Bayesian estimation of the exponentiated Weibull 

distribution using Markov chain Monte Carlo simulation. The modified Weibull 
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distribution was proposed by Lai et al. [12] as a new lifetime distribution. They have shown 

the capability of the model for modeling a bathtub-shaped hazard-rate function. In addition, 

they characterized the model through the Weibull plot paper. Further, they have shown that 

the modified Weibull model compares well with other competing models to fit data that 

exhibit a bathtub-shaped hazard-rate function. Sultan [17] studied the record values from 

the modified Weibull distribution and studied its applications. Ateya and Alharthi [2,3] 

studied the estimation problem under a finite mixture of 𝑀𝑊 distribution using the 

traditional maximum likelihood method and using the 𝐸𝑀 algorithm. Vasile et al. [20] used 

the Bayes method to estimate the parameters of the modified Weibull distribution and 

Upadhyaya and Gupta [18] studied the Bayes analysis of the modified Weibull distribution 

using Markov chain Monte Carlo simulation. Ateya [1] study the estimation problem under 

a censored sample of generalized order statistics from 𝑀𝑊 distribution. Mohammed et al. 

[13] studied the estimation problem based on progressive first-failure censored scheme 

under exponentiated exponential distribution. Also, Kotb and Raqab [11] studied the 

statistical inference problem for modified Weibull distribution based on progressively 

type-II censored data. 
 

 A random variable 𝑋 has a 𝑀𝑊 distribution with the parameters 𝛽, 𝜏 and 𝜆 if its 

probability density function (𝑝𝑑𝑓) is given by 
 

 𝑓(𝑥|𝛽, 𝜏, 𝜆) = 𝜏(𝛽 + 𝜆𝑥)𝑥𝛽−1 𝑒𝑥𝑝( 𝜆𝑥) 𝑒𝑥𝑝( − 𝜏𝑥𝛽𝑒𝜆𝑥), 
𝑥 ≥ 0, (𝜏 > 0, 𝛽 ≥ 0, 𝜆 ≥ 0). 

 

(1.1) 
 

 The cumulative distribution function (𝑐𝑑𝑓) of this distribution can be written as 
 

  𝐹(𝑥|𝛽, 𝜏, 𝜆) = 1 − 𝑒𝑥𝑝( − 𝜏𝑥𝛽𝑒𝜆𝑥).            (1.2) 

  

2. A PROGRESSIVE FIRST-FAILURE CENSORING SCHEME 
 

 In this section, the first-failure censoring is combined with progressive censoring 

scheme as in Wu and Ku𝑠 [22]. Suppose that 𝑛 independent groups with 𝑘 items within 

each group are put on life test. 𝑅1 groups and the group in which the first failure is observed 

are randomly removed from the test as soon as the first failure 𝑋1;𝑚,𝑛,𝑘
𝑅  has occurred,  

𝑅2 groups and the group in which the second failure is observed are randomly removed 

from the test as soon as the second failure 𝑋2;𝑚,𝑛,𝑘
𝑅  has occurred, and finally when the  

𝑚th failure 𝑋𝑚;𝑚,𝑛,𝑘
𝑅  is observed, the remaining groups 𝑅𝑚 are removed from the test.  

Then 𝑋1;𝑚,𝑛,𝑘
𝑅 < 𝑋2;𝑚,𝑛,𝑘

𝑅 <. . . < 𝑋𝑚;𝑚,𝑛,𝑘
𝑅  are called progressively first-failure censored 

order statistics with the progressive censored scheme 𝑅 = (𝑅1, 𝑅2, . . . , 𝑅𝑚). It is clear  

that 𝑛 = 𝑚 + ∑ 𝑅𝑖
𝑚
𝑖=1 . If the failure times of the 𝑛 × 𝑘 items originally in the test are  

from a continuous population with 𝑐𝑑𝑓 𝐹(𝑥) and 𝑝𝑑𝑓 𝑓(𝑥), the joint 𝑝𝑑𝑓 for 

𝑋1;𝑚,𝑛,𝑘
𝑅 , 𝑋2;𝑚,𝑛,𝑘

𝑅 , . . . , 𝑋𝑚;𝑚,𝑛,𝑘
𝑅  is given by Wu and Ku𝑠 [22] as follows: 

 

𝑓1,2,…,𝑚(𝑋1;𝑚,𝑛,𝑘
𝑅 , 𝑋2;𝑚,𝑛,𝑘

𝑅 , … , 𝑋𝑚;𝑚,𝑛,𝑘
𝑅 ) 

= 𝐴𝑘𝑚 ∏ 𝑓(𝑥𝑖;𝑚,𝑛,𝑘
𝑅 )[1 − 𝐹(𝑥𝑖;𝑚,𝑛,𝑘

𝑅 )]𝑘(𝑅𝑖+1)−1𝑚
𝑖=1 ,  

 0 < 𝑥1;𝑚,𝑛,𝑘
𝑅 < 𝑥2;𝑚,𝑛,𝑘

𝑅 <. . . < 𝑥𝑚;𝑚,𝑛,𝑘
𝑅 < ∞, (2.1) 

where  

 𝐴 =  𝑛(𝑛 − 𝑅1 − 1)(𝑛 − 𝑅1 − 𝑅2 − 2) 

. . . (𝑛 − 𝑅1 − 𝑅2−. . . −𝑅𝑚−1 − 𝑚 + 1) 
(2.2) 
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 This censoring scheme has advantages in terms of reducing test time, in which more 

items are used but only 𝑚 of 𝑛 × 𝑘 items are failures. Note that using the above notation, 

some censoring rules can be accommodated such as the first-failure censored order 

statistics when 𝑅 = (0,0, . . . ,0), a progressive type-II censored order statistics when  

𝑘 = 1, a usual type-II censored order statistics when 𝑘 = 1 and 𝑅 = (0,0, . . . , 𝑛 − 𝑚), and 

a complete sample if 𝑘 = 1 and 𝑅 = (0,0, . . . ,0), with 𝑛 = 𝑚. Also, it should be noted that 

the progressive first-failure censored sample 𝑋1;𝑚,𝑛,𝑘
𝑅 , 𝑋2;𝑚,𝑛,𝑘

𝑅 , . . . , 𝑋𝑚;𝑚,𝑛,𝑘
𝑅  with 𝑐𝑑𝑓 𝐹(𝑥), 

can be viewed as a progressive type-II censored sample from a population with 𝑐𝑑𝑓  

1 − (1 − 𝐹(𝑥))𝑘.  

 

3. POINT ESTIMATION 
 

3.1 Maximum Likelihood Estimation 

 Let 𝑋𝑖 = 𝑋𝑖;𝑚,𝑛,𝑘
𝑅 , 𝑖 = 1,2, . . . , 𝑚, be the progressive first-failure censored order 

statistics from 𝑀𝑊 distribution with censored scheme 𝑅 = (𝑅1, 𝑅2, . . . , 𝑅𝑚) and its 

realization denoted by 𝑥𝑖;𝑚,𝑛,𝑘
𝑅 , 𝑖 = 1,2, . . . , 𝑚 which can be written for simplicity as  

𝑥 = (𝑥1, . . . , 𝑥𝑚). The likelihood function of the parameters 𝛽, 𝜏 and 𝜆 given the vector of 

observations 𝑥 can be obtained by substituting from (1.1) and (1.2) in (2.1) to be of the 

form 
 

 𝐿 (𝛽, 𝜏, 𝜆|𝑥)  𝛼 𝜏𝑚 ∏ (𝛽 + 𝜆𝑥𝑖)𝑥𝑖
𝛽−1𝑚

𝑖=1   

𝑒𝑥𝑝(𝜆𝑥𝑖) 𝑒𝑥𝑝[−𝑘(𝑅𝑖 + 1) 𝜏𝑥𝑖
𝛽
𝑒𝜆𝑥𝑖],   𝛽 > 0,  𝜏 > 0,  𝜆 > 0. 

(3.1) 

 

 By taking the natural logarithm for the likelihood function (3.1), differentiating with 

respect to all parameters and then setting to zero, three nonlinear equations will be 

obtained. By solving these nonlinear equations numerically, the maximum likelihood 

estimates (𝑀𝐿𝐸′𝑠) of all parameters have been obtained.  

 

3.2 Bayes Estimation 

 Suppose that the prior belief of the experimenter is measured by the trivariate prior 

suggested by Ateya[1] which of the form 
 

 
𝜋(𝛽, 𝜏, 𝜆)  ∝   

1

𝛤(𝛽)
𝛽𝑐1+𝑐3−1 𝜏𝛽+𝑐3−1 𝜆𝛽−1 𝑒𝑥𝑝[ − 𝛽 (𝜏 + 𝑐2) − 𝜏 𝜆], 

𝛽 > 0,  𝜏 > 0,  𝜆 > 0, (𝑐1 > 0, 𝑐2 > 0, 𝑐3 > 0), 

(3.2) 

 

where 𝒄𝟏, 𝒄𝟐 and 𝒄𝟑 are the prior parameters ( also known as hyperparameters). 
 

 Therefore, the joint posterior 𝒑𝒅𝒇 of the parameters 𝜷, 𝝉 and 𝝀 can be obtained from 

(3.1) and (3.2) in the form 
  

 
𝝅∗(𝜷, 𝝉, 𝝀|𝒙) =

𝐴

𝜞(𝜷)
𝜷𝒄𝟏+𝒄𝟑−𝟏 𝝉𝜷+𝒄𝟑+𝒎−𝟏 𝝀𝜷−𝟏 𝒆𝒙𝒑[ − 𝜷 (𝝉 + 𝒄𝟐) − 𝝉 𝝀] 

∏ [(𝜷 + 𝝀𝒙𝒊)𝒙𝒊
𝜷−𝟏

𝒆𝒙𝒑( 𝝀𝒙𝒊) 𝒆𝒙𝒑[ − 𝒌(𝑹𝒊 + 𝟏)𝝉𝒙𝒊
𝜷
𝒆𝝀𝒙𝒊]],𝒎

𝒊=𝟏   

 

(3.3) 

 

where 𝑨 is a normalizing constant. 
 

 Using the 𝑴𝑪𝑴𝑪 method, the Bayes estimate (𝑩𝑬) of any function 𝜼(𝜷, 𝝉, 𝝀) under 

𝑺𝑬 and Linex loss functions are given, respectively, by  
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𝜼̂𝑩𝑺 =
𝟏

𝑵 − 𝑴
∑ 𝜼(𝜷𝒊, 𝝉𝒊, 𝝀𝒊)

𝑵

𝒊=𝑴+𝟏

, (3.4) 

and  

 

𝜼̂𝑩𝑳 = −
𝟏

𝒂
𝒍𝒏[

𝟏

𝑵 − 𝑴
∑ 𝒆𝒙𝒑( − 𝒂𝜼(𝜷𝒊, 𝝉𝒊, 𝝀𝒊))

𝑵

𝒊=𝑴+𝟏

], (3.5) 

 

where 𝜷𝒊, 𝝉𝒊 and 𝝀𝒊 are generated from the posterior 𝒑𝒅𝒇, 𝑴 is the burn-in period (that is, 

a number of iterations before the stationary distribution is achieved) and 𝒂 is a constant. 
 

 For more details about 𝑴𝑪𝑴𝑪 methods, see, for example, Upadhyaya and Gupta[18] 

and Upadhyaya et al.[19]. The Gibbs is an algorithm for simulating from the full 

conditional posterior distributions while the Metropolis-Hatings algorithm generate 

sampling from an (essentially) arbitrary proposal distribution (i.e., a Markov transition 

kernel). 

  

4. INTERVAL ESTIMATION 
 

 In this section, the approximate confidence interval (𝑨𝑪𝑰), bootstrap-p confidence 

interval (𝑩𝑪𝑰),credibility confidence interval (𝑪𝑪𝑰) and highest posterior density interval 

(𝑯𝑷𝑫) for the parameters 𝜷, 𝝉 and 𝝀 have been studied. 

  

4.1 Approximate Confidence Interval 

 Let 𝑿𝟏;𝒎,𝒏,𝒌
𝑹 < 𝑿𝟐;𝒎,𝒏,𝒌

𝑹 <. . . < 𝑿𝒎;𝒎,𝒏,𝒌
𝑹  denote a progressive first-failure censored 

sample from 𝑴𝑾 distribution with parameters 𝜷, 𝝉 and 𝝀. In this section, the approximate 

confidence intervals for the parameters of 𝑴𝑾 distribution have been obtained based on 

progressive first-failure censored using the Fisher information matrix 𝑰(𝜷, 𝝉, 𝝀) which can 

be estimated by 𝑰(𝜷̂, 𝝉̂, 𝝀̂) in the form  
 

 

𝑰(𝜷̂, 𝝉̂, 𝝀̂) =

[
 
 
 
 
 
 −

𝝏𝟐𝓵

𝝏𝜷𝟐
−

𝝏𝟐𝓵

𝝏𝜷𝝏𝝉
−

𝝏𝟐𝓵

𝝏𝜷𝝏𝝀

−
𝝏𝟐𝓵

𝝏𝜷𝝏𝝉
−

𝝏𝟐𝓵

𝝏𝝉𝟐
−

𝝏𝟐𝓵

𝝏𝝉𝝏𝝀

−
𝝏𝟐𝓵

𝝏𝜷𝝏𝝀
−

𝝏𝟐𝓵

𝝏𝝉𝝏𝝀
−

𝝏𝟐𝓵

𝝏𝝀𝟐 ]
 
 
 
 
 
 

(𝜷̂,𝝉̂,𝝀̂)

, (4.1) 

 

where 𝓵 is the log likelihood of the parameters 𝜷, 𝝉 and 𝝀. 
 

 The Approximate confidence intervals for 𝜷, 𝝉 and 𝝀 can be obtained, respectively, by 
  

 𝜷̂ ∓ 𝒛𝜶
𝟐
√𝝂𝟏𝟏 𝝉̂ ∓ 𝒛𝜶

𝟐
√𝝂𝟐𝟐 𝒂𝒏𝒅 𝝀̂ ∓ 𝒛𝜶

𝟐
√𝝂𝟑𝟑, (4.2) 

 

where 𝝂𝟏𝟏, 𝝂𝟐𝟐 and 𝝂𝟑𝟑 are the elements on the main diagonal of the covariance matrix 

𝑰−𝟏(𝜷̂, 𝝉̂, 𝝀̂) and 𝒛𝜶

𝟐
 is the standard normal variate. 
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4.2 Bootstrap Confidence Interval 

 In this section, confidence intervals based on the parametric percentile bootstrap 

method (𝑩𝒐𝒐𝒕𝒔𝒕𝒓𝒂𝒑 − 𝒑) have been obtained based on the idea of Efron [5]. The 

algorithms for estimating the confidence intervals of the parameters using 𝑩𝒐𝒐𝒕𝒔𝒕𝒓𝒂𝒑 −
𝒑 method are illustrated as the following: 

1. From the original data 𝒙 = (𝒙𝟏, 𝒙𝟐, . . . , 𝒙𝒏) compute the 𝑴𝑳𝑬′𝒔 of the parameters 

𝜷, 𝝉 and 𝝀, say 𝜷̂, 𝝉̂ and 𝝀̂, respectively. 

2. Using 𝜷̂, 𝝉̂ and 𝝀̂, a bootstrap sample of upper ordered values 𝒙∗ is generated. 

3. As in Step 𝟏, based on 𝒙∗, compute the bootstrap sample estimates of 𝜷, 𝝉 and 𝝀 

say 𝜷̂∗, 𝝉̂∗ and 𝝀̂∗. 

4. Repeat Steps 2 and 3 𝑵 times representing 𝑵 bootstrap 𝑴𝑳𝑬 𝒔 of 𝜷, 𝝉 and 𝝀 based 

on 𝑵 bootstrap samples. 

5. Arrange all 𝜷̂∗'s, 𝝉̂∗'s and 𝝀̂∗'s in an ascending order to obtain the bootstrap 

samples (𝜷̂∗𝟏, 𝜷̂∗𝟐, . . . , 𝜷̂∗𝑵), (𝝉̂∗𝟏, 𝝉̂∗𝟐, . . . , 𝝉̂∗𝑵) and (𝝀̂∗𝟏, 𝝀̂∗𝟐, . . . , 𝝀̂∗𝑵). 

6. A two-sided (𝟏 − 𝜶) × 𝟏𝟎𝟎% 𝑩𝑪𝑰 of 𝜷, say [𝜷𝑳
∗ , 𝜷𝑼

∗ ] is then given by [𝜷̂∗𝑵(𝛼/𝟐), 

𝜷̂∗𝑵(𝟏−𝜶/𝟐)]. 

7. Also, a two-sided (𝟏 − 𝜶) × 𝟏𝟎𝟎% 𝑩𝑪𝑰 of 𝝉, say [𝝉𝑳
∗ , 𝝉𝑼

∗ ] is then given by 

[𝝉̂∗𝑵(𝜶/𝟐), 𝝉̂∗𝑵(𝟏−𝜶/𝟐)].  

8. Finally, a two-sided (𝟏 − 𝜶) × 𝟏𝟎𝟎% 𝑩𝑪𝑰 of 𝝀, say [𝝀𝑳
∗ , 𝝀𝑼

∗ ] is then given by 

[𝝀̂∗𝑵(𝜶/𝟐), 𝝀̂∗𝑵(𝟏−𝜶/𝟐)].  
  

4.3 Credibility Confidence Interval 

 For a specified value of 𝜶, (𝟏 − 𝜶) × 𝟏𝟎𝟎% 𝑪𝑪𝑰 (𝑳𝜷, 𝑼𝜷) for 𝜷, (𝟏 − 𝜶) × 𝟏𝟎𝟎% 

𝑪𝑪𝑰 (𝑳𝝉, 𝑼𝝉) for 𝝉 and (𝟏 − 𝜶) × 𝟏𝟎𝟎% 𝑪𝑪𝑰 (𝑳𝝀, 𝑼𝝀) for 𝝀 have been defined, 

respectively by  
 

 
∫ 𝝅𝟏

∗(𝜷|𝒙)𝒅𝜷 = 𝟏 −
𝜶

𝟐
,

∞

𝑳𝜷

 ∫ 𝝅𝟏
∗(𝜷|𝒙)𝒅𝜷 =

𝜶

𝟐
,

∞

𝑼𝜷

∫ 𝝅𝟐
∗(𝝉|𝒙)𝒅𝝉 = 𝟏 −

𝜶

𝟐
,

∞

𝑳𝝉

 ∫ 𝝅𝟐
∗(𝝉|𝒙)𝒅𝝉 =

𝜶

𝟐
,

∞

𝑼𝝉

∫ 𝝅𝟑
∗(𝝀|𝒙)𝒅𝝀 = 𝟏 −

𝜶

𝟐
,

∞

𝑳𝝀

 ∫ 𝝅𝟑
∗(𝝀|𝒙)𝒅𝝀 =

𝜶

𝟐
,

∞

𝑼𝝀

 (4.3) 

 

where 𝝅𝟏
∗(𝜷|𝒙), 𝝅𝟐

∗(𝝉|𝒙) and 𝝅𝟑
∗ (𝝀|𝒙) are the marginal density functions of 𝜷, 𝝉 and 𝝀, 

respectively. In many cases it will be very difficult to obtain the marginal 𝒑𝒅𝒇 from the 

posterior 𝒑𝒅𝒇. So, Gibbs sampler and Metropolis Hastings algorithms are used to generate 

(𝜷𝟏, 𝝉𝟏, 𝝀𝟏), (𝜷𝟐, 𝝉𝟐, 𝝀𝟐), . . . , (𝜷𝑵, 𝝉𝑵, 𝝀𝑵) from 𝝅∗(𝜷, 𝝉, 𝝀|𝒙). 
 

 Using these generated values of 𝜷, 𝝉 and 𝝀, the marginal posteriors 𝒑𝒅𝒇′𝒔 can be 

written in the forms 
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𝝅𝟏
∗(𝜷|𝒙) =

𝟏

𝑵
∑ 𝝅∗(𝜷, 𝝉𝒊, 𝝀𝒊|𝒙),

𝑵

𝒊=𝟏

𝝅𝟐
∗(𝝉|𝒙) =

𝟏

𝑵
∑ 𝝅∗(𝝉, 𝜷𝒊, 𝝀𝒊|𝒙),

𝑵

𝒊=𝟏

𝝅𝟑
∗(𝝀|𝒙) =

𝟏

𝑵
∑𝝅∗(𝝀, 𝜷𝒊, 𝝉𝒊|𝒙).

𝑵

𝒊=𝟏

 (4.4) 

 

 Substituting from (4.4) in (4.3), simple formulas have been obtained to compute the 

credibility intervals for 𝜷, 𝝉 and 𝝀 in the following form  
 

 𝟏

𝑵
∑ ∫ 𝝅∗(𝜷, 𝝉𝒊, 𝝀𝒊|𝒙)𝒅𝜷

∞

𝑳𝜷

𝑵

𝒊=𝟏

= 𝟏 −
𝜶

𝟐
, 

𝟏

𝑵
∑ ∫ 𝝅∗(𝜷, 𝝉𝒊, 𝝀𝒊|𝒙)𝒅𝜷

∞

𝑼𝜷

𝑵

𝒊=𝟏

=
𝜶

𝟐

𝟏

𝑵
∑∫ 𝝅∗(𝝉, 𝜷𝒊, 𝝀𝒊|𝒙)𝒅𝝉

∞

𝑳𝝉

𝑵

𝒊=𝟏

= 𝟏 −
𝜶

𝟐
, 

𝟏

𝑵
∑∫ 𝝅∗(𝝉, 𝜷𝒊, 𝝀𝒊|𝒙)𝒅𝝉

∞

𝑼𝝉

𝑵

𝒊=𝟏

=
𝜶

𝟐
,

𝟏

𝑵
∑ ∫ 𝝅∗(𝝀, 𝜷𝒊, 𝝉𝒊|𝒙)𝒅𝝀

∞

𝑳𝝀

𝑵

𝒊=𝟏

= 𝟏 −
𝜶

𝟐
, 

𝟏

𝑵
∑∫ 𝝅∗(𝝀, 𝜷𝒊, 𝝉𝒊|𝒙)𝒅𝝀

∞

𝑼𝝀

𝑵

𝒊=𝟏

=
𝜶

𝟐
.

 (4.5) 

 

4.4 Highest Posterior Density Interval 

 A (𝟏 − 𝜶) × 𝟏𝟎𝟎% 𝑯𝑷𝑫 interval for 𝜷 has been obtained by solving the following 

two nonlinear equations  
 

 𝟏

𝑵
∑ ∫ 𝝅∗(𝜷, 𝝉𝒊, 𝝀𝒊|𝒙)𝒅𝜷

𝑼𝜷

𝑳𝜷

𝑁

𝒊=𝟏

= 𝟏 − 𝜶,∑𝝅∗(𝑳𝜷, 𝝉𝒊, 𝝀𝒊|𝒙)

𝑵

𝒊=𝟏

 

= ∑ 𝝅∗(𝑼𝜷, 𝝉𝒊, 𝝀𝒊|𝒙)

𝑵

𝒊=𝟏

. 

(4.6) 

 

 Similarly, the (𝟏 − 𝜶) × 𝟏𝟎𝟎% 𝑯𝑷𝑫 interval for 𝝉 has been obtained by solving the 

following two nonlinear equations  
 

 𝟏

𝑵
∑ ∫ 𝝅∗(𝝉, 𝜷𝒊, 𝝀𝒊|𝒙)𝒅𝝉

𝑼𝝉

𝑳𝝉

𝑵

𝒊=𝟏

= 𝟏 − 𝜶,∑ 𝝅∗(𝑳𝝉, 𝜷𝒊, 𝝀𝒊|𝒙)

𝑵

𝒊=𝟏

 

= ∑ 𝝅∗(𝑼𝝉, 𝜷𝒊, 𝝀𝒊|𝒙)

𝑵

𝒊=𝟏

. 

(4.7) 

 

 Finally, the (𝟏 − 𝜶) × 𝟏𝟎𝟎% 𝑯𝑷𝐷 interval for 𝝀 has been obtained by solving the 

following two nonlinear equations  
 



Ateya and Madhagi 109 

 𝟏

𝑵
∑ ∫ 𝝅∗(𝝀, 𝜷𝒊, 𝝉𝒊|𝒙)𝒅𝝀

𝑼𝝀

𝑳𝝀

𝑵

𝒊=𝟏

= 𝟏 − 𝜶,∑ 𝝅∗(𝑳𝝀, 𝜷𝒊, 𝝉𝒊|𝒙)

𝑵

𝒊=𝟏

 

= ∑ 𝝅∗(𝑼𝝀, 𝜷𝒊, 𝝉𝒊|𝒙)

𝑵

𝒊=𝟏

. 

(4.8) 

 

5. NUMERICAL COMPUTATIONS 
 

 In the following, the maximum likelihood and Bayesian estimates are compared based 

on a Monte Carlo simulation study. 

1. For a given vector of prior parameters (𝒄𝟏, 𝒄𝟐, 𝒄𝟑) the vector of population 

parameters (𝜷, 𝝉, 𝝀) have been generated from the joint prior (3.2). 

2. Making use of the generated population parameters, a progressive first-failure 

censored samples from the 𝑴𝑾 distribution with 𝒑𝒅𝒇 (1.1) have been generated. 

To generate progressive first failure samples, the algorithm proposed by 

Balakrishnan and Aggarwala[4] has been used, with the fact that, the progressive 

first-failure censored sample 𝑿𝟏;𝒎,𝒏,𝒌
𝑹 , 𝑿𝟐;𝒎,𝒏,𝒌

𝑹 , . . . , 𝑿𝒎;𝒎,𝒏,𝒌
𝑹  with 𝒄𝒅𝒇 𝑭(𝒙), can be 

viewed as progressive type-II censored sample from a population with distribution 

function 𝟏 − (𝟏 − 𝑭(𝒙))𝒌. The number of items put on a life test has been assumed 

equal to 𝒏 × 𝒌, where 𝒏 denotes the number of groups and 𝒌 the number of items 

in each group. Using a progressive first-failure censoring scheme, only 𝒎 

observations are obtained from the test. 

3. The 𝑴𝑳𝑬′𝒔 of 𝜷, 𝝉 and 𝝀 are computed as shown in section 3 using the software 

𝑴𝒂𝒕𝒉𝒆𝒎𝒂𝒕𝒊𝒄𝒂 𝟖 for solving the resulting nonlinear equations. 

4. The 𝑩𝑬′𝒔 for the parameter 𝜼 ≡ (𝜷, 𝝉, 𝝀) under 𝑺𝑬 and 𝑳𝒊𝒏𝒆𝒙 loss functions using 

𝑴𝑪𝑴𝑪 method are given, respectively, by using the formulas (3.4) and (3.5). 

5. The above steps (2-4) are repeated 1000 times. 

6. If 𝜽̂𝒋 is an estimate of 𝜽 , based on sample 𝒋, 𝒋 = 𝟏, 𝟐, . . . , 𝟏𝟎𝟎𝟎, then the average 

estimate over the 1000 samples is given by 

𝜽̄̂ =
𝟏

𝟏𝟎𝟎𝟎
∑ 𝜽̂𝒋

𝟏𝟎𝟎𝟎
𝒋=𝟏 .  

7. The 𝑴𝑺𝑬′𝒔 of 𝜽̂ over the 𝟏𝟎𝟎𝟎 samples is given by 

𝑴𝑺𝑬(𝜽̂) =
𝟏

𝟏𝟎𝟎𝟎
∑ (𝜽̂𝒋 − 𝜽)𝟐𝟏𝟎𝟎𝟎

𝒋=𝟏 . 

8. From 6 and 7 the average estimates and the 𝑴𝑺𝑬′𝒔 for all parameters have been 

computed. 

9. The 𝑨𝑪𝑰, 𝑩𝑰𝑪, 𝑪𝑪𝑰, 𝑯𝑷𝑫, lengths and finally the coverage probabilities (𝑪𝑷′𝒔) 

for all parameters are computed.  
 

 The computations are shown in Tables 1 and 2.  
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Table 1 

𝐌𝐒𝐄′𝐬 of the Estimates under 𝐒𝐄𝐋 and 𝐋𝐈𝐍𝐄𝐗 Loss Function 

(𝒂 = −𝟑, 𝟎. 𝟎𝟎𝟎𝟏, 𝟑), (𝜷 = 𝟐. 𝟓, 𝝉 = 𝟐. 𝟎, 𝝀 = 𝟐. 𝟕), (𝒄𝟏 = 𝟏. 𝟒, 𝒄𝟐 = 𝟎. 𝟖, 𝒄𝟑 = 𝟐. 𝟓) 

based on Progressive First-Failure Censored Scheme 

(𝒏,𝒎, 𝒌) 𝑴𝒆𝒕𝒉𝒐𝒅 𝑴𝑺𝑬(𝜷̂) 𝑴𝑺𝑬(𝝉̂) 𝑴𝑺𝑬(𝝀̂) 

𝑹 = (𝟏, 𝟐, 𝟏, 𝟏, 𝟑, 𝟏, 𝟏, 𝟐, 𝟏, 𝟐) 

(𝟐𝟓, 𝟏𝟎, 𝟏) 

𝑴𝑳 0.3017 1.2013 1.0152 

𝑩𝒂𝒚𝒆𝒔 

𝑺𝑬𝑳 0.2438 1.0031 0.8161 

𝑳𝑰𝑵𝑬𝑿 

𝒂 = −𝟑. 𝟎 0.2819 1.1163 0.9032 

𝒂 = 𝟎. 𝟎𝟎𝟎𝟏 0.2438 1.0031 0.8161 

𝒂 = 𝟑. 𝟎 0.1671 0.5721 0.4301 

𝑹 = (𝟏, 𝟏, 𝟎, 𝟎, 𝟎, 𝟏, 𝟎, 𝟏, 𝟎, 𝟎, 𝟑, 𝟎, 𝟏, 𝟎, 𝟐) 

(𝟐𝟓, 𝟏𝟓, 𝟑) 

𝑴𝑳 0.2541 0.8603 0.9068 

𝑩𝒂𝒚𝒆𝒔 

𝑺𝑬𝑳 0.1901 0.6691 0.8230 

𝑳𝑰𝑵𝑬𝑿 

𝒂 = −𝟑. 𝟎 0.2068 0.7105 0.8614 

𝒂 = 𝟎. 𝟎𝟎𝟎𝟏 0.1901 0.6691 0.8230 

𝒂 = 𝟑. 𝟎 0.1005 0.4708 0.3552 

𝑹 = (𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎) 

(𝟐𝟓, 𝟐𝟓, 𝟓) 

𝑴𝑳 0.1006 0.5104 0.7105 

𝑩𝒂𝒚𝒆𝒔 

𝑺𝑬𝑳 0.0916 0.2217 0.4319 

𝑳𝑰𝑵𝑬𝑿 

𝒂 = −𝟑. 𝟎 0.0951 0.4416 0.5115 

𝒂 = 𝟎. 𝟎𝟎𝟎𝟏 0.0916 0.2217 0.4319 

𝒂 = 𝟑. 𝟎 0.0103 0.1017 0.1506 

  

  



Ateya and Madhagi 111 

Table 2 

𝑨𝑪𝑰′𝒔, 𝑩𝑪𝑰′𝒔, 𝑪𝑪𝑰′𝒔 and 𝑯𝑷𝑫′𝒔 for The parameters 𝜷, 𝝉 and 𝝀. 

𝑹 = (𝟏, 𝟐, 𝟏, 𝟏, 𝟑, 𝟏, 𝟏, 𝟐, 𝟏, 𝟐) 

(𝒏,𝒎, 𝒌) 𝑴𝒆𝒕𝒉𝒐𝒅 

(𝑳𝜷, 𝑼𝜷) (𝑳𝝉, 𝑼𝝉) (𝑳𝝀, 𝑼𝝀) 

𝑳𝒆𝒏𝒈𝒕𝒉 𝑳𝒆𝒏𝒈𝒕𝒉 𝑳𝒆𝒏𝒈𝒕𝒉 

𝑪𝑷 𝑪𝑷 𝑪𝑷 

(𝟐𝟓, 𝟏𝟎, 𝟏) 

𝑨𝑪𝑰 

(0.2178,5.0164) (0.6822,2.7594) (1.5993,4.3504) 

4.7986 2.0771 2.7511 

95.35 96.21 95.71.4 

𝑩𝑪𝑰 

(0.9107,5.0233) (0.8005,2.6524) (1.5109,4.1728) 

4.1126 1.8519 2.6619 

95.35 96.21 95.71.4 

𝑪𝑪𝑰 

(1.3464,5.1343) (1.3409,2.7701) (1.8609,4.0924) 

3.7879 1.4292 2.2315 

98.0 95.4 96.9 

𝑯𝑷𝑫 

(1.7901,3.9010) (1.0923,2.2021) (1.5541,3.4347) 

2.1109 1.1098 1.8806 

95.76 95.45 95.98.01 

𝑹 = (𝟏, 𝟏, 𝟎, 𝟎, 𝟎, 𝟏, 𝟎, 𝟏, 𝟎, 𝟎, 𝟑, 𝟎, 𝟏, 𝟎, 𝟐) 

(𝟐𝟓, 𝟏𝟎, 𝟑) 

𝑨𝑪𝑰 

(0.7337,3.9824) (0.5387,1.894) (1.1332,3.2824) 

3.2387 1.3553 2.1482 

95.2 96.3 96.2 

𝑩𝑪𝑰 

(0.8213,3.3402) (0.6617,1.9933) (1.4101,3.4147) 

2.8015 1.3316 2.0046 

95.2 96.3 96.2 

𝑪𝑪𝑰 

(1.6038,3.5673) (0.8091,2.1103) (1.6583,3.4965) 

1.9635 1.3012 1.8382 

99.8 97.8 95.4 

𝑯𝑷𝑫 

(1.7709,3.5822) (1.0733,2.1747) (1.6198,3.4019) 

1.8113 1.1014 1.7821 

96.01 96.44 97.85 

𝑹 = (𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎) 

(𝟐𝟓, 𝟏𝟎, 𝟓) 

𝑨𝑪𝑰 

(1.3309,4.2275) (0.6914,1.9411) (1.9415,3.9737) 

2.8966 1.2497 2.0322 

97.1 96.1 98.6 

𝑩𝑪𝑰 

(1.4016,2.9119) (0.5809,1.6825) (2.0131,3.9456) 

1.5103 1.1016 1.9325 

97.1 96.1 98.6 

𝑪𝑪𝑰 

(2.9566,3.9545) (1.0393,2.0473) (2.1147,3.1856) 

0.9979 1.0080 1.0709 

96.76 96.6 95.4 

𝑯𝑷𝑫 

(2.6520,3.5264) (0.9187,1.8955) (2.8319,3.4446) 

0.8744 0.9768 0.8127 

95.87 95.63 96.32 
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6. DATA ANALYSIS AND APPLICATION 
 

 In this section, a real life data set has been considered and the methods proposed in the 

previous sections have been illustrated. The real data set is from Nicholas and Padgett[14]. 

The data concerning tensile strength of 100 observations of carbon fibers, they are:  

3.7, 3.11, 4.42, 3.28, 3.75, 2.96, 3.39, 3.31, 3.15, 2.81, 1.41, 2.76, 3.19, 1.59, 2.17, 

3.51, 1.84, 1.61, 1.57, 1.89, 2.74, 3.27, 2.41, 3.09, 2.43, 2.53, 2.81, 3.31, 2.35, 2.77, 

2.68, 4.91, 1.57, 2.00, 1.17, 2.17, 0.39, 2.79, 1.08, 2.88, 2.73, 2.87, 3.19, 1.87, 2.95, 

2.67, 4.20, 2.85, 2.55, 2.17, 2.97, 3.68, 0.81, 1.22, 5.08, 1.69, 3.68, 4.70, 2.03, 2.82, 

2.50, 1.47, 3.22, 3.15, 2.97, 2.93, 3.33, 2.56, 2.59, 2.83, 1.36, 1.84, 5.56, 1.12, 2.48, 

1.25, 2.48, 2.03, 1.61, 2.05, 3.60, 3.11, 1.69, 4.90, 3.39, 3.22, 2.55, 3.56, 2.38, 1.92, 

0.98, 1.59, 1.73, 1.71, 1.18, 4.38, 0.85, 1.80, 2.12, 3.65. 
 

 These real data are analyzed using 𝑾𝒆𝒊𝒃𝒖𝒍𝒍(𝜶, 𝜷) distribution and using 𝑴𝑾(𝜷, 𝝉, 𝝀) 

by Ateya[1] and he found that the 𝑴𝑾 model fits these data better than the Weibull model. 

To illustrate the use of the estimation methods proposed in this paper, firstly the data have 

been ordered as follows  

0.39, 0.81, 0.85, 0.98, 1.08, 1.12, 1.17, 1.18, 1.22, 1.25, 1.36, 1.41, 1.47, 1.57, 1.57, 

1.59, 1.59, 1.61, 1.61, 1.69, 1.69, 1.71, 1.73, 1.80, 1.84, 1.84, 1.87, 1.89, 1.92, 2.00, 

2.03, 2.03, 2.05, 2.12, 2.17, 2.17, 2.17, 2.35, 2.38, 2.41, 2.43, 2.48, 2.48, 2.50, 2.53, 

2.55, 2.55, 2.56, 2.59, 2.67, 2.68, 2.73, 2.74, 2.76, 2.77, 2.79, 2.81, 2.81, 2.82, 2.83, 

2.85, 2.87, 2.88, 2.93, 2.95, 2.96, 2.97, 2.97, 3.09, 3.11, 3.11, 3.15, 3.15, 3.19, 3.19, 

3.22, 3.22, 3.27, 3.28, 3.31, 3.31, 3.33, 3.39, 3.39, 3.51, 3.56, 3.60, 3.65, 3.68, 3.68, 

3.70, 3.75, 4.20, 4.38, 4.42, 4.70, 4.90, 4.91, 5.08, 5.56. 
 

 Secondly, under the assumption that the carbon fibers are randomly grouped into 25 

groups with 𝒌 = 𝟒 carbon fibers within each group. The tensile strength of carbon fibers 

of the groups are:  

{0.39, 0.81, 0.85, 0.98}, {1.08, 1.12, 1.17, 1.18}, {1.22, 1.25, 1.36, 1.41}, {1.47, 

1.57, 1.57, 1.59}, {1.59, 1.61, 1.61, 1.69}, {1.69, 1.71, 1.73, 1.80}, {1.84, 1.84, 

1.87, 1.89}, {1.92, 2.00, 2.03, 2.03}, {2.05, 2.12, 2.17, 2.17}, {2.17, 2.35, 2.38, 

2.41}, {2.43, 2.48, 2.48, 2.50}, {2.53, 2.55, 2.55, 2.56}, {2.59, 2.67, 2.68, 2.73}, 

{2.74, 2.76, 2.77, 2.79}, {2.81, 2.81, 2.82, 2.83}, {2.85, 2.87, 2.88, 2.93}, {2.95, 

2.96, 2.97, 2.97}, {3.09, 3.11, 3.11, 3.15}, {3.15, 3.19, 3.19, 3.22}, {3.22, 3.27, 

3.28, 3.31}, {3.31, 3.33, 3.39, 3.39}, {3.51, 3.56, 3.60, 3.65}, {3.68, 3.68, 3.70, 

3.75}, {4.20, 4.38, 4.42, 4.70}, {4.90, 4.91, 5.08, 5.56}.  

 

Suppose that the pre-determined progressively first-failure censoring plan is applied using 

progressive censoring plan is applied using progressive censoring scheme 
 

𝑹 = (𝟐, 𝟐, 𝟎, 𝟎, 𝟏, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎).  
 

 The following progressively first-failure censored data of size (𝒎 = 𝟐𝟎) out of 25 

groups of carbon fibers were observed: 0.39, 1.47, 1.84, 1.92, 2.05, 2.43, 2.53, 2.59, 2.74, 

2.81, 2.85, 2.95, 3.09, 3.15, 3.22, 3.31, 3.51, 3.68, 4.20, 4.90. For this example 5 groups 

are censored and 20 first failure are observed. The estimates of the parameters 𝜷, 𝝉 and 𝝀 

are obtained in Table 3. Moreover, the result of 95% 𝑨𝑪𝑰, 𝑩𝑰𝑪, 𝑪𝑪𝑰 and 𝑯𝑷𝑫 for 𝜷, 𝝉 and 

𝝀 are given in Table 4  
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Table 3 

Estimates of the Parameters 𝜷, 𝝉 and 𝝀 using 𝑴𝑳 and Bayes Methods  

(under 𝑺𝑬𝑳 and 𝑳𝑰𝑵𝑬𝑿 Loss Functions) (𝒂 = 𝟎, 𝟏, 𝟐)  

based on Progressive First-Failure Censored Scheme from Real Data 

(𝒏,𝒎, 𝒌) 𝑴𝒆𝒕𝒉𝒐𝒅 𝜷̂ 𝝉̂ 𝝀̂ 

(𝟐𝟓, 𝟐𝟎, 𝟒) 

𝑴𝑳 1.9320 0.2155 2.3183 

𝑩𝒂𝒚𝒆𝒔 

𝑺𝑬𝑳 1.8162 0.2112 2.1516 

𝑳𝑰𝑵𝑬𝑿 

𝒂 = 𝟎. 𝟎𝟎𝟎𝟎𝟏 1.8162 0.2112 2.1516 

𝒂 = 𝟏. 𝟎 1.8218 0.2819 1.9915 

𝒂 = 𝟐. 𝟎 1.9813 0.2812 1.9814 

  

Table 4 

Confidence Intervals for the Parameters 𝜷, 𝝉 and 𝝀  

based on Progressive First-Failure Censored Scheme from Real Data 

(𝒏,𝒎, 𝒌) 𝑴𝒆𝒕𝒉𝒐𝒅 
(𝑳𝜷, 𝑼𝜷) (𝑳𝝉, 𝑼𝝉) (𝑳𝝀, 𝑼𝝀) 

𝑳𝒆𝒏𝒈𝒕𝒉 𝑳𝒆𝒏𝒈𝒕𝒉 𝑳𝒆𝒏𝒈𝒕𝒉 

(𝟐𝟓, 𝟐𝟎, 𝟒) 

𝑨𝑪𝑰 
(1.2182,2.7690) (0.1205,0.3212) (1.4128,3.7233) 

1.5518 0.2017 2.3105 

𝑩𝑪𝑰 
(1.4103,2.8211) (0.1315,0.3121) (1.1106,3.2623) 

1.4108 0.1806 2.1517 

𝑪𝑪𝑰 
(1.5011,2.8115) (0.1481,0.3099) (1.2306,3.1623) 

1.3104 0.1618 1.9317 

𝑯𝑷𝑫 
(1.4804,2.6363) (0.1336,0.2749) (1.1716,2.8869) 

1.1559 0.1413 1.7153 

 

7. CONCLUDING REMARKS 
 

 In this paper, the estimation problem (point and interval) is studied based on 

progressive first failure censoring scheme of 𝑴𝑾 distribution. Also, a real data set is 

introduced as illustrative example. A simulation study is carried out to examine and 

compare the performance of the proposed methods for different sample sizes and different 

censoring schemes. From the results which are summarized in tables 1 and 2, the following 

can be observed. 

1. The 𝑴𝑺𝑬′𝒔 of the 𝑩𝑬′𝒔 based on 𝑺𝑬𝑳 function and 𝑳𝑰𝑵𝑬𝑿 loss function are less 

than that obtained for the 𝑴𝑳𝑬′𝒔 which means that the 𝑩𝑬′𝒔 are better than the 

𝑴𝑳𝑬′𝒔.  

2. The 𝑴𝑺𝑬′𝒔 of the 𝑩𝑬′𝒔 based on 𝑳𝑰𝑵𝑬𝑿 loss function decrease by increasing 𝒂. 

3. The 𝑴𝑺𝑬′𝒔 of the 𝑩𝑬′𝒔 based on 𝑳𝑰𝑵𝑬𝑿 loss function are the same as that obtained 

based on 𝑺𝑬𝑳 function when 𝒂 → 𝟎.  

4. In all cases, the 𝑪𝑷′𝒔 of all intervals of all methods close to the desired level of 

0.95. 

5. The length of the 𝑨𝑪𝑰 > that computed for 𝑩𝑪𝑰 > that computed for the 𝑪𝑪𝑰 > 

that computed for 𝑯𝑷𝑫 interval.  
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