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ABSTRACT 
 

 In this paper, we propose a flexible family called the exponentiated alpha-power-G 

(EAP-G) family. The benefits of the proposed family include its analytical simplicity and 

its ability to confer flexibility to the baseline distributions in survival analysis. Based on 

the proposed approach, a three-parameter extension of the exponential distribution called 

the exponentiated alpha-power exponential (EAPE) distribution is studied in detail. 

Maximum likelihood is used to estimate the EAPE parameters, and its performance is 

evaluated via a simulation study. Furthermore, two real-world survival data are used to 

demonstrate the applicability and examine the flexibility of the proposed distribution. The 

EAPE distribution is compared to other competing generalizations of the exponential 

distribution. The real data analysis shows that the proposed model performed better among 

the competitors and could potentially be very adequate in describing and modeling a wide 

range of survival data. 
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1. INTRODUCTION 
 

 Recently, there has been a sharp increase in research making attempts to develop 

new families of probability distributions and to expand well-known distributions, 

giving flexible classes that support modeling data in a wide range of areas, including 

engineering, medical studies, economics, environmental sciences, and finance to 

mention just a few. Probability distributions have a vast variety of applications in 
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modeling data from a variety of physical phenomena as well as natural processes 

(Alshanbari et al., 2022). For instance; lifetime distributions have been applied in 

reliability engineering for the determination of failure rates of equipment, in biological 

sciences, they have been used to study bacteria count, in medical studies to determine 

the life expectancy of critically ill patients after treatment, and in actuarial sciences to 

determine insurance premium among others (Oluyede et al., 2018). 
 

 The choice of appropriate distributions to be used on real-life data plays a 

fundamental role in improving the power, efficiency, and sensitivity of statistical  

tests. This is so because appropriate distributions lead to a good fit of the data. 

Therefore, good knowledge of the appropriate distribution to be used for a specific 

data set is essential. However, the use of classical probability distributions has various 

limitations: for example, the hazard rate of the exponential distribution is constant,  

and the hazard rate of the Weibull distribution varies from decreasing, constant,  

or increasing. In real life, the hazard rate of the available data from different  

disciplines may take different forms such as bathtub, non-monotonic, or even unimodal 

(Ijaz et al., 2020). Another example is that distributions such as the normal distribution 

and the student-t distribution are symmetric while available data may exhibit 

characteristics with varying degrees of skewness and kurtosis (Ma & Genton, 2004). 
 

 An alternative and appropriate approach to overcome these limitations is to modify 

the existing statistical probability distributions and create more flexible distributions 

with a better fit to real data (Kilai et al., 2022) and (Aslam et al., 2019). Modifying 

distributions or families of distributions creates more flexible distributions that provide 

a more reliable fit to different types of hazard rates. Probability distribution 

modification may also achieve heavy-tailed distributions used in modeling varied data 

(Zhao et al., 2021). A tractable cumulative distribution function (CDF) that model data 

characterized by different skewness and kurtosis levels are also generated. Methods of 

modifying distributions exist in the literature, some of which include the method of 

introducing skewness presented by (Azzalini and Valle, 1996), beta generated method 

by (Eugene et al., 2006), the exponentiated method by (Govind, 1993), 

Kumaraswamy-G method by (Cordeiro & de Castro, 2011), transformed transformer 

and exponentiated transformed transformer methods by (Alzaatreh et al., 2013), 

exponentiated generalized transformed transformer by (Nasiru et al., 2017) and (Kilai 

et al., 2022) presented an extension of the gull alpha power family of distribution. 

Additionally, Nassar et al. (2019) proposed the Marshall–Olkin alpha power family. 
 

 Mahdavi and Kundu (2017) introduced a method of modifying distributions called 

the alpha power transformed (APT). This method adds one extra shape parameter to 

the classical distribution under study, improving its flexibility for modeling real data. 

The family has been used in studying the flexibility of different baseline distributions. 

For example, Aldahlan (2020) transformed the log-logistic distribution using APT, 

Mead et al. (2019) studied the alpha power transformed exponentiated-Weibull 

distribution. The APT Fréchet distribution is introduced by (Nasiru et al., 2019). 

(Nassar et al., 2020) studied different estimation methods for the parameters of the 

alpha-power exponential distribution. Afify et al. (2020) proposed the alpha-power 

exponentiated-exponential distribution.  
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 However, the method adds one shape parameter that only controls skewness and  

fails to control kurtosis. To be able to control both measures simultaneously, we propose 

to introduce another shape parameter to the APT family of distribution. Hence, we propose 

the so-called EAP-G family which extends the APT family and provides more flexibility 

to the baseline distributions in survival analysis. The EAP-G family is constructed by  

using the APT family as a baseline in the exponentiated-G (EG) family. Furthermore, we 

will study a special member of the proposed family called the EAPE distribution in more 

detail. 
 

 The exponential distribution has gained a vast variety of applications in modeling 

survival data, especially in modeling lifespan tests and the metrics related to them  

such as the mean residual life function, the HR, the mean time to failure, and 

reliability. 
 

 One major reason why researchers have been attracted to the exponential 

distribution is because of the perception that it has done outstandingly well in several 

uses on various survival analyses. This is due to the existence of its closed-form 

solutions of the cumulative distribution function. Notably, the exponential 

distribution is the only known continuous distribution characterized by a constant 

hazard(failure) rate as well as a memory-less property (Piriaei et al., 2020). Due to the 

availability of various methods of modifying distributions, the exponential distribution 

has been modified by a number of researchers to achieve a better fit for real data. Some 

of these extensions include; the exponentiated exponential by (Nadarajah & Kotz, 

2006b), beta-exponential distribution by (Nadarajah & Kotz, 2006a), and the 

exponentiated generalized alpha power exponential distribution by (ElSherpieny & 

Almetwally, 2022) and the extended odd Weibull exponential distribution by (Afify & 

Mohamed, 2020). This study, therefore, proposes to extend the exponential distribution 

using the exponentiated family of distributions together with the alpha power 

transformation family of distributions. We call the proposed distribution the 

exponentiated alpha power exponential distribution. 
 

 The cumulative distribution function (CDF) of the Alpha Power family of 

distributions is defined as: 
 

𝐻𝐴𝑃𝑇(𝑥; 𝛾, 𝜓) = {

𝛾𝐺(𝑥;𝜓) − 1

𝛾 − 1
 if 𝛾 > 0, 𝛾 ≠ 1

𝐺(𝑥; 𝜓)  if  𝛾 = 1

 (1) 

 

the probability density function (PDF) is given by: 
 

ℎ(𝑥; 𝛾, 𝜓) = {

𝑙𝑜𝑔 𝛾

𝛾 − 1
𝑔(𝑥; 𝜓)𝛾𝐺(𝑥;𝜓)  if 𝛾 > 0, 𝛾 ≠ 1

𝑔(𝑥; 𝜓)  if  𝛾 = 1

 (2) 

 

where, 𝛾 > 0 with 𝛾 ≠ 1 is a shape parameter and 𝜓 is a parameter vector for the baseline 

distribution. The CDF of the exponentiated-G family of distributions is given by: 
 

F(x; 𝜂) = [G(x; 𝜂)]𝜂 (3) 
 

while the PDF associated with equation 3 is given as: 
 



A Flexible Family of Distributions based on the Alpha Power Family… 240 

𝑓(𝑥; 𝜂) = 𝜂𝑔(𝑥; 𝜂)[𝐺(𝑥; 𝜂)]𝜂−1 (4) 
 

where η > 0 is a shape parameter. 
 

 The remaining part of this paper is described as follows. Section 2 describes 

the exponentiated alpha power exponential distribution and its properties. The 

maximum likelihood estimation for the parameters of the proposed distribution is 

given in section 3. A simulation study is conducted to examine the performance of the 

estimates in section 4, and section 5 contains an application of the extended 

exponential distribution to real-world data. Section 6 contains some concluding 

remarks. 

 

2. THE EAP-G FAMILY 
2.  

 The EAP-G family can be specified by the following CDF. 
 

𝐹𝐸𝐴𝑃(𝑥; 𝛾, 𝜂, 𝜓) = {
[
𝛾𝐺(𝑥;𝜓) − 1

𝛾 − 1
]

𝜂

 if 𝜂, 𝛾 > 0, 𝛾 ≠ 1,

𝐺(𝑥;𝜓)  if  𝛾 = 1.

 (5) 

 

 The PDF of the EAP-G family reduces to 
 

𝑓𝐸𝐴𝑃(𝑥; 𝛾, 𝜂, 𝜓) = {𝜂
log 𝛾

𝛾 − 1
𝑔(𝑥; 𝜓)𝛾𝐺(𝑥;𝜓) [

𝛾𝐺(𝑥;𝜓) − 1

𝛾 − 1
]

𝜂−1

 if 𝜂, 𝛾 > 0, 𝛾 ≠ 1,

𝑔(𝑥; 𝜓)  if  𝛾 = 1.

 

 (6) 
 

 Using the baseline exponential distribution in the EAP-G family, we can define the 

EAPE distribution. 
 

 The CDF of EAPE distribution is defined as 
 

𝐹𝐸𝐴𝑃𝐸(𝑥) = (
𝛾1−𝑒−𝜁𝑥

− 1

𝛾 − 1
)

𝜂

. (7) 

 

 The corresponding PDF is given by 
 

𝑓𝐸𝐴𝑃𝐸(𝑥) =
𝜂𝜁𝑙𝑜𝑔 𝛾𝑒−𝜁𝑥𝛾1−𝑒−𝜁𝑥

𝛾 − 1
(
𝛾1−𝑒−𝜁𝑥

− 1

𝛾 − 1
)

𝜂−1

 (8) 

 

where 𝛾 > 0 and 𝜂 > 0 are shape parameters, and 𝜁 is a scale parameter. 

Figure 1 below demonstrates that the PDF of EAPE distribution can be J-shaped, inverted-

J, almost symmetric, right-skewed, and unimodal. Figure 2 indicates that the hazard rate 

function assumes different shapes including increasing, decreasing, and unimodal. 
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Figure 1: EAPE Distribution PDF Shapes for Different Parameter Combination 

 

 The survival function is derived as; 
 

𝑆𝐸𝐴𝑃𝐸(𝑥) = 1 − (
𝛾1−𝑒−𝜁𝑥

− 1

𝛾 − 1
)

𝜂

. (9) 

 

 So, the hazard function is given as 
 

ℎ𝐸𝐴𝑃𝐸(𝑥) =
𝜂𝜁𝑒−𝜁𝑥(log 𝛾)𝛾1−𝑒−𝜁𝑥

(𝛾1−𝑒−𝜁𝑥
− 1)

𝜂−1

(𝛾 − 1)𝜂 − (𝛾1−𝑒−𝜁𝑥
− 1)

𝜂  (10) 

 

 
Figure 2: EAPE Distribution Hazard Shapes for Different Parameter Combination. 
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Table 1 

Special Sub-Models of EAPE 

γ η ζ Sub-Model 

γ 1 ζ Alpha Power Exponential (APE) distribution 

1 η ζ Exponentiated Exponential (EE) distribution 

1 1 ζ Exponential (E) distribution 

 

2.1 Important Representation of EAPE 

 Using power series and binomial expansion, we have that 
 

𝛾1−𝑒−𝜁𝑥
= ∑  

∞

𝑖=0

 
(log 𝛾)𝑖

𝑖!
(1 − 𝑒−𝜁𝑥)

𝑖
,

(𝛾1−𝑒−𝜁𝑥
− 1)

𝜂−1

= ∑  

∞

𝑗=0

  (
𝜂 − 1

𝑗
) (−1)𝑗 (𝛾1−𝑒−𝜁𝑥

)
𝜂−1−𝑗

(𝛾1−𝑒−𝜁𝑥
)

𝜂−1−𝑗

= ∑  

∞

𝑘=0

  (1 − 𝑒−𝜁𝑥)
𝑘 (log 𝛾)𝑘

𝑘!
(𝜂 − 1 − 𝑗)𝑘

 

 

 Using the above three relations, EAPE PDF given in equation 6 can be re-written as 
 

𝑓𝐸𝐴𝑃𝐸(𝑥) = ∑  

∞

𝑚=0

𝑎𝑚𝑔(𝑚+1)𝜁(𝑥) (11) 

where 

𝑎𝑚 = ∑  

𝑖⋅𝑗⋅𝑘

 
𝜂(−1)𝑚+𝑗

(𝛾 − 1)𝜂(𝑚 + 1)
(
𝑘 + 𝑖
𝑚

) (
𝜂 − 1

𝑗
) (𝜂 − 1 − 𝑗)𝑘

(log 𝛾)𝑘+𝑖+1

𝑖! 𝑘!
 

 

and 𝑔(𝑚+1)𝜁(𝑥) is the exponential probability distribution function with the scale parameter 

(𝑚 + 1)𝜁. Equation 9 clearly demonstrates that the EAPE PDF can be presented as a linear 

combination of the exponential density function with a scale parameter given as (𝑚 + 1)𝜁. 

Thus, some of the structural properties of the EAPE PDF can be derived from the properties 

of the exponential density function. 

 

2.1 EAPE Quantile Function 

 Using inverse transformation, we obtain the quantile function by inverting the EAPE 

CDF as 

𝑝 = (
𝛾1−𝑒−𝜁𝑥

− 1

𝛾 − 1
)

𝜂

 

 

 Letting 𝑥 = 𝑄(𝑝) we obtain the quantile function as; 
 

𝑄(𝑝) = −
1

𝜁
𝑙𝑛 [1 −

𝑙𝑛 (𝑝1/𝜂(𝛾 − 1) + 1)

𝑙𝑛 (𝛾)
] (12) 
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 If 𝑃 is a uniform random variable over the interval (0,1), then it follows that the random 

variable 𝑋 = 𝑄(𝑃) assumes a PDF given by equation 6. Consequently, the simulation of 

random variables from EAPE distribution is straightforward using 𝑄(𝑃). The quantile 

function is also useful in getting quartiles, skewness, and kurtosis. 

 

 
Figure 3: Plots of EAPE Quantile for Different Parameter Values 𝜼  

of with Fixed Values of (𝜸 = 𝟏. 𝟔, 𝜻 = 𝟎. 𝟒) 

 

2.2 Skewness and Kurtosis 

 Galton's skewness (also called Bowley's skewness) is given as; 
 

𝐺 =
𝑄 (

3
4
) + 𝑄 (

1
4
) − 2𝑄 (

1
2
)

𝑄 (
3
4
) − 𝑄 (

1
4
)

. 

 

 Whereas, Moor's kurtosis as defined by (Jones, 2007) is given as; 
 

𝑀 =
𝑄 (

3
8
) − 𝑄 (

1
8
) + 𝑄 (

7
8
) − 𝑄 (

5
8
)

𝑄 (
6
8
) − 𝑄 (

2
8
)

. 

 

 These measures of shape are preferred as they are less sensitive to outliers. They are 

also known to exist even if distributions have no moments. 
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Figure 4: Plots of Galton’s Skewness for EAPE Distribution  

with Fixed Values of (𝜸 = 𝟓, 𝜻 = 𝟎. 𝟒) 
 

 
Figure 5: Plots of Moor’s Kurtosis for EAPE Distribution  

with Fixed Values of (𝜸 = 𝟓, 𝜻 = 𝟎. 𝟒) 

 
2.3 Moments of EAPE Distribution 

 The rth moment from EAPE PDF is given as; 
 

𝑈𝑟
′  = ∫

0

∞
 𝑥𝑟𝑓𝐸𝐴𝑃𝐸(𝑥)𝑑𝑥

 = ∫
0

∞
 𝑥𝑟∑𝑚=0

∞  𝑎𝑚𝑔(𝑚+1)𝜁(𝑥)𝑑𝑥

 = ∑𝑚  𝑎𝑚∫
0

∞
 𝑥𝑟𝑔(𝑚+1)𝜁(𝑥)𝑑𝑥

 = ∑𝑚  𝑎𝑚

𝑟!

[(𝑚 + 1)𝜁]𝑟

 (13) 
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 Table 2 below gives a summary of the first five moments and the variance of 

EAPE distribution for some given parameter value combinations. 

 

Table 2 

Summary of the First Five Moments and Variance of EAPE Distribution 

𝜇𝑟
′  A B C D E 

𝜇1
′  2.424 3.111 4.441 0.830 2.057 

𝜇2
′  12.265 17.604 28.359 1.252 4.947 

𝜇3
′  92.882 140.847 239.420 2.671 13.832 

𝜇4
′  934.098 1456.537 2541.109 7.365 44.749 

𝜇5
′  11711.960 18524.470 32741.090 24.980 166.606 

𝜎2 6.390 7.923 8.639 0.563 0.715 

 

𝐴: 𝛾 = 1.6, 𝜂 = 0.8, 𝜁 = 0.4

𝐵: 𝛾 = 5, 𝜂 = 0.8, 𝜁 = 0.4

𝐶: 𝛾 = 1.6, 𝜂 = 2.3, 𝜁 = 0.4

𝐷: 𝛾 = 5, 𝜂 = 0.8, 𝜁 = 1.5

𝐸: 𝛾 = 5, 𝜂 = 6, 𝜁 = 1.5

 

 

2.5 Moment Generating Function 

 EAPE moment generating function (MGF) is given as 
 

𝑀𝑥(𝑡) = ∑𝑟,𝑚  
𝑎𝑚𝑡𝑟

[(𝑚 + 1)𝜁]𝑟
 (14) 

 

where 𝑎𝑚 is as defined in equation 11. 
 

 The MGF defined in equation 14 uniquely determines EAPE distribution. The 

function can also be used in deriving moments of EAPE distribution. 

 

2.6 Order Statistics 

 The PDF of the jth order statistic from EAPE distribution can be given as; 

 
 

𝑓𝑗(𝑥) =
𝑛!

(𝑗 − 1)! (𝑛 − 𝑗)!
𝑓EAPE(𝑥)[𝐹EAPE(𝑥)]𝑗−1[1 − 𝐹EAPE(𝑥)]𝑛−𝑗 (15) 

 

but 𝐹EAPE (𝑥) = ∑𝑞  𝑑𝑞𝑇(𝑥) 
 

where 𝑑𝑞 = ∑𝑝  (−1)𝑝 (
𝜂
𝑝)

(log 𝛾)𝑞

𝑞!

(𝜂−𝑝)𝑞

(𝛾−1)𝜂
 and 𝑇(𝑥) = (1 − 𝑒−𝜁𝑥)

𝑞
 is the CDF of the 

exponentiated exponential (𝐸𝐸) distribution that has a shape parameter 𝑞 and a scale 

parameter of 𝜁. 𝑓𝐸𝐴𝑃𝐸 is as defined in equation 11. We can, therefore, write the PDF of the 

𝑗th  order statistic as; 
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𝑓𝑗(𝑥) =
𝑛!

(𝑗 − 1)! (𝑛 − 𝑗)!
∑  

𝑚

 𝑎𝑚𝑔(𝑚+1)𝜁(𝑥) [∑  

𝑞

 𝑑𝑞𝑇(𝑥)]

𝑗−1

[1 − ∑  

𝑞

 𝑑𝑞𝑇(𝑥)]

𝑛−𝑗
 (16) 

 

for 𝑗 = 1 we obtain the density of the minimum order statistic as, 
 

𝑓1(𝑥) = 𝑛 ∑  

𝑚

𝑎𝑚𝑔𝑚+1)𝜁(𝑥) [1 − ∑  

𝑞

 𝑑𝑞𝑇(𝑥)]

𝑛−1

. (17) 

 

 Similarly, for 𝑗 = 𝑛 we obtain the density of the maximum order statistic as; 
 

𝑓𝑛(𝑥) = 𝑛 ∑  

𝑚

𝑎𝑚𝑔(𝑚+1)𝜁(𝑥) [∑  

𝑞

 𝑑𝑞𝑇(𝑥)] .𝑛−1 (18) 

 

3. PARAMETER ESTIMATION 
 

 In this section, the maximum likelihood estimation method was used to estimate 

the parameters of the distribution, since the method results to estimate values with 

desirable properties. Such properties include consistency, efficiency, and minimum 

variance unbiased among others. The estimates can also be utilized in generating the 

confidence intervals for the parameters. 
 

 Let 1 2, ,..., nX X X  be an independent and identically distributed random sample 

from EAPE  , ,     distribution. Then, the likelihood function is given as the joint 

distribution as follows; 
 

L(𝑥 ∣ 𝜂, 𝛾, 𝜁) = ∏  

𝑛

𝑖=1

𝑓𝐸𝐴𝑃𝐸(𝑥) (19) 

 

 Substituting the EAPE PDF given in equation 8 into equation 19 yields; 
 

𝐿(𝑥 ∣ 𝜂, 𝛾, 𝜁) = ∏  

𝑛

𝑖=1

𝜂𝜁(𝑙𝑜𝑔 𝛾)𝑒−𝜁𝑥𝑖𝛾1−𝑒−𝜁𝑥𝑖

𝛾 − 1
(
𝛾1−𝑒−𝜁𝑥𝑖

𝛾 − 1
)

𝜂−1

 

 

 Hence, the log-likelihood function is defined as; 
 

ℓ(𝑥; 𝜂, 𝛾, 𝜁) = nlog(𝜂𝜁) + nlog(log 𝛾) + ∑ [1 − 𝑒−𝜁𝑥𝑖](log 𝛾)

− 𝜁 ∑ 𝑥𝑖 − 𝑛𝜂 log(𝛾 − 1) + (𝜂

− 1) ∑ log (𝛾1−𝑒−𝜁𝑥
− 1). 

(20) 
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∂ℓ

∂𝛾
= −

𝑛𝜂

𝛾 − 1
+

𝑛

𝛾 log 𝛾
+ (𝜂 − 1) ∑  

𝑛

𝑖=1

  [
(1 − 𝑒−𝜁𝑥𝑖)𝛾−𝑒−𝜁𝑥𝑖

(𝛾1−𝑒−𝜁𝑥𝑖 − 1)
] + ∑  

𝑛

𝑖=1

 (
1 − 𝑒−𝜁𝑥𝑖

𝛾
) 

 

∂ℓ

∂𝜂
=

𝑛

𝜂
− nlog(𝛾 − 1) + ∑  

𝑛

𝑖=1

  log (𝛾1−𝑒−𝜁𝑥𝑖 − 1)
∂ℓ

∂𝜁

=
𝑛

𝜁
+ ∑  

𝑛

𝑖=1

 𝑥𝑖𝑒
−𝜁𝑥𝑖(log 𝛾) − ∑  

𝑛

𝑖=1

  𝑥𝑖

+ (𝜂 − 1)∑  

𝑛

𝑖=1

  [
𝑥𝑖𝑒

−𝜁𝑥𝑖(log 𝛾)𝛾1−𝑒−𝜁𝑥𝑖

(𝛾1−𝑒−𝜁𝑥𝑖 − 1)
] 

 

 

 

 

 

(21) 

 

 Equating the above three score functions to zero results in a system of equations 

and upon solving them, the maximum likelihood estimates (MLEs) for the parameters 

of the EAPE distribution may be determined. Since the system of equations cannot 

be solved analytically, numerical methods are used in solving them. In this study, 

we employed the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method in solving the 

normal equations to obtain the maximum likelihood estimators for the parameters 

of the studied distributions. The BFGS has an algorithm that was independently 

introduced by (Broyden, 1970), (Fletcher, 1970), (Goldfarb, 1970), and (Shanno, 

1970). The BFGS algorithm is one of the most efficient algorithms for solving 

unconstrained optimization problems. It is an iterative technique that begins with 

an initial guess value o  and an initial hessian matrix oH  to provide a solution to a 

given function. The following steps are followed so that for 𝑘 = (0,1, . . . ) an 

approximation point k  and an mXm matrix kH  are obtained on the kth iteration. 

Given: , 0o oH   and unconstrained optimization problem ℓ(𝛩). 
 

1. First, the search direction, also called the quasi-Newton direction is obtained as; 

 ΔΘ𝑘 = −𝐻𝑘
−1∇ℓ(Θ𝑘). 

2. The step-length 𝑑𝑘 is obtained such that it meets certain line search conditions. 

3. The next iterate is obtained as; Θ𝑘+1 = Θ𝑘 + 𝑑𝑘ΔΘ𝑘 

4. An important feature of the algorithm is the choice of 𝐻𝑘. That is, it must be positive 

definite and must satisfy the quasi-newton formula given as; 

𝐻𝑘+1𝛼𝑘 = 𝛾𝑘

 where, 𝛼𝑘 = 𝑑𝑘ΔΘ𝑘

 and 𝛾𝑘 = ∇ℓ(Θ𝑘 + 𝛼𝑘) − ∇ℓ(Θ𝑘)

 

5. Finally, the matrices 𝐻𝑘 are updated by the BFGS formula 

𝐻𝑘+1 = 𝐻𝑘 −
𝐻𝑘𝛼𝑘𝛼𝑘

𝑇𝐻𝑘

𝛼𝑘
𝑇𝐻𝑘𝛼𝑘

+
𝛾𝑘𝛾𝑘

𝑇

𝛼𝑘
𝑇𝛾𝑘

 

 where Θ = (𝛾, 𝜁, 𝜂) is a vector of parameters of the EAPE distribution. For the 

purposes of determining the standard errors of the estimates of the parameters of 

EAPE distribution, Fisher's information matrix has been derived as; 
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𝐼(𝛾, 𝜁, 𝜂) = −𝐸

[
 
 
 
 
 
 
∂2ℓ

∂𝜂2

∂2ℓ

∂𝜂 ∂𝛾

∂2ℓ

∂𝜂𝜉

∂2ℓ

∂𝛾2

∂2ℓ

∂𝛾 ∂𝜁

∂2ℓ

∂𝜁2 ]
 
 
 
 
 
 

, (21) 

  

which is equivalent to the final Hessian matrix obtained in the BFGS algorithm 

explained above. The elements of the fisher's information matrix for the EAPE 

distribution are given as 
 

∂2ℓ

∂𝛾2
= −(𝛾log 𝛾)2[log 𝛾 + 1] 

−(1 − 𝜂) ∑  

𝑛

𝑖=1

  (1 − 𝑒−𝜁𝑥𝑖)𝛾−𝑒−𝜁𝑥𝑖

[
 
 
 
 
 𝑒−𝜁𝑥1 (𝛾1−𝑒−𝜁𝑥

− 1)

      +𝛾−𝑒−𝜁𝑥
(1 − 𝑒−𝜁𝑥)

(𝛾1−𝑒−𝜁𝑥
− 1)

2

]
 
 
 
 
 

 

−∑  (
1 − 𝑒−𝜁𝑥

𝛾2
)

∂2ℓ

∂𝜂2
= −

𝑛

𝜂2

∂2ℓ

∂𝜁2
= −

𝑛

𝜁2
− ∑ 𝑥2𝑒−𝜁(log 𝛾) 

+(𝜂 − 1) ∑ 

𝑥𝑒−𝜁𝑥𝛾1−𝑒−𝜁𝑥
[
(𝛾1−𝑒−𝜁𝑥

− 1) [1 + 𝑒−𝜁𝑥(log 𝛾)]

                   −𝑒−𝜁𝑥(log 𝛾)𝛾1−𝑒−𝜁𝑥
]

(𝛾1−𝑒−𝜁𝑥
− 1)

2  

∂2ℓ

∂𝛾 ∂𝜂
=

𝑛

𝛾 − 1
+ ∑  

(1 − 𝑒−𝜁𝑥)𝛾−𝑒−𝜁

(𝛾1−𝑒−𝜁𝑥
− 1)

∂2ℓ

∂𝛾 ∂𝜁
= (𝜂 − 1) 

× ∑ 

𝑥𝑒−𝜁𝑥𝛾−𝑒−𝜁𝑥
[
(𝛾1−𝑒−𝜁𝑧

− 1) [(1 − 𝑒−𝜁𝑧) log 𝛾 + 1]

                  −(1 − 𝑒−𝜁𝑧)(log 𝛾)𝛾1−𝑒−𝜁𝑥
]

(𝛾1−𝑒−𝜁𝑥
− 1)

2  

+∑  
𝑥𝑒−6𝑥

𝛾

∂2ℓ

∂𝜂 ∂𝜁
= ∑  

𝑥𝑒−𝜁𝑥(log 𝛾)𝛾1−𝑒−𝜁𝑥

(𝛾1−𝑒−𝜁𝑥 − 1)
 

 

 The asymptotic variance-covariance matrix of γ̂, ζ̂, η̂ is given as; 
 

  1( ) [ ( )ˆˆ ˆvar cov , , , , ]I           
 

where the variance of the MLEs γ̂, ζ̂ and η̂ are obtained as the elements of the leading 

diagonal of the variance-covariance matrix. 

 

4. SIMULATION STUDY 
 

 In this section, we conducted a Monte Carlo simulation study to be able to 

examine the behavior of the MLEs for the parameters of EAPE distribution. Using 
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the quantile function of the EAPE PDF defined in equation 10, random samples of 

sizes 𝑛 = (50,100,150, . . . ,500) from EAPE distribution were generated. The 

simulation was repeated 𝑁 = 1000 times for each sample size and simulation 

results were obtained for different parameter combinations a s  set A: 𝛾 = 1.6,  

𝜂 = 0.7, 𝜁 = 0.8, and set B: 𝛾 = 3.6, 𝜂 = 0.72, 𝜁 = 1.07. The study utilized nlminb() 

function in 𝑅 for the purposes of numerical evaluation of EAPE MLES performance with 

the "BFGS" as the argument method. Further, we calculated the average bias (AB) and the 

root mean square error (RMSE) of the MLEs using the following formulas respectively 

and were then examined. 
 

AB (Θ̂𝑖) =
1

𝑁
∑  

𝑁

𝑖=1

  (Θ̂𝑖 − Θ),

and 

RMSE (Θ̂𝑖) = √
1

𝑁
∑  

𝑁

𝑖=1

  (Θ̂𝑖 − Θ)
2
.

 

 

where, Θ = (𝛾, 𝜂, 𝜁) 

 

Table 3 

Estimated MLE Values, Average Bias and Root Mean Square Errors  

for the EAPE Distribution for Set A: 𝜸 = 𝟏. 𝟒, 𝜻 = 𝟎. 𝟖, 𝜼 = 𝟎. 𝟕 

n 
Parameter Estimate Average Bias RMSE 

𝜸̂ ζˆ 𝜼̂ 𝜸̂ ζˆ 𝜼̂ 𝜸̂ ζˆ 𝜼̂ 

50 1.295 0.62 0.659 -0.105 -0.180 -0.041 0.205 0.355 0.125 

100 1.345 0.698 0.666 -0.055 -0.102 -0.034 0.149 0.274 0.102 

150 1.366 0.737 0.676 -0.034 -0.063 -0.024 0.117 0.218 0.085 

200 1.384 0.769 0.689 -0.016 -0.031 -0.011 0.081 0.152 0.059 

250 1.383 0.769 0.688 -0.017 -0.031 -0.012 0.082 0.154 0.059 

300 1.388 0.778 0.691 -0.012 -0.022 -0.009 0.068 0.129 0.052 

350 1.392 0.784 0.693 -0.008 -0.016 -0.007 0.058 0.110 0.046 

400 1.394 0.789 0.695 -0.006 -0.011 -0.005 0.049 0.093 0.040 

450 1.398 0.796 0.698 -0.002 -0.004 -0.002 0.028 0.054 0.0230 

500 1.400 0.797 0.700 -0.002 -0.002 -0.001 0.019 0.022 0.016 
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Table 4 

Estimated MLE Values, Average Bias and Root Mean Square Errors  

for the EAPE Distribution for Set B: γ = 3.6, ζ = 1.07, η = 0.72 

n 
Parameter Estimate Average Bias RMSE 

𝜸̂ ζˆ 𝜼̂ 𝜸̂ ζˆ 𝜼̂ 𝜸̂ ζˆ 𝜼̂ 

50 2.568 0.708 0.670 -1.032 -0.362 -0.050 1.638 0.58 0.167 

100 3.020 0.853 0.668 -0.580 -0.217 -0.052 1.228 0.460 0.129 

150 3.293 0.953 0.688 -0.307 -0.117 -0.032 0.893 0.341 0.100 

200 3.337 0.970 0.692 -0.263 -0.100 -0.028 0.826 0.316 0.092 

250 3.439 1.007 0.701 -0.161 -0.063 -0.019 0.647 0.251 0.079 

300 3.470 1.020 0.705 -0.130 -0.05 -0.015 0.581 0.225 0.070 

350 3.480 1.024 0.706 -0.120 -0.046 -0.014 0.558 0.216 0.067 

400 3.548 1.050 0.714 -0.052 -0.020 -0.006 0.368 0.143 0.044 

450 3.551 1.051 0.714 -0.049 -0.019 -0.006 0.358 0.138 0.042 

500 3.558 1.054 0.715 -0.042 -0.016 -0.005 0.329 0.128 0.040 

 

  
(a) (b) 

 

 
(c) 

 

Figure 6: Graphical Representation of Simulation Results  

in Table 3 MLE (a), Absolute Bias (b) and  RMSE (c) 
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(a) (b) 

 

 
(c) 

 

Figure 7: Graphical Representation of Simulation Results  

in Table 4 MLE (a), Absolute Bias (b) and      RMSE (c) 

 

 A summary of the findings from the simulation study is given in Table 3, and 

Table 4 while the graphical representation of these results is provided in Figures 6 

and 7. Based on the results in the simulation tables and graphs, it is self-evident 

that the MLEs are effective in estimating unknown parameters and that the 

resulting estimates are relatively stable and close to the actual true values. 

Furthermore, as the sample sizes increases, the AB and RMSEs decrease and so 

do the associated absolute biases. 

 

5. REAL WORLD DATA APPLICATIONS 
 

 For the purpose of illustrating flexibility as well as the importance of the EAPE 

distribution, two real-world survival data sets were considered. The study compared 

the goodness-of-fit test measures and also the information criterion measures of EAPE 

distribution with those of some well-known competing distributions. The test 

measure used is the Kolmogorov–Smirnov (K–S) test statistic with its corresponding 

p-value. While the criterion considered are the Akaike information criterion (AIC), 

and the Bayesian information criterion (BIC). The smaller the value of these statistics, 

the better the model fits the data. 
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Table 5 

Kevlar 49/Epoxy Strands (with Pressure at 90%) Failure Times Data Set 

 0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.04 0.05 0.06 0.07 

 0.07 0.08 0.09 0.09 0.10 0.10 0.11 0.11 0.12 0.13 0.18 

 0.19 0.20 0.23 0.24 0.24 0.29 0.34 0.35 0.36 0.38 0.40 

 0.42 0.43 0.52 0.54 0.56 0.60 0.60 0.63 0.65 0.67 0.68 

 0.72 0.72 0.72 0.73 0.79 0.79 0.80 0.80 0.83 0.85 0.90 

 0.92 0.95 0.99 1.00 1.01 1.02 1.03 1.05 1.10 1.10 1.11 

 1.15 1.18 1.20 1.29 1.31 1.33 1.34 1.40 1.43 1.45 1.50 

 1.51 1.52 1.53 1.54 1.54 1.55 1.58 1.60 1.63 1.64 1.80 

 1.80 1.81 2.02 2.05 2.14 2.17 2.33 3.03 3.03 3.34 4.20 

4.69   7.89            

 

 We begin with the exploration of the data and provide a summary of descriptive 

statistics in Table 
 

 The plot of total time on test (TTT), the histogram, and the box plot are also 

provided in Figure 8. The TTT plot helps researchers in identifying the nature of the 

hazard rate function (Aarset, 1987). As depicted in the figure, the TTT plot indicates 

that the first data set is characterized by a failure rate that is modified bathtub in shape. 

Also, the values of skewness and kurtosis given in Table 6 indicate that the data is 

positively skewed and is also leptokurtic. These features are both confirmed by the 

shape of the histogram. 
 

 The maximum likelihood estimates for the Kevlar data were also determined and 

Table 7 gives the MLEs and their respective standard errors for the parameters of all 

the models considered. According to the standard error test, at a given significance 

level, a parameter is said to be significant if its standard error is less than half the 

estimate. It is thus, self-evident that at the 5% significance level, most of the 

parameters of the fitted distributions were significant. 
 

 For model fit and comparison with some competing distributions, the negative log-

likelihood values, goodness-of-fit test statistic measures, and values for the 

information criterion are provided in Table 8. As depicted from these values, the 

EAPE distribution has the lowest measures, hence, provides a better fit than those 

of the considered competing distributions. Figure 9 displays the visual 

representation of the estimated probability density function (PDF) and estimated 

CDF for the competing models. 

 

Table 6 

Summary of Descriptive Statistics for Kevlar Data 

Statistic Minimum Mean Median Mode Variance Skewness Kurtosis Maximum 

Value 0.010 1.025 0.800 0.500 1.253 3.002 13.709 7.890 
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Figure 8: TTT plot, Histogram, and Box-Plot for Kevlar Data 

 

Table 7 

The MLEs and their Respective Standard Errors  

for Different Models for Kevlar data 

Model 𝜸̂ 𝜻̂ 𝜼̂ 

EAPE 3.627(1.490) 1.065(0.188) 0.719(0.167) 

APE 8.841(2.614) 0.934(0.201) - 

EE -0.866(0.110) 0.888(0.120) - 

E - 0.976(0.097) - 

GE -0.820(0.040) 0.685(0.055) 7.639(1.087) 

ME 2.892(0.067) 2.183(0.006) 0.931(0.201) 

TGE 0.779(0.170) 0.955(0.136) 0.285(0.360) 

EMOE 1.092(0.240) 1.843(1.099) 0.745(0.142) 

OEHLE 0.716(0.086) 46.806(44.701) 0.023(0.021) 

 

  
(a) (b) 

Figure 9: Fitted PDFs (a), Empirical CDF, and Fitted CDFs  

(b) for Kevlar Data 
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Table 8 

The -log-likelihood Values, Information Criterion, and Goodness-of-Fit Test 

Measures (and their    corresponding p-values) for Kevlar Data 

Model 𝓵 𝐀𝐈𝐂 𝐁𝐈𝐂 𝑲 − 𝑺 𝒑 − 𝒗𝒂𝒍𝒖𝒆 

EAPE -102.260 210.420 212.365 0.070 0.705 

APE -103.450 210.899 216.130 0.085 0.464 

EE -102.820 210.640 214.870 0.089 0.404 

E -103.479 218.959 219.574 0.089 0.403 

GE -120.471 246.943 254.788 0.107 0.200 

ME -103.447 212.893 220.738 0.084 0.472 

TGE -102.550 211.100 218.945 0.076 0.598 

EMOE -102.298 210.596 218.441 0.120 0.109 

OEHLE -102.664 211.328 219.174 0.125 0.087 

 

 Data Set 2: The second data set represents the number of daily deaths because 

of COVID-19 in China between January 23 to March 28 2020 obtained from 

https://www.worldometers.info/coronavirus/country/c  
 

 A summary of descriptive statistics is given in Table 9 and the value of the 

kurtosis suggests that it is platykurtic while skewness indicates right-skewed data. 

The plot of total time on test (TTT), the histogram, and the box plot are also 

provided in Figure 10. As depicted in the figure, the TTT plot indicates that the 

second data set is characterized by a failure rate that is modified bathtub in shape. 

The maximum likelihood estimates for the China Covid-19 data were also determined 

and Table 10 gives the MLEs and their respective standard errors for the parameters 

of all the models considered. 
 

 It is self-evident that at the 5% significance level, most of the parameters of the 

fitted distributions were significant. 
 

 For model fit and comparison with some competing distributions, the negative log-

likelihood values, goodness-of-fit test statistic measures, and values for the 

information criterion are provided in Table 11. As depicted from these values, the 

EAPE distribution has the lowest measures, hence, provides a better fit than those 

of the considered competing distributions. Figure 11 displays the visual 

representation of the estimated probability density function (PDF) and estimated 

CDF for the competing models. 

 

Table 9 

Summary Statistics for China Covid-19 Data 

Statistic Minimum Mean Median Mode Variance Skewness Kurtosis Maximum 

Value 0.320 1.675 1.470 1.500 1.001 1.087 1.207 4.750 

 

http://www.worldometers.info/coronavirus/country/c
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Figure 10: TTT Plot, Histogram, and Box-Plot for China Covid-19 Data 

 

Table 10 

The MLEs and their Respective Standard Errors  

for Different Models for China Covid-19 Data 

Model 𝜸̂ 𝜻̂ 𝜼̂ 

EAPE 𝟏. 𝟓𝟎𝟎(𝟎. 𝟓𝟔𝟐) 𝟎. 𝟎𝟐𝟑(𝟎. 𝟎𝟎𝟑) 𝟏. 𝟎𝟖𝟔(𝟎. 𝟏𝟎𝟔) 

APE 1.403(1.040) 0.022(0.004) − 

EE − 1.148(0.189) 0.022(0.003) 

E − 0.020(0.002) − 

GE −0.662(0.024) 39.985(3.769) 1.429(0.217) 

ME 4.591(47.170) 4.645(34.170) 0.020(0.002) 

TGE 01.168(0.217) 0.022(0.004) 0.066(0.378) 

EMOE 0.019(0.006) 0.564(0.539) 1.438(0.619) 

EOHLE 1.57(0.314) 13.584(2.114) 0.002(0.000) 

 

Table 11 

The -Log-Likelihood Values, Information Criterion, and Goodness-of-Fit Test 

Measures (and their       corresponding p-values) for China Covid-19 Data 

Model 𝓵 𝐀𝐈𝐂 𝐁𝐈𝐂 𝑲 − 𝑺 𝒑 − 𝒗𝒂𝒍𝒖𝒆 

EAPE -322.684 650.367 652.936 0.079 0.789 

APE -323.760 651.521 655.900 0.088 0.691 

EE -323.513 651.027 655.406 0.092 0.634 

E -333.853 659.705 661.895 0.095 0.525 

GE -323.113 652.226 658.790 0.159 0.071 

ME -323.854 653.707 660.276 0.085 0.723 

TGEE -323.497 652.995 659.564 0.091 0.631 

EMOE -323.320 652.639 659.208 0.232 0.002 

EOHLE -324.429 654.859 661.428 0.126 0.242 
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(a) 

 
(b) 

Figure 11: Fitted PDFs (a), Empirical CDF and Fitted CDFs  

(b) for China Covid-19 Data 

 

6. CONCLUSION 
 

 This study has developed and studied the EAPE distribution, which extends the 

alpha power exponential distribution, and successfully derived its basic statistical 

properties. The properties derived include; the probability distribution function, 

cumulative distribution function, survival function, hazard rate function, quantile 

function, moments and moment generating function, and order statistics. The 

method of maximum likelihood estimation approach has been applied to estimate 

the parameters of EAPE distribution, and the average bias together with the 

RMSE has been used to assess the performance of the MLEs. The RMSE was in 

agreement with the asymptotic theory, while the AB approached zero as the sample 

size increased. We can, thus, conclude that the maximum likelihood estimators for 

the parameters of EAPE distribution are consistent. Through an application to real 

survival data, this study has shown that the new distribution did provide a good fit. 

Notably, the data set was right skewed and leptokurtic and was characterized by a 

modified bathtub hazard rate. In addition, the proposed distribution was compared 

with some competing distributions including the exponentiated Weibull, the 

exponentiated gull alpha power exponential, the exponentiated generalized alpha 

power exponential distribution, and the Kumaraswamy generalized exponentiated 

exponential distribution. The proposed EAPE distribution outperformed the well-

known considered competing distributions. In conclusion, the proposed model can 

be used as an alternative distribution to its competing distributions for modeling 

survival data exhibiting different shapes of the hazard rate function. 
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