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ABSTRACT 
 

 This research introduces a shifted Kumaraswamy distribution (SKD). The SKD is 

capable of modelling real-world phenomena with asymmetrical and bathtub-shaped 

characteristics with exceptional proficiency. The mathematical and reliability 

characteristics are thoroughly examined. To better comprehend its behaviour, density and 

hazard rate functions are plotted. The parameters of the model are estimated through the 

use of the maximum likelihood estimation method. The effectiveness of the SKD is 

demonstrated through its application to four real-world lifetime datasets, resulting in 

significantly improved outcomes compared to other well-known models and providing the 

closest fit to the data. This superiority confirms the SKD as a preferable choice over the 

baseline model. 

 

KEYWORDS 
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1. INTRODUCTION 
 

 The Kumaraswamy distribution (KD) is a two-parameter continuous probability 

distribution that was first introduced by K. Kumaraswamy in 1980. It is a generalization of 

the Beta distribution and is commonly used to model the distribution of continuous random 

variables that are bounded between 0 and 1. The shape parameters of the KD determine the 

shape of the distribution, and they control the skewness, kurtosis, and mode of the 

distribution. The distribution is commonly used in various fields such as engineering, 

finance, and reliability analysis. The cumulative distribution function (denoted as CDF) 

and the probability density function (denoted as PDF) of the KD can be easily computed 

using its mathematical formulation. 
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𝑃𝑡|𝑐,𝑑 = 1 − [1 − 𝑡𝑐]𝑑 , 𝑡 ∈ (0,1), (1) 

and 

𝑝𝑡|𝑐,𝑑 = 𝑐𝑑𝑡𝑐−1[1 − 𝑡𝑐]𝑑−1 , (2) 
 

where 𝑐, 𝑑 > 0 are two shape parameters. 
 

 The KD is a versatile and flexible distribution that has gained popularity due to its 

ability to model various types of data with different shapes. Unlike other commonly used 

distributions, such as the normal or exponential distribution, the KD is able to model 

distributions with different shapes, including distributions that are multimodal or skewed. 

This makes it well-suited for modelling real-world data, where the underlying distribution 

may not always be easily characterized by a single standard distribution. Additionally, the 

KD has a simple mathematical formulation, which makes it easy to implement in statistical 

software and to calculate various summary statistics, such as the mean, variance, and 

skewness. It also has an intuitive interpretation as the distribution of a ratio of random 

variables, making it easily understood by both practitioners and researchers. Overall, the 

KD is a valuable tool for modelling and analyzing data in various fields. Its flexibility, ease 

of implementation, and ability to handle a wide range of data shapes make it a useful tool 

for data scientists and practitioners alike. 
 

 In order to provide the reader with further information, the authors recommend 

reputable sources connected to Kumaraswamy generated (K-G) class such as Jones (2009), 

McDonald (1984), and Cordeiro and de Castro (2011). Bourguignon et al. (2013), Lemonte 

et al. (2013), Alizadeh et al. (2015), Afify et al. (2016), Ibrahim (2017), Bursa and Ozel 

(2017), Mahmoud et al. (2018), Nawaz et al. (2018), Silva et al. (2019), Neto and Santos 

(2019), Tahir et al. (2014), Hemeda et al. (2020), Hassan et al. (2021), Arshad et al. (2021), 

and Al-Babtain et al. (2021), Tahir et al. (2020),and  Ramzan et al. (2022),. 
 

 Despite its usefulness, there is still a significant gap in the research when it comes to 

exploring shifted distributions, which refers to adding a constant value to each data point, 

resulting in a new distribution with the same shape but with its mean and median shifted. 

Shifting a distribution can be useful in various contexts, such as when comparing different 

distributions that are not centered on the same value or when the units of measurement or 

the origin of a variable changes. To address this gap, this study proposes a modified version 

of the KD called the shifted Kumaraswamy distribution (SKD), which includes an 

additional shifting parameter (m). The SKD can better capture the complex behavior of 

real-world systems and their failure patterns over time, including the bathtub-shaped failure 

rate pattern, which is commonly observed in various fields. The SKD provides a more 

accurate representation of the underlying data and can lead to better decision making in 

various applications. The purpose of this study is to introduce the SKD and provide a 

comprehensive analysis of its properties, including its mean, variance, quantile functions, 

maximum likelihood estimation, and many others. The study also aims to bridge the gap 

in the research related to shifted distributions and provide practitioners and researchers 

with a useful tool for modeling and analyzing data in various fields. It is standard practice 

to simulate shifted distributions by making use of data pertaining to dependability, 

breakage, percentage, and proportion. More research is being done on it in relation to 

medical and veterinary issues.  
 



Muhammad Zeshan Arshad et al. 215 

 For further information, authors refer the readers to a number of recently published 

investigations, such as those conducted by Yang et al. (2019), Madi and Leonard (1996), 

Cousineau (2009), Ikechukwu et al. (2020), Jodrá (2020), Gómez-Déniz et al. (2020), 

Arshad et al. (2022), Eledum and Alaa (2023), Eldessouky et al. (2023),  amongst others. 
 

1.1 Definition  

 A random variable T~SKD (𝑡;𝑐,𝑑) with 𝑐, 𝑑 > 0, two shape parameters for 𝑡 ∈ (𝑚, 1), 

having CDF corresponding PDF that begin at m with 1 [1 − 𝑚]⁄  normalizing constant, are, 

respectively, given by 
 

𝐹𝑡|𝑐,𝑑 = 1 − [1 − (
𝑡 − 𝑚

1 − 𝑚
)

𝑐

]

𝑑 

,  (3) 

and 

𝑓𝑡|𝑐,𝑑 = 𝑐𝑑(𝑡 − 𝑚)𝑐−1(1 − 𝑚)−𝑐 
[1 − (

𝑡 − 𝑚

1 − 𝑚
)

𝑐

]

𝑑−1 

. (4) 

 

Table 1 

Sub-Models of SKD 

Parameter Model Reference 

𝑚 = 0 Kumaraswamy Distribution Kumaraswamy (1980) 

𝑚 = 0, and 𝑐 = 1 Lehmann Type – II distribution Lehmann-II (1953) 
 

 The rest of the paper is structured in the following manner: In the 1st Section, a new 

model is presented for consideration. In the 2nd Section of this paper, the general 

characteristics of the model are investigated. In the 3rd Section, we discuss various types of 

reliability measurements. In 4th Section, we discussed various additional characteristics. In 

5th Section, an estimating approach based on the maximum likelihood, as well as a 

simulation study, are carried out in Section 6th. In 7th Section, the application of the model 

is discussed, and the findings and future directions are analyzed and summarized in  

8th Section. 

 

2. MATHEMATICAL PROPERTIES OF SHIFTED  

KUMARASWAMY DISTRIBUTION 
 

2.1 Infinite Linear Combinations (ILCs)  

 The ILCs of CDF and PDF for SKD may provide a more straightforward approach than 

the traditional integral computation. The binomial expansion for T is taken into account as: 
 

(1 − 𝑡)𝑏 = ∑(
𝑏
𝑙
) (−1)𝑙𝑡𝑙

∞

𝑙=0

, |𝑡| < 1. 

 

 As a result of (3), ILCs of the CDF is given as follows: 
 

𝐹𝑡|𝑐,𝑑 = 1 − ∑ (
𝑑
𝑖1

) (
𝑐𝑖1
𝑖2

) (−1)𝑖1+𝑖2
𝑚𝑖2

(1 − 𝑚)𝑎𝑖2
𝑡𝑐𝑖1−𝑖2 ,

∞

𝑖1,𝑖2=0

 (5) 
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𝐹𝑡|𝑐,𝑑 = 1 − ∑ 𝜁𝑖1,𝑖2𝑡
𝜀𝑖1,𝑖2  

∞

𝑖1,𝑖2=0

. (6) 

 

 As a result of (4), ILCs of PDF is given as follows: 

𝑓𝑡|𝑐,𝑑 =
𝑐𝑑

(1 − 𝑚)𝑎
[ ∑

(
𝑐 − 1

𝑖1
) (

𝑑 − 1
𝑖2

) (
𝑐𝑖2
𝑙

) (−1)𝑖1+𝑖2+𝑙𝑚𝑖1−𝑐𝑖2+𝑙 ×

(1 − 𝑚)−𝑐𝑖2𝑡𝑐−1−𝑖1+𝑐𝑖2−𝑙  

∞

𝑖1,𝑖2,𝑙=0

]. (7) 

 

𝑓𝑡|𝑐,𝑑 =
𝑐𝑑

(1 − 𝑚)𝑐
∑ 𝜂𝑖1,𝑖2,𝑙𝑡

𝜙𝑖1,𝑖2,𝑙

 

∞

𝑖1,𝑖2,𝑙=0

, (8) 

 

where 

 𝜀𝑖1,𝑖2
= 𝑐𝑖1 − 𝑖2, 𝜙𝑖1,𝑖2,𝑙 = 𝑐 − 1 − 𝑖1 + 𝑐𝑖2 − 𝑙, 𝜁𝑖1,𝑖2

= (
𝑑
𝑖1

) (
𝑐𝑖1
𝑖2

) (−1)𝑖1+𝑖2
𝑚𝑖2

(1−𝑘)𝑐𝑖2
, 

𝜂𝑖,𝑗,𝑙 = (
𝑐 − 1

𝑖1
) (

𝑑 − 1
𝑖2

) (
𝑐𝑖2
𝑙

) (−1)𝑖1+𝑖2+𝑙𝑚𝑖1−𝑐𝑖2+𝑙(1 − 𝑚)−𝑐𝑖2 . 

 

Theorem 1 

 A random variable T~SKD (𝑡;𝑐,𝑑) with 𝑐, 𝑑 > 0, two shape parameters, having CDF 

corresponding PDF that begin at m with 1 [1 − 𝑚]⁄  normalizing constant, then ordinary 

moment (𝜇′𝑡|𝑟,𝑐,𝑑) of T is given by 
 

𝜇′𝑡|𝑟,𝑐,𝑑 =
𝑐𝑑

(1 − 𝑚)𝑐
∑ 𝜂𝑖1,𝑖2,𝑙

1

𝛻𝑖1,𝑖2,𝑙,𝑟

[1 − 𝑚𝛻𝑖1,𝑖2,𝑙,𝑟]

∞

𝑖1,𝑖2,𝑙=0

, 

where  

𝜂𝑖1,𝑖2,𝑙 = (
𝑐 − 1

𝑖1
) (

𝑑 − 1
𝑖2

) (
𝑐𝑖2
𝑙

) (−1)𝑖1+𝑖2+𝑙
𝑚𝑖1−𝑐𝑖2+𝑙

(1 − 𝑚)𝑐𝑖2
, 𝛻𝑖1,𝑖2,𝑙,𝑟

= 𝑐 − 𝑖1 + 𝑐𝑖2 − 𝑙 + 𝑟. 
 

Proof: 

 𝜇′𝑡|𝑟,𝑐,𝑑 is can be written as 𝜇′𝑡|𝑟,𝑐,𝑑 = ∫ 𝑡𝑟𝑓𝑡|𝑐,𝑑𝑑𝑡
1

𝑚
 and it can be written directly 

followed by (4) 

𝜇′𝑡|𝑟,𝑐,𝑑 = ∫ 𝑡𝑟
1

𝑚

𝑐𝑑(𝑡 − 𝑚)𝑐−1(1 − 𝑚)−𝑐 [1 − (𝑡 − 𝑚)𝑐(1 − 𝑚)−𝑐]𝑑−1 𝑑𝑡. 

 

 Through the use of the binomial expansion, the last expression is simplified and 

presented in its most straightforward form as follows: 
 

𝜇′𝑡|𝑟,𝑐,𝑑 =
𝑐𝑑

(1 − 𝑚)𝑐
 

∑ (
𝑐 − 1

𝑖1
) (

𝑑 − 1
𝑖2

) (
𝑐𝑖2
𝑙

) (−1)𝑖1+𝑖2+𝑙
𝑚𝑖1−𝑐𝑖2+𝑙

(1 − 𝑚)𝑐𝑖2
∫ 𝑡𝑐−𝑖1+𝑐𝑖2−𝑙+𝑟−1

1

𝑚

𝑑𝑡

∞

𝑖1,𝑖2,𝑙=0

. 

 

 Hence, through the process of simple integration, a final expression of 𝜇′𝑡|𝑟,𝑐,𝑑 can be 

obtained and is presented as follows: 
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𝜇′𝑡|𝑟,𝑐,𝑑 =
𝑐𝑑

(1 − 𝑚)𝑐
∑

𝜂𝑖1,𝑖2,𝑙

∇𝑖1,𝑖2,𝑙,𝑟

[1 − 𝑚∇𝑖1,𝑖2,𝑙,𝑟]

∞

𝑖1,𝑖2,𝑙=0

, (9) 

where 

𝜂𝑖1,𝑖2,𝑙 = (
𝑐 − 1

𝑖1
) (

𝑑 − 1
𝑖2

) (
𝑐𝑖2
𝑙

) (−1)𝑖1+𝑖2+𝑙 𝑚𝑖1−𝑐𝑖2+𝑙

(1−𝑚)𝑐𝑖2
, ∇𝑖1,𝑖2,𝑙,𝑟= 𝑐 − 𝑖1 + 𝑐𝑖2 − 𝑙 + 𝑟. 

 

 The equation represented by (9) has the potential to play a valuable impact in formation 

of various statistical metrics. As an illustration: to calculate mean (denoted as 𝜇′𝑡|1,𝑐,𝑑), 

three moments (denoted as 𝜇′𝑡|2,𝑐,𝑑, 𝜇′𝑡|3,𝑐,𝑑, 𝜇′𝑡|4,𝑐,𝑑) and negative moments (denoted as 

𝜇′𝑡|−𝑣,𝑐,𝑑) of T, replace r with 1,2,3,4 and -v in (9), respectively. It is presented as follows: 
 

𝜇′𝑡|1,𝑐,𝑑 =
𝑐𝑑

(1 − 𝑚)𝑐
∑

𝜂𝑖1,𝑖2,𝑙

∇𝑖1,𝑖2,𝑙,1

[1 − 𝑚∇𝑖1,𝑖2,𝑙,1]

∞

𝑖1,𝑖2,𝑙=0

, (10) 

  

𝜇′𝑡|2,𝑐,𝑑 =
𝑐𝑑

(1 − 𝑚)𝑐
∑

𝜂𝑖1,𝑖2,𝑙

∇𝑖1,𝑖2,𝑙,2

[1 − 𝑚∇𝑖1,𝑖2,𝑙,2]

∞

𝑖1,𝑖2,𝑙=0

,  

  

𝜇′𝑡|3,𝑐,𝑑 =
𝑐𝑑

(1 − 𝑚)𝑐
∑

𝜂𝑖1,𝑖2,𝑙

∇𝑖1,𝑖2,𝑙,3

[1 − 𝑚∇𝑖1,𝑖2,𝑙,3]

∞

𝑖1,𝑖2,𝑙=0

,  

  

𝜇′𝑡|4,𝑐,𝑑 =
𝑐𝑑

(1 − 𝑚)𝑐
∑

𝜂𝑖1,𝑖2,𝑙

∇𝑖1,𝑖2,𝑙,4

[1 − 𝑚∇𝑖1,𝑖2,𝑙,4]

∞

𝑖1,𝑖2,𝑙=0

,  

  

𝜇′𝑡|−𝑣,𝑐,𝑑 =
𝑐𝑑

(1 − 𝑚)𝑐
∑

𝜂𝑖1,𝑖2,𝑙

∇𝑖1,𝑖2,𝑙,(−𝑣)
[1 − 𝑚∇𝑖1,𝑖2,𝑙,(−𝑣)]

∞

𝑖1,𝑖2,𝑙=0

. 
 

 

 Tables 2 and 3 exhibits the values of first four ordinary moments, variance (denoted as 

𝜎2
𝑡|𝑐,𝑑), skewness (indicated as 𝜋𝑠𝑘|𝑐,𝑑), and kurtosis (designated as 𝜋𝑘𝑟|𝑐,𝑑) for selected 

model parameters of m = 0.001.  

 

Table 2 

Some Numerical Results of Statistics 

Statistics  𝒄 = 𝟎. 𝟏 
Comments 

𝜇′𝑡|𝑟,𝑐,𝑑  𝑑 = 1.2 𝑑 = 1.3 𝑑 = 1.4 𝑑 = 1.5 𝑑 = 1.6 

𝜇′𝑡|1,𝑐,𝑑 0.0623 0.0518 0.0431 0.0362 0.0306 

D
ec

re
as

in
g

  

𝜇′𝑡|2,𝑐,𝑑 0.0282 0.0221 0.0173 0.0136 0.0107 

𝜇′𝑡|3,𝑐,𝑑 0.0179 0.0133 0.1001 0.0076 0.0058 

𝜇′𝑡|4,𝑐,𝑑 0.0128 0.0093 0.0068 0.0050 0.0096 

𝜎2
𝑡|𝑐,𝑑 0.0245 0.0194 0.0153 0.0121 0.0096 

𝜋𝑠𝑘|𝑐,𝑑 7.7304 10.2106 13.0813 16.3151 20.0917 Increasing  

𝜋𝑘𝑟|𝑐,𝑑 11.5508 14.8118 18.5862 22.9534 28.0026 Increasing 
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Table 3 

Some Numerical Results of Statistics 

Statistics  𝒅 = 𝟎. 𝟗 
Comments 

𝜇′𝑡|𝑟,𝑐,𝑑  𝑐 = 0.1 𝑐 = 0.2 𝑐 = 0.3 𝑐 = 0.4 𝑐 = 0.5 

𝜇′𝑡|1,𝑐,𝑑 0.1125 0.1941 0.2604 0.3161 0.3637 

D
ec

re
as

in
g

 

𝜇′𝑡|2,𝑐,𝑑 0.0623 0.1118 0.1549 0.1935 0.2283 

𝜇′𝑡|3,𝑐,𝑑 0.0439 0.0796 0.1117 0.1411 0.1682 

𝜇′𝑡|4,𝑐,𝑑 0.0341 0.0623 0.0879 0.1117 0.1340 

𝜎2
𝑡|𝑐,𝑑 0.0492 0.0713 0.0793 0.0778 0.0691 

𝜋𝑠𝑘|𝑐,𝑑 2.1879 0.2687 0.0125 0.0066 0.0252 Decreasing 

𝜋𝑘𝑟|𝑐,𝑑 4.1553 1.2238 0.5411 0.3441 0.2748 Decreasing 

 

 Moment generating function (mgf) of T is defined as 𝑀𝑇(𝑤)𝑡|𝑐,𝑑 = ∑
𝑤𝑟

𝑟!

∞
𝑟=0 𝜇′𝑡|𝑟,𝑐,𝑑 

and mathematical expression is presented as follows: 
 

𝑀𝑇(𝑤)𝑡|𝑐,𝑑 =
𝑐𝑑

(1 − 𝑚)𝑐
∑

𝑤𝑟

𝑟!

∞

𝑟=0

∑
𝜂𝑖1,𝑖2,𝑙

∇𝑖1,𝑖2,𝑙,𝑟

[1 − 𝑚∇𝑖1,𝑖2,𝑙,𝑟]

∞

𝑖1,𝑖2,𝑙=0

. 

 

 The characteristic function of T is defined as ∅𝑇(𝑤)𝑡|𝑐,𝑑 = ∑
(𝑖𝑤)𝑟

𝑟!

∞
𝑟=0 𝜇′𝑡|𝑟,𝑐,𝑑. It is 

presented as follows: 
 

∅𝑇(𝑤)𝑡|𝑐,𝑑 =
𝑐𝑑

(1 − 𝑚)𝑐
∑

(𝑖𝑤)𝑟

𝑟!

∞

𝑟=0

∑
𝜂𝑖1,𝑖2,𝑙

∇𝑖1,𝑖2,𝑙,𝑟

[1 − 𝑚∇𝑖1,𝑖2,𝑙,𝑟]

∞

𝑖1,𝑖2,𝑙=0

.  

 

 The first incomplete moment of U is defined as 𝛷𝑢|1,𝑐,𝑑 = ∫ 𝑡𝑓𝑡|𝑐,𝑑𝑑𝑡
𝑢

0
 and it is obtained 

by substituting r = 1 in (11), as 
 

𝛷𝑢|1,𝑐,𝑑 =
𝑐𝑑

(1 − 𝑚)𝑐
∑

𝜂𝑖1,𝑖2,𝑙

∇𝑖1,𝑖2,𝑙,𝑟

[𝑢∇𝑖1,𝑖2,𝑙,1 − 𝑚∇𝑖1,𝑖2,𝑙,𝑟]

∞

𝑖1,𝑖2,𝑙=0

. (12) 

 

 As is seen in detail in Section 2.4, the idea of the 𝛷𝑢|1,𝑐,𝑑 may be put to use in a variety 

of contexts when analyzing Bonferroni and Lorenz curves.  

 

2.4 Inequality Curves 

 The Bonferroni and Lorenz curves, which are defined as 𝐵𝑡|𝑐,𝑑 and 𝐿𝑡|𝑐,𝑑, respectively, 

play a crucial role in a wide array of fields including economics, where they are used to 

analyze the distribution of income, poverty, and wealth. These curves are also of great 

significance in fields such as insurance, demography, medicine, reliability and others. Their 

extensive applications can be attributed to their ability to provide an accurate representation 

of the cumulative distribution of a random variable, which is crucial in decision making 

processes. These curves are formally defined as follows: 
 

𝐿𝑡|𝑐,𝑑 =
𝛷𝑢|1,𝑐,𝑑

𝜇′
𝑡
|
1,𝑐,𝑑

,  𝐵𝑡|𝑐,𝑑 =
𝐿𝑡|𝑐,𝑑

𝐹𝑡|𝑐,𝑑

. 
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 The Lorenz curve of T  
 

𝐿𝑡|𝑐,𝑑 =
∑ 𝜌𝑖1,𝑖2,𝑙,𝑟[𝑢

∇𝑖1,𝑖2,𝑙,1 − 𝑚∇𝑖1,𝑖2,𝑙,𝑟]∞
𝑖1,𝑖2,𝑙=0

∑ 𝜌𝑖1,𝑖2,𝑙,1[1 − 𝑚∇𝑖1,𝑖2,𝑙,1]∞
𝑖1,𝑖2,𝑙=0

, (13) 

 

and Bonferroni curve along with their plots are represented, respectively 
 

𝐵𝑡|𝑐,𝑑 =
1

𝐹|𝑡,𝑐,𝑑

[
∑ 𝜌𝑖1,𝑖2,𝑙,𝑟[𝑢

∇𝑖1,𝑖2,𝑙,1 − 𝑚∇𝑖1,𝑖2,𝑙,𝑟]∞
𝑖1,𝑖2,𝑙=0

∑ 𝜌𝑖1,𝑖2,𝑙,1[1 − 𝑚∇𝑖1,𝑖2,𝑙,1]∞
𝑖1,𝑖2,𝑙=0

], 

 

where  

𝜌𝑖1,𝑖2,𝑙,𝑟 =
𝜂𝑖1,𝑖2,𝑙

∇𝑖1,𝑖2,𝑙,𝑟

,    𝜌𝑖1,𝑖2,𝑙,1 =
𝜂𝑖1,𝑖2,𝑙

∇𝑖1,𝑖2,𝑙,1

. 

 

  
Figure 1: Bonferroni and Lorenz Cures for SKD 

 

 The residual life and reverse residual life functions for T are formally defined as 

𝑅|𝑣 𝑡⁄ = 𝑆|(𝑡+𝑣) 𝑆|𝑣⁄  and �̅�|𝑣 𝑡⁄ = 𝑆|(𝑡−𝑣) 𝑆|𝑣⁄  and mathematical expressions are, 

respectively, presented as follows:  
 

𝑅|𝑣 𝑡,𝑐,𝑑⁄ = 𝑦|𝑣 [1 − (
𝑡 + 𝑣 − 𝑚

1 − 𝑚
)

𝑐

]

𝑑 

, 

and 

�̅�|𝑣 𝑡,𝑐,𝑑⁄ = 𝑦|𝑣 [1 − (
𝑡 − 𝑣 + 𝑚

1 − 𝑚
)

𝑐

]

𝑑

, 
 

where  

𝑦|𝑣 = 1 − [1 − (
𝑣 − 𝑚

1 − 𝑚
)

𝑐

]
𝑑

. 

 

3. RELIABILITY MEASURES 
 

 The survival function which is denoted as 𝑆𝑡|𝑐,𝑑, that represents the probability that a 

component will last until time t, can be expressed as 𝑆𝑡|𝑐,𝑑 = 1 − 𝐹𝑡|𝑐,𝑑. The 𝑆𝑡|𝑐,𝑑 of T is 

described as follows: 
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𝑆𝑡|𝑐,𝑑 = [1 − (
𝑡 − 𝑚

1 − 𝑚
)

𝑐

]

𝑑

.  

 

 The hazard rate function which is denoted as ℎ𝑡|𝑐,𝑑, that quantifies the rate at which a 

component fails at time t, is expressed mathematically as ℎ𝑡|𝑐,𝑑 = 𝑓𝑡|𝑐,𝑑 𝑆𝑡|𝑐,𝑑⁄ . The ℎ𝑡|𝑐,𝑑 

of T is defined as: 
 

ℎ𝑡|𝑐,𝑑 =
𝑐𝑑(𝑡 − 𝑚)𝑐−1

(1 − 𝑚)𝑐 − (𝑡 − 𝑚)𝑐 .   

 

 In addition to the survival and hazard rate functions, other noteworthy reliability 

metrics can be derived for T. One such metric is the reversed hazard rate function, which 

is defined as 𝑟ℎ𝑡|𝑐,𝑑 = 𝑓𝑡|𝑐,𝑑 𝐹𝑡|𝑐,𝑑⁄ . This function provides a different perspective on the 

failure rate of a component, taking into consideration not only the remaining time until 

failure, but also the amount of time that has already elapsed. The 𝑟ℎ𝑡|𝑐,𝑑 can be a valuable 

tool for evaluating the reliability of a component over its lifetime and making informed 

decisions about maintenance and replacement strategies. The expression for the 𝑟ℎ𝑡|𝑐,𝑑 of 

T is: 
 

𝑟ℎ𝑡|𝑐,𝑑 =
𝑐𝑑(𝑡 − 𝑚)𝑐−1 [1 − (

𝑡 − 𝑚
1 − 𝑚

)
𝑐

]
𝑑−1 

(1 − 𝑚)𝑐 [1 − {1 − (
𝑡 − 𝑚
1 − 𝑚

)
𝑐

}
𝑑

]

.  

 

 The Mills ratio which is denoted as 𝑀𝑡|𝑐,𝑑, is another important reliability measure that 

provides insight into the relationship between the survival and failure rate functions of a 

component. It is defined as 𝑀𝑡|𝑐,𝑑 = 𝑆𝑡|𝑐,𝑑 𝑓𝑡|𝑐,𝑑⁄ , and provides a measure of the excess 

waiting time between failures. The 𝑀𝑡|𝑐,𝑑 of T can be expressed as: 
 

𝑀𝑡|𝑐,𝑑 =
(1 − 𝑚)𝑐 − (𝑡 − 𝑚)𝑐

𝑐𝑑(𝑡 − 𝑚)𝑐−1 . 

 

 The Odd function is another reliability metric that provides a measure of the likelihood 

of a component surviving or failing. It is expressed as 𝑂𝑡|𝑐,𝑑 = 𝐹𝑡|𝑐,𝑑 𝑆𝑡|𝑐,𝑑⁄ , and provides 

a measure of the odds of a component failing at time t, given that it has survived until that 

point. The 𝑂𝑡|𝑐,𝑑 of T can be expressed as: 
 

𝑂𝑡|𝑐,𝑑 = [1 − (
𝑡 − 𝑚

1 − 𝑚
)

𝑐

]

−𝑑

− 1.  

 

4. ADDITIONAL CHARACTERISTICS 
 

4.1 Limiting Behaviour (LB) 

 The LB of CDF (𝐹𝑡|𝑐,𝑑), PDF (𝑓𝑡|𝑐,𝑑) and HRF (ℎ𝑡|𝑐,𝑑) of T for limit t → 𝑚 and limit 

t→ 1 is explored in propositions I and II, respectively. 
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Proposition I 

 For limit t → 𝑚, 𝐹𝑡|𝑐,𝑑, 𝑓𝑡|𝑐,𝑑 and ℎ𝑡|𝑐,𝑑 are, respectively, illustrated as  
 

𝐹𝑚|𝑐,𝑑~0, 

𝑓𝑚|𝑐,𝑑~0, 

ℎ𝑚|𝑐,𝑑~0. 
 

Proposition II. 

 For limit t → 1, 𝐹𝑡|𝑐,𝑑, 𝑓𝑡|𝑐,𝑑 and ℎ𝑡|𝑐,𝑑 are, respectively, illustrated as 
 

𝐹1|𝑐,𝑑~1, 

𝑓1|𝑐,𝑑~0, 

ℎ1|𝑐,𝑑~Undefined. 
 

4.2 Shapes  

 In Figure 2, a variety of shapes for the PDF (I and II) and HRF (III and IV) of SKD are 

presented, based on different model parameters. It should be noted that the shapes of both 

the PDF and HRF can greatly impact the reliability of the component being analyzed. 
 

  
(I) (II) 

  
(III) (IV) 

Figure 2: PDF and HRF curves for SKD 
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4.3 Quantile Function  

 The qth quantile function (defined as 𝑞𝑓𝑞|𝑐,𝑑
) of the SKD, which is obtained by reversing 

the CDF as presented in (3). Mathematically, it is defined as 𝑞𝑓𝑞|𝑐,𝑑
= 𝑃(𝑇 ≤ 𝑡𝑞), 𝑞 ∈

(0,1). The 𝑞𝑓𝑞|𝑐,𝑑
 of T is then given by this expression. 

 

𝑞𝑓𝑞|𝑐,𝑑
= 𝑚 + (1 − 𝑚) (1 − (1 − 𝑞)

1
𝑑⁄ )

1
𝑐⁄

. (14) 

 

 For q = 0.25, 0.5, and 0.75 respectively one may find out 𝑄1|𝑐,𝑑, 𝑄2|𝑐,𝑑, and 𝑄3|𝑐,𝑑.To 

generate random numbers, if CDF of proposed SKD follows to u = U (0, 1) (uniform 

distribution). 

 

4.4 Entropy Measures 

 Entropy measures, including Rényi and Tsallis entropy, are used to quantify the amount 

of disorder or randomness in a system. These measures are commonly used in statistical 

mechanics and information theory to describe complex systems. Rényi entropy generalizes 

Shannon entropy, while Tsallis entropy provides an alternative to Boltzmann entropy. Each 

measure has its own unique formulation and interpretation, allowing for analysis of a broad 

range of physical and informational systems. The Rényi (1961) entropy of T is defined by 
 

𝐻𝑅|𝑡,𝑐,𝑑,𝜗 =
1

1 − 𝜗
𝑙𝑜g ∫[𝑓𝑡|𝑐,𝑑]

𝜗
𝑑𝑡

1

𝑚

 , 𝜗 > 0 𝑎𝑛𝑑𝜗 ≠ 1. (15) 

 

 Initially, simplify [𝑓𝑡|𝑎,𝑏]
𝜗

 by utilizing (4) 
 

[𝑓𝑡|𝑐,𝑑]
𝜗

=
(𝑐𝑑)𝜗

(1 − 𝑚)𝑐𝜗 (𝑡 − 𝑚)𝜗(𝑐−1) [1 − (
𝑡 − 𝑚

1 − 𝑚
)

𝑐

]

𝜗(𝑑−1) 

, 

 

and substitute in (15), we obtain 𝐻𝑇|𝑐,𝑑,𝜗 of T 
 

𝐻𝑅|𝑡,𝑐,𝑑,𝜗 =

[
 
 
 
 
 (𝑐𝑑)𝜗

(1 − 𝜗)(1 − 𝑚)𝑐𝜗
𝑙𝑜g ∑ (

𝜗(𝑐 − 1)
𝑖1

) (
𝜗(𝑑 − 1)

𝑖2
) (

𝑐𝑖2
𝑙

) ×

∞

𝑖1,𝑖2,𝑙=0

(−1)𝑖1+𝑖2+𝑙𝑚𝑖1−𝑐𝑖2+𝑙 ∫𝑡𝜗(𝑐−1)−𝑖1+𝑐𝑖2−𝑙𝑑𝑡

1

𝑚 ]
 
 
 
 
 

 .  

 

 Hence, by mathematical operations to last expression provide 𝐻𝑇|𝑐,𝑑,𝜗 which is 

presented as follows: 
 

𝐻𝑅|𝑡,𝑐,𝑑,𝜗 =
(𝑐𝑑)𝜗

(1 − 𝜗)(1 − 𝑚)𝑐𝜗
𝑙𝑜g ∑ 𝐴𝑖1,𝑖2,𝑙,𝜗

1

𝜏𝑖1,𝑖2,𝑙,𝜗

[1 − 𝑚𝜏𝑖1,𝑖2,𝑙,𝜗]

∞

𝑖1,𝑖2,𝑙=0

, (16) 

 

where 𝜏𝑖1,𝑖2,𝑙,𝜗 = 𝜗(𝑐 − 1) − 𝑖1 + 𝑐𝑖2 − 𝑙, 
 

𝐴𝑖1,𝑖2,𝑙,𝜗 = (
𝜗(𝑐 − 1)

𝑖1
) (

𝜗(𝑑 − 1)
𝑖2

) (
𝑐𝑖2
𝑙

) (−1)𝑖1+𝑖2+𝑙𝑚𝑖1−𝑐𝑖2+𝑙 . 
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 The Rényi entropy is a useful tool for finding the Tsallis entropy (short 𝐻𝑇|𝑡,𝑐,𝑑,𝜗).  

𝐻𝑇|𝑡,𝑐,𝑑,𝜗 =
1

𝜗−1
∫ [𝑓𝑡|𝑐,𝑑]

𝜗−1
𝑑𝑡

1

𝑚
 , 𝜗 > 0 𝑎𝑛𝑑𝜗 ≠ 1. Hence, the final version of the 

𝐻𝑇|𝑡,𝑐,𝑑,𝜗 is defined as follows. 
 

𝐻𝑇|𝑡,𝑐,𝑑,𝜗 =
(𝑐𝑑)(𝜗−1)

(𝜗 − 1)(1 − 𝑚)𝑐(𝜗−1)
∑ 𝐴𝑖1,𝑖2,𝑙,(𝜗−1)

∗ 1

𝜏𝑖1,𝑖2,𝑙,(𝜗−1)
∗ [1 − 𝑚

𝜏𝑖1,𝑖2,𝑙,(𝜗−1)
∗

]

∞

𝑖1,𝑖2,𝑙=0

, 

 

where 𝜏𝑖1,𝑖2,𝑙,(𝜗−1)
∗ = (𝜗 − 1)(𝑐 − 1) − 𝑖1 + 𝑐𝑖2 − 𝑙, 

 

𝐴𝑖1,𝑖2,𝑙,(𝜗−1)
∗ = (

(𝜗 − 1)(𝑐 − 1)
𝑖1

) (
(𝜗 − 1)(𝑑 − 1)

𝑖2
) (

𝑐𝑖2
𝑙

) (−1)𝑖1+𝑖2+𝑙𝑚𝑖1−𝑐𝑖2+𝑙 . 
 

 The lack of closed-form expressions for the Rényi and Tsallis entropies means that 

Table 4 provides numerical results based on possible parameter combinations, which can 

help in comprehending the behavior of these entropies. 

 

Table 4 

Numerical Results for Rényi Entropy and Tsallis Entropy. 

Parameter Combinations 
Rényi 

Entropy 
Comments 

Tsallis 

Entropy 
Comments 

𝑐 = 1.1 

𝑑 = 0.5 𝜗 = 0.5 -0.2270 

Decreasing 

0.3188 

Increasing 

𝑑 = 1.5 𝜗 = 0.6 -0.1016 0.1144 

𝑑 = 2.0 𝜗 = 0.7 -0.5821 0.4384 

𝑑 = 2.5 𝜗 = 0.8 -1.9827 0.8075 

𝑑 = 3.0 𝜗 = 0.9 -7.0437 1.0432 

𝑑 = 1.5 

𝑐 = 1.1 𝜗 = 0.5 -0.0677 

Decreasing 

0.1295 

Decreasing 

than 

Increase 

𝑐 = 1.2 𝜗 = 0.6 -0.0813 0.0914 

𝑐 = 1.3 𝜗 = 0.7 -0.1182 0.0748 

𝑐 = 1.4 𝜗 = 0.8 -0.2222 -0.0219 

𝑐 = 1.5 𝜗 = 0.9 -0.6077 0.0775 

 

4.5 Order Statistics (OS) 

 Let T1 , T2 , T3 , ..., Tn be a random sample of size n follows to T and {T(1) < T(2) <T(3) < 

...<T(n) } be the corresponding OS. Then PDF of i-th (i=1, 2, 3,…, n) OS is defined as 
 

𝑓𝑡|𝑐,𝑑,(𝑖:𝑛) = 𝐶|𝐵(.)[𝐹𝑡|𝑐,𝑑]
𝑖−1

[1 − 𝐹𝑡|𝑐,𝑑]
𝑛−𝑖

𝑓𝑡|𝑐,𝑑 . 
 

 The i-th OS 𝑓𝑡|𝑐,𝑑,(𝑖:𝑛) is defined as 
 

𝑓𝑡|𝑐,𝑑,(𝑖:𝑛) = [
𝐶|𝐵(.)[1 − [1 − 𝑝𝑐]𝑑 ]𝑖−1[{1 − 𝑝𝑐}𝑑]𝑛−𝑖

× [
𝑐𝑑(𝑡−𝑚)𝑐−1

(1−𝑚)𝑐 [1 − 𝑝𝑐]𝑑−1 ]
]. (17) 

 

 For minimum 𝑓𝑡|𝑐,𝑑,(𝑖:𝑛), replace (i = 1) in (17), we get 
 

𝑓𝑡|𝑐,𝑑,(1:𝑛) = 𝐶|𝐵(.)[{1 − 𝑝𝑐}𝑑]𝑛−1
𝑐𝑑(𝑡 − 𝑚)𝑐−1

(1 − 𝑚)𝑐 [1 − 𝑝𝑐]𝑑−1 .  
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 For maximum 𝑓𝑡|𝑐,𝑑,(𝑖:𝑛), replace (i = n) in (17), we get 
 

𝑓𝑡|𝑐,𝑑,(𝑛:𝑛) = 𝐶|𝐵(.)[1 − {1 − 𝑝𝑐}𝑑]𝑛−1 [
𝑐𝑑(𝑡 − 𝑚)𝑐−1

(1 − 𝑚)𝑐 [1 − 𝑝𝑐]𝑑−1 ]. 
 

 

where  

𝑝 = (
𝑡 − 𝑚

1 − 𝑚
) , 𝐶|𝐵(.) =

1

𝐵(𝑖, 𝑛 − 𝑖 + 1)!
 . 

 

5. INFERENCE 
 

 Let 𝑇1, 𝑇2, . . . , 𝑇𝑛 be a random sample of size n from T, then the log-likelihood function 

𝑙𝑡|𝑐,𝑑 of T is obtained as 
 

𝑙𝑡|𝑐,𝑑 =

[
 
 
 
 
 𝑛{𝑙𝑜g𝑐 + 𝑙𝑜g𝑑 − 𝑐𝑙𝑜g(1 − 𝑚)} + (𝑐 − 1) ∑𝑙𝑜g(𝑡𝑖 − 𝑚)

𝑛

𝑖=1

+(𝑑 − 1)∑ 𝑙𝑜g(1 − 𝑝𝑖
𝑐)

𝑛

𝑖=1 ]
 
 
 
 
 

. (18) 

 

 Let’s suppose 𝑝𝑖 = (𝑡𝑖 − 𝑚) (1 − 𝑚)⁄  then the partial derivatives w.r.t 𝑐 and 𝑑 of 

𝑙𝑡|𝑐,𝑑,𝜏 provides 
 

𝜕𝑙𝑡|𝑐,𝑑  

𝜕𝑐
=

𝑛

𝑐
− 𝑛𝑙𝑜g(1 − 𝑚) + ∑𝑙𝑜g(𝑡𝑖 − 𝑚)

𝑛

𝑖=1

− (𝑑 − 1)∑
𝑝𝑖

𝑐𝑙𝑜g𝑝𝑖

(1 − 𝑝𝑖
𝑐)(1 − 𝑚)

𝑛

𝑖=1

, 

𝜕𝑙𝑡|𝑐,𝑑 

𝜕𝑑
=

𝑛

𝑑
− ∑ 𝑙𝑜g(1 − 𝑝𝑖

𝑐)

𝑛

𝑖=1

. 

 

 The Maximum Likelihood Estimates (MLEs) for the SKD, represented as (�̂�𝑖 = 𝑐,̂ �̂�), 

can be obtained through two methods: maximizing (18) or solving a set of non-linear 

equations. However, these equations lack an analytical solution for MLEs of parameters  

c and d. To find their optimal values, numerical methods like the Newton-Raphson 

algorithm are often used as they provide an efficient solution for MLEs. 

 

6. SIMULATION EXPERIMENT 
 

 In this section, we evaluate the asymptotic performance of the MLEs �̂�𝑖 = 𝑐,̂ �̂� using 

the following algorithm: 
 

i. Obtain random samples of sizes 𝑛 = 25, 50, 100, 200, 300, 400, 500, and 1000 

from (14). 
 

ii. Obtain results based on different combinations of model parameters from  

𝑆|𝐼 = (𝑐 = 2.2, 𝑑 = 2.5), 𝑆|𝐼𝐼 = (𝑐 = 1.5, d = 0.9), and 𝑆|𝐼𝐼𝐼= (𝑐 = 3.1, d = 0.5). 
 

iii. Calculate the various known statistics including mean (denoted as 𝐸|�̂�), variance 

(denoted as 𝑉𝑎𝑟|�̂�), bias (denoted as 𝐵𝑖𝑎𝑠|�̂�), mean square error (denoted 

as𝑀𝑆𝐸|�̂�), coverage probability (denoted as𝐶𝑃|�̂�), and average width (denoted 

as𝐴𝑊|�̂�) using R, illustrated in Tables 5-10. 
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iv. Replicate each sample 1000 times. 
 

v. Observe a gradual decrease in mean, biases, MSEs, and Var with an increase in 

sample sizes. 
 

vi. Observe that CPs of all parameters 𝜏 = (𝑐, 𝑑) approaching to 0.95 and AW 

decreases as sample sizes increase. 
 

vii. The following are the statistics.  

𝐸|�̂� =
1

1000
∑ �̂�𝑖

1000

𝑖=1

, 𝑉𝑎𝑟|�̂� =
1

1000
∑(𝜏 − 𝜏�̅�)

2

1000

𝑖=1

, 𝐵𝑖𝑎𝑠|�̂� =
1

1000
∑(�̂�𝑖 − 𝜏)

1000

𝑖=1

, 

𝑀𝑆𝐸|�̂� =
1

1000
∑(�̂�𝑖 − 𝜏)2

1000

𝑖=1

, 𝐶𝑃|�̂� = ∑ 𝐼(�̂�𝑖 − 0.95𝑆𝐸|�̂�𝑖
, �̂�𝑖 + 0.95𝑆𝐸|�̂�𝑖

)

1000

𝑖=1

,  

𝐴𝑊|�̂� =
1

1000
∑|(�̂�𝑖 + 0.95) − (�̂�𝑖 − 0.95)|

1000

𝑖=1

, 

where, Indicator function I(.), 𝑆𝐸|�̂�𝑖
= √𝑣𝑎𝑟�̂�𝑖. 

 

7. REAL-LIFE EXAMPLES 
 

 This section discusses the applicability of the SKD and its relevance to different fields. 

To demonstrate the versatility of the SKD, we explore four distinct data sets related to 

textile engineering, reliability engineering, petroleum engineering, and agriculture 

sciences. By examining the SKD's performance on these data sets, we aim to highlight its 

ability to effectively analyze data from a variety of domains and provide meaningful 

insights and results. This also showcases the versatility and broad applicability of the SKD, 

making it a valuable tool for data analysis and decision-making in many fields. 

Additionally, this exploration of different data sets helps to further validate the robustness 

and reliability of the SKD, ensuring that it can be trusted to deliver accurate results in 

diverse situations. In order to conserve space and improve the readability of the main text, 

the authors have chosen to provide the data sets in the appendix section for easy access and 

reference. For the most up-to-date information, we highly recommend that readers refer to 

the comprehensive research conducted by Alsadat et al. (2023), Tashkandy et al. (2023), 

and Alghamdi et al. (2023). 
 

 The first data set under consideration in this study comprises of 30 measurements of 

tensile strength of polyester fibers. This data set was originally presented by Quesenberry 

and Hales (1980) and provides valuable insights into the tensile strength of polyester fibers. 

A set of descriptive statistics for a particular data set includes mean = 0.3659, skewness = 

0.5193, kurtosis = 2.2293, minimum = 0.0230, maximum = 0.9260, first quartile = 0.1323, 

third quartile = 0.5265, and 95% confidence interval = (0.2655, 0.4661). The second data 

set includes 30 measurements of electronic device lifetimes. A set of descriptive statistics 

for a particular data set includes mean = 0.4940, skewness = 0.0616, kurtosis = 1.3128, 

minimum = 0.0200, maximum = 0.9900, first quartile = 0.1432, third quartile = 0.8920, 

and 95% confidence interval = (0.3534, 0.6345). This data set was originally presented by 

Rahman et al. (2019). Third data set consists of measurements of the shape perimeter to 
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area ratio in petroleum rock samples. A set of descriptive statistics for a particular data set 

includes mean = 0.2181, skewness = 1.1329, kurtosis = 4.1098, minimum = 0.0903, 

maximum = 0.4641, first quartile = 0.1622, third quartile = 0.2626, and 95% confidence 

interval = (0.1938, 0.2423). This data set was originally presented by Cordeiro and Brito 

(2012). The fourth data set involves the analysis of soil fertility and the biological fixation 

of nitrogen in relation to the growth of 128 Dimorphandra wilsonii Rizz plants, specifically 

looking at phosphorus concentration in the leaves. The results of this study, as discussed 

by Oliveira et al. (2013), will provide insights into the relationship between soil fertility, 

nitrogen fixation, and plant growth, and will be of interest to those working in agriculture 

sciences and plant biology. A set of descriptive statistics for a particular data set includes 

mean = 0.1408, skewness = 0.4490, kurtosis = 2.3552, minimum = 0.0500, maximum = 

0.2800, first quartile = 0.1000, third quartile = 0.1800, and 95% confidence interval = 

(0.1312, 0.1502).  

 

Table 5 

Statistical Measures for 𝑺|𝑰𝑰𝑰 

Sample 𝑴𝒆𝒂𝒏|𝒄 𝑽𝒂𝒓|𝒄 𝑩𝒊𝒂𝒔|𝒄 𝑴𝑺𝑬|𝒄 𝑪𝑷|𝒄 𝑨𝑾|𝒄 

25 2.3874 0.2874 0.1874 0.5679 0.884 1.6378 

50 2.2839 0.1290 0.0839 0.3688 0.889 1.1196 

100 2.2452 0.0575 0.0452 0.2441 0.899 0.7828 

200 2.2202 0.0306 0.0202 0.1763 0.890 0.5490 

300 2.2170 0.0201 0.0170 0.1429 0.888 0.4479 

400 2.2125 0.0149 0.0125 0.1228 0.892 0.3870 

500 2.2089 0.0115 0.0089 0.1078 0.905 0.3460 

1000 2.2056 0.0055 0.0056 0.0747 0.904 0.2444 

 

Table 6 

Statistical Measures for 𝑺|𝑰𝑰𝑰 

Sample 𝑴𝒆𝒂𝒏|𝒅 𝑽𝒂𝒓|𝒅 𝑩𝒊𝒂𝒔|𝒅 𝑴𝑺𝑬|𝒅 𝑪𝑷|𝒅 𝑨𝑾|𝒅 

25 3.0028 1.3495 0.5028 1.2658 0.941 3.3009 

50 2.7226 0.4566 0.2226 0.7115 0.916 2.0429 

100 2.6115 0.1905 0.1115 0.4505 0.910 1.3668 

200 2.5516 0.0902 0.0517 0.3047 0.895 0.9375 

300 2.5376 0.0558 0.0377 0.2392 0899 0.7597 

400 2.5270 0.0420 0.0270 0.2067 0.894 0.6543 

500 2.5201 0.0323 0.0201 0.1809 0.900 0.5831 

1000 2.5102 0.0157 0.0102 0.1257 0.900 0.4102 
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Table 7 

Statistical Measures for 𝑺|𝑰𝑽 

Sample 𝑴𝒆𝒂𝒏|𝒄 𝑽𝒂𝒓|𝒄 𝑩𝒊𝒂𝒔|𝒄 𝑴𝑺𝑬|𝒄 𝑪𝑷|𝒄 𝑨𝑾|𝒄 

25 1.6781 0.2308 0.1781 0.5124 0.883 1.4418 

50 1.5815 0.1004 0.0815 0.3272 0.899 0.9754 

100 1.5421 0.0436 0.0421 0.2130 0.904 0.6778 

200 1.5189 0.0228 0.0189 0.1524 0.877 0.4740 

300 1.5154 0.0149 0.0154 0.1234 0.886 0.3866 

400 1.5113 0.0111 0.0113 0.1057 0.894 0.3341 

500 1.5082 0.0085 0.0082 0.0931 0.901 0.2984 

1000 1.5048 0.0042 0.0048 0.0643 0.905 0.2107 

 

Table 8 

Statistical Measures for 𝑺|𝑰𝑽 

Sample 𝑴𝒆𝒂𝒏|𝒅 𝑽𝒂𝒓|𝒅 𝑩𝒊𝒂𝒔|𝒅 𝑴𝑺𝑬|𝒅 𝑪𝑷|𝒅 𝑨𝑾|𝒅 

25 1.0230 0.0946 0.1230 0.3313 0.917 0.8938 

50 0.9575 0.0357 0.0575 0.1976 0.908 0.5809 

100 0.9287 0.0157 0.0287 0.1288 0.904 0.3955 

200 0.9132 0.0073 0.0132 0.0868 0.904 0.2739 

300 0.9094 0.0046 0.0094 0.0685 0.906 0.2225 

400 0.9066 0.0035 0.0066 0.0595 0.898 0.1920 

500 0.9050 0.0027 0.0051 0.0526 0.908 0.1714 

1000 0.9023 0.0013 0.0023 0.0369 0.901 0.1207 

 

Table 9 

Statistical Measures for 𝑺|𝑽 

Sample 𝑴𝒆𝒂𝒏|𝒄 𝑽𝒂𝒓|𝒄 𝑩𝒊𝒂𝒔|𝒄 𝑴𝑺𝑬|𝒄 𝑪𝑷|𝒄 𝑨𝑾|𝒄 

25 3.6049 1.610 0.5049 1.3657 0.893 3.706 

50 3.3378 0.6695 0.2378 0.8521 0.897 2.4665 

100 3.2167 0.2770 0.1167 0.5391 0.909 1.6953 

200 3.1524 0.1416 0.0524 0.3799 0.883 1.1802 

300 3.1423 0.0934 0.0423 0.3086 0.894 0.9619 

400 3.1328 0.0685 0.0328 0.2638 0.893 0.8311 

500 3.1234 0.0534 0.0234 0.2324 0.897 0.7416 

1000 3.1122 0.0253 0.0122 0.1596 0.914 0.5230 
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Table 10 

Statistical Measures for 𝑺|𝑽 

Sample 𝑴𝒆𝒂𝒏|𝒅 𝑽𝒂𝒓|𝒅 𝑩𝒊𝒂𝒔|𝒅 𝑴𝑺𝑬|𝒅 𝑪𝑷|𝒅 𝑨𝑾|𝒅 

25 0.5571 0.0226 0.0571 0.1608 0.917 0.4411 

50 0.5277 0.0088 0.0277 0.0981 0.907 0.2922 

100 0.5137 0.0040 0.0137 0.0648 0.897 0.2002 

200 0.5062 0.0018 0.0062 0.0433 0.908 0.1391 

300 0.5044 0.0011 0.0044 0.0344 0.903 0.1131 

400 0.5032 0.0009 0.0033 0.0300 0.901 0.0977 

500 0.5023 0.0007 0.0023 0.0265 0.907 0.0872 

1000 0.5010 0.0003 0.0010 0.0187 0.889 0.0614 

 

 The proposed SKD is compared to its rival models (CDFs listed in Table 11) based on 

evaluation criteria (denoted as EC) such as the Akaike information criterion (denoted 

as𝐴𝐼𝐶|𝐸𝐶) and Bayesian information criterion (denoted as𝐵𝐼𝐶|𝐸𝐶), as well as fit statistics 

Cramer-Von Mises (denoted as𝐶𝑉𝑀|𝐸𝐶), Anderson-Darling (denoted as𝐴𝐷|𝐸𝐶), and 

Kolmogorov Smirnov (denoted as𝐾𝑆|𝐸𝐶) with its p-value. The parameters' estimates and 

fit statistics are shown in Tables 12 - 15. The model with the lowest fit statistics is deemed 

to be the best-fit model and in this case, the SKD outperforms its competitors in all four 

data sets. 
 

 Additionally, to provide further evidence for the superiority of the proposed SKD 

model, the fitted density and distribution functions, as well as the Probability-Probability 

(P-P) and Kaplan-Meier survival plots, are depicted in Figures 3-6. The total time on test 

transform (denoted as TTT) and box plots are also defined to give a comprehensive 

overview of the model's performance. These visual representations demonstrate the close 

agreement between the fitted model and the actual datasets. The calculations are carried 

out using the R software and its dedicated Adequacy Model package. 

 

Table 11 

List of Some Competitive Models CDFs 

Model Competitive Models CDF Support Author(s) 

K 1 − [1 − 𝑡𝑐 ]𝑑 𝑐, 𝑑 > 0,0 < t < 1 Kumaraswamy (1980) 

WPF 1 − 𝑒−𝑒[𝑡𝑐 (𝑀𝑐−𝑡𝑐)⁄ ]𝑑 𝑐, 𝑑, 𝑒 > 0,0 < 𝑡 ≤ 𝑀 Tahir et al. (2014) 

KPF 1 − [1 − (𝑡/𝑀)𝑐𝑑]𝑒 𝑐, 𝑑, 𝑒 > 0,0 < 𝑡 ≤ 𝑀 Abdul-Moniem (2017) 

GPF 1 − [𝑀 − 𝑡]𝑐[𝑀 − 𝑚]−𝑐 𝑐 > 0,𝑚 ≤ 𝑡 ≤ 𝑀 Saran and Pandey (2004) 

Beta 𝐼𝑡(𝑐, 𝑑) 𝑐, 𝑑 > 0,0 < t < 1 Mood et al. (1974) 
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Table 12 

Estimates and Fit Statistics for First Data 

Model �̂� �̂� �̂� 𝑨𝑰𝑪|𝑬𝑪 𝑩𝑰𝑪|𝑬𝑪 𝑪𝑽𝑴|𝑬𝑪 𝑨𝑫|𝑬𝑪 𝑲𝑺|𝑬𝑪 p-value 

SKD 0.8182 1.4522 - -5.3404 -2.5380 0.0097 0.0786 0.0480 1.0000 

WPF 3.0299 1.3464 0.7957 0.2444 4.4480 0.0174 0.1382 0.0611 0.9995 

K 0.9627 1.6081 - -2.6221 0.1803 0.0183 0.1550 0.0650 0.9987 

Beta 0.9666 1.6204 - -2.6101 0.1923 0.0184 0.1559 0.0669 0.9979 

KPF 1.7343 0.4737 1.1223 -0.8739 3.3297 0.0401 0.3217 0.0958 0.9214 

GPF 1.3187 - - -5.5597 -4.1585 0.0248 0.1953 0.1287 0.6557 

 

Table 13 

Estimates and Fit Statistics for Second Data 

Model �̂� �̂� �̂� 𝑨𝑰𝑪|𝑬𝑪 𝑩𝑰𝑪|𝑬𝑪 𝑪𝑽𝑴|𝑬𝑪 𝑨𝑫|𝑬𝑪 𝑲𝑺|𝑬𝑪 p-value 

SKD 0.5082 0.5826 - -7.1348 -4.3324 0.0845 0.5146 0.1429 0.5263 

Beta 0.6062 0.5911 - -3.2498 -0.4474 0.1038 0.6483 0.1550 0.4242 

K 0.5875 0.6115 - -3.0050 -0.2026 0.1059 0.6625 0.1600 0.3850 

KPF 7.9804 0.0713 0.5807 -2.7157 1.4879 0.1002 0.6207 0.1616 0.3731 

WPF 0.7992 0.6687 0.9600 12.8687 17.0723 0.1666 1.0490 0.1671 0.3340 

GPF 0.7525 - - -1.8849 -0.4837 0.0784 0.4681 0.2729 0.0183 

 

Table 14 

Estimates and Fit Statistics for Third Data 

Model �̂� �̂� �̂� 𝑨𝑰𝑪|𝑬𝑪 𝑩𝑰𝑪|𝑬𝑪 𝑪𝑽𝑴|𝑬𝑪 𝑨𝑫|𝑬𝑪 𝑲𝑺|𝑬𝑪 p-value 

SKD 1.6281 18.375 - -110.6602 -106.9178 0.0789 0.5019 0.1128 0.5750 

Beta 5.9417 21.205 - -107.2004 -103.4580 0.1281 0.7782 0.1428 0.2820 

WPF 42.995 8.7742 0.3131 -99.4829 -93.8693 0.2000 1.2259 0.1499 0.2308 

K 2.7187 44.6671 - -100.9831 -97.2407 0.2084 1.2803 0.1533 0.2095 

GPF 1.7877 - - -103.4055 -101.5343 0.2316 1.4418 0.1558 0.1944 

KPF 1.4411 1.4050 2.6326 -86.0842 -80.4706 0.4173 2.5450 0.1863 0.0716 

 

Table 15 

Estimates and Fit Statistics for Fourth Data 

Model �̂� �̂� �̂� 𝑨𝑰𝑪|𝑬𝑪 𝑩𝑰𝑪|𝑬𝑪 𝑪𝑽𝑴|𝑬𝑪 𝑨𝑫|𝑬𝑪 𝑲𝑺|𝑬𝑪 p-value 

SKD 1.7889 48.976 - -395.1622 -389.4582 0.0884 0.5177 0.0791 0.3990 

Beta 5.7256 34.9435 - -390.1785 -384.4745 0.1384 0.7698 0.0971 0.1792 

WPF 62.087 1.9504 1.3536 -382.8504 -374.2943 0.2147 1.2038 0.1160 0.0638 

K 2.8104 176.343 - -385.6015 -379.8974 0.2078 1.1612 0.1181 0.0562 

GPF 1.6077 - - -388.1287 -385.2766 0.0983 0.5482 0.1301 0.0262 

KPF 1.2431 1.8299 2.9017 -375.2356 -366.6795 0.2823 1.6755 0.1304 0.0257 
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Figure 3: Fitted Plots for First Data 
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Figure 4: Fitted Plots for Second Data 
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Figure 5: Fitted Plots for Third Data 
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Figure 6: Fitted Plots for Fourth Data 
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8. CONCLUSION & FUTURE DIRECTIONS 
 

 This study introduced the shifted Kumaraswamy distribution (SKD), which 

demonstrated exceptional performance in modeling asymmetrical and bathtub-shaped  

real-world phenomena. The study derived and analyzed the SKD's moment-generating 

function, first incomplete moment, Bonferroni and Lorenz functions, residual life and 

reverse residual life functions, reliability measures, probability density function, hazard 

rate function, Rényi and Tsallis entropy, and order statistics. To demonstrate the versatility 

of the SKD, four distinct datasets related to textile engineering, reliability engineering, 

petroleum engineering, and agriculture sciences were explored. The SKD's parameters 

were estimated using maximum likelihood estimation, and the model was tested  

on these datasets, outperforming baseline models. This study provides robust evidence  

for the effectiveness and usefulness of the SKD in modeling complex real-world 

phenomena. 
 

 It is believed that the SKD will be a valuable option in real-world applications  

in the future. In future research, several directions can be taken to further explore the 

capabilities of the new bathtub model for predicting failure rates in lifetime data:  

(a) Extension to censored data: The current model can be extended to handle censored  

data, which is a common scenario in lifetime data analysis. (b) Incorporation of covariates: 

The effect of incorporating relevant covariates on the prediction accuracy can be 

investigated.  
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APPENDIX 

 

The following data set has been used and analyzed in real life examples 

 

Data Set 1: 30 Measurements of Tensile Strength of Polyester Fibers.  

0.023, 0.032, 0.054, 0.069, 0.081, 0.094, 0.105, 0.127, 0.148, 0.169, 

0.188, 0.216, 0.255, 0.277, 0.311, 0.361, 0.376, 0.395, 0.432, 0.463, 

0.481, 0.519, 0.529, 0.567, 0.642, 0.674, 0.752, 0.823, 0.887, 0.926. 

 

Data Set 2: 30 Measurements of Electronic Device Lifetimes. 

0.020, 0.029, 0.034, 0.044, 0.057, 0.096, 0.106, 0.139, 0.156, 0.164, 

0.167, 0.177, 0.250, 0.326, 0.406, 0.607, 0.650, 0.672, 0.676, 0.736, 

0.817, 0.838, 0.910, 0.931, 0.946, 0.953, 0.961, 0.981, 0.982 , 0.990. 

 

Data Set 3: Shape Perimeter to Area Ratio in Petroleum Rock Samples.  

0.0903296, 0.2036540, 0.2043140, 0.2808870, 0.1976530, 0.3286410, 

0.1486220, 0.1623940, 0.2627270, 0.1794550, 0.3266350, 0.2300810, 

0.1833120, 0.1509440, 0.2000710, 0.1918020, 0.1541920, 0.4641250, 

0.1170630, 0.1481410, 0.1448100, 0.1330830, 0.2760160, 0.4204770, 

0.1224170, 0.2285950, 0.1138520, 0.2252140, 0.1769690, 0.2007440, 

0.1670450, 0.2316230, 0.2910290, 0.3412730, 0.4387120, 0.2626510, 

0.1896510, 0.1725670, 0.2400770, 0.3116460, 0.1635860, 0.1824530, 

0.1641270, 0.1534810, 0.1618650, 0.2760160, 0.2538320, 0.2004470.  

 

Data Set 4: Phosphorus Concentration in the Leaves.  

0.22, 0.17, 0.11, 0.10, 0.15, 0.06, 0.05, 0.07, 0.12, 0.09, 0.23, 0.25, 0.23, 

0.24, 0.20, 0.08, 0.11, 0.12, 0.10, 0.06, 0.20, 0.17, 0.20, 0.11, 0.16, 0.09, 

0.10, 0.12, 0.12, 0.10, 0.09, 0.17, 0.19, 0.21, 0.18, 0.26, 0.19, 0.17, 0.18, 

0.20, 0.24, 0.19, 0.21, 0.22, 0.17, 0.08, 0.08, 0.06, 0.09, 0.22, 0.23, 0.22, 

0.19, 0.27, 0.16, 0.28, 0.11, 0.10, 0.20, 0.12, 0.15, 0.08, 0.12, 0.09, 0.14, 

0.07, 0.09, 0.05, 0.06, 0.11, 0.16, 0.20, 0.25, 0.16, 0.13, 0.11, 0.11, 0.11, 

0.08, 0.22, 0.11, 0.13, 0.12, 0.15, 0.12, 0.11, 0.11, 0.15, 0.10, 0.15, 0.17, 

0.14, 0.12, 0.18, 0.14, 0.18, 0.13, 0.12, 0.14, 0.09, 0.10, 0.13, 0.09, 0.11, 

0.11, 0.14, 0.07, 0.07, 0.19, 0.17, 0.18, 0.16, 0.19, 0.15, 0.07, 0.09, 0.17, 

0.10, 0.08, 0.15, 0.21, 0.16, 0.08, 0.10, 0.06, 0.08, 0.12, 0.13. 

 

List of Acronyms and Abbreviations 

Kumaraswamy = K,  

Weibull Power Function = WPF,  

Kumaraswamy Power Function = KPF,  

Generalized Power Function = GPF.  

 


