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ABSTRACT

In this paper, we suggested generalized shrinkage regression, ratio and regression-cum-
ratio estimators for population mean in multi-phase stratified systematic (MPSS) sampling
design using multi-auxiliary information when information on all auxiliary variables is not
available for population. The expressions of mean square error and bias are derived for
suggested estimators. The extension of these estimators in bivariate and multivariate is also
discussed and some important special cases are deduced from the general class. An
empirical and simulation studies are conducted to assess the performance of proposed
design and estimators and found suggested MPSS design perform better than estimators of
multi-phase simple random sampling estimators.
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1. INTRODUCTION

The prime objective of survey statisticians is to introduce such an estimating
methodology for population parameters which provide precise results. Mean estimation
has always been a mandatory question in the theory of survey sampling. Provided a
sampling design, many estimation and selection procedures has been developed by
researchers to improve the precision and efforts are still continuing. The use of auxiliary
information for the accuracy and precision of estimators is always appreciated and many
ratio, product and regression estimators are available in the literature using single, two and
multiple auxiliary variables.

In practical surveys, the problem is to estimate population means of variables of
interest. For example, in a typical socio-economic survey conducted in rural areas in Indo-
Pak subcontinent, the multiple variables of interests may be size of household, monthly
income and expenditure of the household, number of unemployed persons, number of
illiterates, number of persons engaged in agriculture, amount of land owned, leased and
leased out, number of cattle owned etc. In some situations, the auxiliary information may
be available through the past census data or conveniently collected. For example, in a
village land survey, the information on the variables such as area of the village, cultivable
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area, grazing grounds etc. may be easily obtained through the past census data and may be
used to estimate the means of variables of interest.

Bowley (1926) and Neyman (1934) have provided the foundation for the use of
auxiliary information and Olkin (1958) was the first who used multi-auxiliary information
for the estimation of study variables when information on all auxiliary variables is available
for population. Later on Raj (1965) achieved higher precision of difference estimator using
information of several auxiliary variates and showed that difference estimator is
comparable to ratio estimator.

Sen (1972) used multi-auxiliary information for the development of multivariate ratio
estimators using two-phase sampling. Sahoo and Sahoo (1993) proposed a class of
estimators using the information of two auxiliary variables under two-phase sampling.
Ahmed (2003) has used multi-auxiliary information for chain based general estimators
under multiphase sampling, while Paradhan (2005) has put forward chain regression
estimators using information of several auxiliary variates in two phase sampling design.
Tikkiwal and Ghiya (2004) have worked on a generalized class of composite estimators
for small domains using auxiliary information under different sampling designs.

If we have information on multi-auxiliary variables, practically sometimes either
information for all these auxiliary is available from population or available for some
variables or not available for all auxiliary variables. These three cases are first time
discussed by Samiuddin and Hanif (2007) and categorized their estimators in the following
three cases: i) estimators when information on all auxiliary variables is known for
population (Full Information Case (FIC)), ii) estimators when information on some
auxiliary variables is known for population (Partial Information Case (PIC)), and
iii) estimators when information on all auxiliary variables is unknown for population (No
Information Case (NIC)). Hanif et al. (2009) proposed generalized multivariate ratio
estimator in multiphase sampling using multi- auxiliary variables considering FIC and
NIC. Regression, ratio, regression-in-regression and regression-cum-ratio estimation
methods are used for estimating population mean of single/several study variable(s) in
two-phase/multi-phase sampling using multi-auxiliary variables for FIC, PIC and NIC by
Ahmad et al. (2009a, 2009b, 20104, 2010b, 2010c, 2013)., Some other useful contributions
on the application of two phase and auxiliary information in estimation methods include
Srivastava (1971), Das and Tripathi (1978), Khare and Srivastava (1981), Srivastava and
Jhajj (1983), Upadhyaya and Singh (1983), Sukhatme et al. (1984), Mukhopadhyay (2000),
Cochran (1977), Kadilar and Cingi (2006), Javed, et al. (2014), Noor-ul-Amin et al. (2016),
Zaman and Bulut (2019), Abid et al. (2018), Zaman and Bulut (2020) and Igbal, et al.
(2020).

In this paper, we suggest generalized shrinkage regression, ratio and regression-cum-
ratio estimators for estimation of population mean of the variables of interest. Estimators
are developed under multiphase stratified systematic sampling design using multi-auxiliary
information when information on all auxiliary variables is unknown for populations that
usually occur in practical situations.

After introducing the topic in section 1, sampling scheme, useful notations and
mathematical expectations are discussed in section 2. Generalized shrinkage regression,
ratio and regression-cum-ratio estimators are suggested in section 3. The extension of
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suggested estimators in bivariate and multivariate is also discussed and special cases are
deduced in section 3. In the last section the performance of the suggested estimators is
discussed based on empirical study.

2. MULTI-PHASE STRATIFIED SYSTEMATIC SAMPLING

Let a population of size N isstratified into L homogeneous strata. N, Mh(k) and Mi(m)

denote the h™ population stratum size, k™ -phase stratum sample size and m™ -phase
stratum sample size respectively. Sample sizes are allocated proportionally at both phases
and samples are selected using systematic sampling from every stratum at each phase.

Let y; and x; denote the j" study and i" auxiliary variables for j=1,..,p and
i=1,...,q with population means \71 and )?i ; variances S§j and szi ; and coefficient of
variation (CV’s) C, and C, respectively. The covariance between j™ study and i™"
auxiliary variable is denoted by SyjXi . Further suppose yjss(k) (Viss(m)) and Xiss(k) (Yiss(m )
th

denote the k™ (m") phase sample means of j" study and i
respectively.

auxiliary variables

To derive the vector of bias and variance covariance matrices of proposed estimators,
we define the following absolute sampling errors and then require expressions of
mathematical expectatlons under MPSS sampling design. Let the sampling errors

= ) =X; —X and €,
ylss(m yJSS J Xiss(k) ss(k) ss(m)

that E,, (eyjss(m) j =E, (exiss(m) ) =E, (exiss(k) ) =0. Also,

L L
) 2 2 =2 2 2
E, ( ; j = Gh(m)nym SYh Syj v Em (ex ): )3 eh(m)nxhi thi = SXi !
S

xss(m) - X , and further it is assumed

sts(m)

L
Enm (eyjss(m) eXiss(m) j = zleh(m)ﬂényhjnxhi p)’hJ Xy Syhj Xy Siji !

)
- Em (gxiss(m) §>(|ss(m) ) - 0 (1)
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where

Oy = Ohm) =

Nznh(k) Nznh(m)

For bivariate case, let

Y(le) - |:YJ :|(2><l) ! ISy(ZX1) - l:gyjss(m) :l ' B(qu) N |:B“ :|(2XQ) ’

(2><l)

Np, (N —1) 0 _w, My, :{1+(nh(m)—l)pyhj},

)

3)

(4)
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3. GENERALIZED SHRINKAGE REGRESSION, RATIO AND
REGRESSION-CUM-RATIO ESTIMATORS FOR
POPULATION MEAN UNDER MPSS DESIGN

In this section we proposed regression, ratio and regression-cum-ratio estimators for
the estimation of population mean. Estimators are suggested when information on
population parameters for auxiliary variables are unknown. The estimators are suitable
when the relationship between study and auxiliary variables is linear. Further correlation
between auxiliary variables must not be significant. Special cases are also discussed in this
section.

3.1 Generalized Shrinkage Regression Estimator

Using notations given in section 2, we can suggest the following generalized regression
estimator

tfeg o= }‘|: yss + z Bi ( iss(k) - X; ics(m) )} = Mreg ' (5)

where A and f; be the optimizing constants. To derive the expression for bias and MSE,
we can write t, in sampling error form as

_ q
teg =Y +8,  +>2Bi|& -8 :
reg Yes(m) EB ! ( Mssp) - Nis(m) j

For MSE of t first we can write

reg

_\2 _ el _ _ §
MSE (treg ) = En (treg =) =Eqy &+ Eﬁi (exiss(k) ‘exiss(m)) (6)

—_— _— q _— _—
- Em |:ey55( m) {eyYSs (m) * EBI (exiss(k) - exiss(m) j}:|
=E, ) E,<€ [3 [3
= + i € € —€ .
yyss(m IZ:IBI m yyss(m) Xiss(k) Xiss(m)

Using relevant results of expectations from (1), we have

MSE (treq ) = s%zs( e~ Sy ) )

For the optimum value of it component of B, differentiating (7) with respect to each

component and solving the q equation for B's, we have

B = ) o )i, ®)
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Then optimum MSE of t, is
MSE (treg )= S§ - Z(S;x ~Syp )2/(S: Sy )
Now for MSE of t, using Shahbaz and Hanif (2009) shrinkage theorem, we
have MSE (tregq ) = MSE(treg)[lJrV ZMSE (g )]71 With 7o :[1+7’2MSE(treg )]71,
where MSE (treg)=Var (treg) , @S teq is an unbiased estimator.

The bivariate version of shrinkage regression estimator can be written as

Kl 0 :| t1reg|
t _ =Aqtreq s
reg(2) {0 22 Joo szeg 2x1 -

— q p— — -
where tjreg = yjss(m) +i§lﬁij (Xiss(k) - Xiss(m ) for j=12.

We, rewrite tjreg in sampling errors as

e, _{(Y +eymm)) ZB., (exlssk ey ﬂ (i=12)

or reg _Y(le) + D Y(24) - B(qu) D 1(q><1)

The expression of variance covariance matrix is as

Ztreg =E, |: Dy(2x1) (2xq) 1(q><1 :||: Yoa) B(qu) DXl(qxl) :l
=E ( Y(2a) Dy(1x2) ) -E (DY(M) Dxl(m) j B(qx?) - B(qu) E (Dxl(qxl) Dy(1><2) )

+B E(ﬁx D, jB’
(2xq) )  “Yixq) ) (ax2)

Using the results of we get the variance covariance matrix as:
Z

Qi

(©)

reg - 2y(2><2) yX]{qu (a<2) B(qu)ley(qxz (2xq) Xl(qxq qx2

Hence MSE (treg ) =3,

reg(2x2)

The expression of optimum value of A, and MSE of t,,,, using the multivariate
Shrinkage Estimators theorem (see Ahmad and Hanif (2016)) are

Ay =P[O+ MSE (tg )| 5 MSE [ty ) = 7V~ V{774 MSE ()| 7"
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’

where MSE (treg ) = E (treg =) (treg =Y ) = B(treg)B'(treg)+2treg and

B(treg ) = E (treg —V ) and S .= E(treg ~E (treg ))(treg ~ Etreg )) =Var treg ),

as B(treg ) =0. The expression of variance covariance matrix Ztmg is given in (9).

The multivariate version of treg(z) can be defined by replacing 2 by p in bivariate

version.

3.2 Generalized Shrinkage Ratio Estimator
Using notations given in section 2, we can suggest the following generalized ratio
estimator

_ q / _ %
tra(l) =8 yss(m)ilj[l(xiss(k) /Xiss(m)) =90 tra )

where & and o; be the optimizing unknown constants. Following the procedure of
deriving MSE of above section, we can write

MSE (t,,) =S % )Yz;( _Syxi)'

and expression of Bias is as
. g O *
Bias(t,, )= ElXTi(Siji ~Sy;x ) :

Following the previous section, the optimum value of i component of o is,

_Xi Em {eyss(m) (ex'ss(k) _exiss(m) )} _Xi (S;Xi - Syx )

o = = i=12..q. (10)

YE( g, jz V(s +s,)
M) Mis(m)

Then optimum MSE and Bias of t,, is

MSE (tra) = S>2’ __%l(s;xi _Syxi )2/(8:; +Sxi ) !

same as for regression case but it is approximately derived.

. 198/, « 2/ . -1
Bias (tra) = _Y:El(syxi - Syxi ) (Sxi + SXi )
Now for MSE and Bias of t,;), again using Shahbaz and Hanif (2009) and Ahmad
and Hanif (2016) shrinkage theorems, we have

MSE (tra(l)) ~Y? [MSE (t)-{Bias (tra)}zJ[V 2 4+ MSE (t,, )+ 2VBias t,, )]_l,
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Bias(tra(l)) = 8gpy {Bias (g ) +Y |-V,

where 8, =[ 72 + VBias(t,,) | V7 + 27Bias(ty,) + MSE t,,)]

The bivariate version of shrinkage regression estimator can be written as

6 O bra
t = = A t y
ra(2) { 0 62 sz LZF& 2x1 o

Qjj

q i
where t. =y, Il =%| for j=12.
J Jss(m)i:1 Xi

ss(m)
Using the above method, expression of MSE (t,,) and B(t,,)is

MSE (t,y)=2,, X

Y¥(2a) 7Y Xwa2) + ZI(zxz)

B(t) = E(Dyizxq) Dxga) ) =y

+A = +2 A +A X A

where 24 :Zy(ZXZ) (2xa) " *2Y(g2) YXo(2xq)  (av2) (2xa) X2(axa)  (ax2)

The expression of MSE (tra ) and Bias (tra o) )are
MSE (tracz)) =YY"= {Y¥"+VB'(tr, )}

(V" 4+ MSE (trq ) + 278 (tra)} V¥ + VB (tra)}
and
Bias(tra(z)) =(AB(tra) +(A=1)Y)(B'(tra) A+Y'(A-1)),

o __ - -1
where Ay = {YY"+YB'(tra ){YY'+ MSE (t5 )+ 2YB'(tra)} "~
The multivariate can be defined by replacing 2 by p in bivariate version.

3.3 Generalized Shrinkage Regression-cum-Ratio Estimator
Using notations given in section 2, we can suggest the following generalized
regression-cum-ratio estimator

B

Xiss k
trera(l) = Y[yss(m) +2.B; (Xiss(k) - iiss(m) ):| I1 | = Yrera » (14)

i=1
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where vy, B; and o; are unknown optimizing constants. Following the procedure of
deriving MSE of above sections, we can write

_ 2
—\2 _ | _ — q Y 8i — —
Em (trera -Y ) - Em |:eyss(m) + I:Z:IBI (eXiSS(k) B exiss(m) j+ z XTi(eXiSS(k) - exiss(m) ):|

i=1+1

and

I * q Y_6 *
MSE (trera) = S)Z’ +'21Bi (Syxi - SyXi )+ Z & (Syxi - SyXi ) '
i=

=111 X

The optimum values of B; and a; are same as given in (8) and (13) respectively but

now;i=12,..,1 for p and ;i=1+11+2,..,q for a. Then optimum MSE of t,, is
MSE(trera):S}z,j—i Syx ~Syx ’ (s;+sxi)—_ﬁ Syx — Sy ’ (8% +5x)
i=1 i=l+1
or

MSE (trera) = Sy, — i (S;in S, )2/(5; +Sy ) ,

i=1
it is same as for regression. The expression of Bias is
- l q * 2 * -1
Bias (tera ) :—Yfizlzﬂ(siji =S, ) (55 +5¢) -

Now for MSE of t,.,), again using Shahbaz and Hanif (2009) shrinkage theorem, we
have

_ . 27— — . -1
MSE (try ) =7 | MSE (tre)~ (BiaS (tr)}” [V MSE (tra) + 27815 ()
and
Bias (trera(l)) =Yopt {Bias (trera ) +Y_} -Y ,
where = [\72 YBi Y2 4+ 2YBi B
Yopt =| V2 + VBias(tyera) || V2 + 2VBias(tera) + MSE (trera ) |

The bivariate version of shrinkage regression-cum-ratio estimator can be written as

11 0 b,
trera(z) = |: 0 :| |: e :| = Agliera,
Y2 2x2 t2rera 2x1

o
I a [ X
Ry — _v ss(k) s
where t; _{yjss(m) +i§1[3ij (Xiss(k) . )} [[| ——| forj=12

i=1+1 Xiss(m)

Using previous approach, the expressions of MSE and Bias of t,; can be
obtained as
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MSE (trera) =B (trera) B,(trera ) + Et(2x2) = Zy'X(ZA)Z'yIX(lxz) + zt(zxz) )
and

B (trera ) =-E (DY(M) DX(m) ) - z:Y'X(M) where

2t =2 - B’ z Al -B_ X
t y(2><2) yXl(qu) (q><2)+ sz(le) 2) (20" Y2

+B. = B +A_ X +A X A
(2xq) Xl(q><q) (gx2) (2x1) X2y(|><2) (2x1) X2(|><|) (Ix2)

!

and the expression of MSE (tyera2)) and Bias(terpo)) are
MSE (trera(z) ) = YY" = {YY'+ YB' (trera )}

—_ _ 1. - '
(YY" + MSE (tygra )+ 2YB (trera )} YY"+ VB! (tyera )}
and
Bias (trera(2) ) = (AB (trera ) + (A= 1)Y) (B (trera) A+ Y (A= 1)),

o — - -1
where Ag = {YY"+YB' (trera ) YY"+ MSE (trera ) + 2YB' (trera )}
The multivariate version can be defined by replacing 2 by p in bivariate version.

Note: The bivariate regression-cum-ratio estimator reduced to bivariate regression
estimator for a;; =0 and becomes bivariate ratio estimator for B;; =0. Further if

both aj; and B are zero then it reduces to bivariate version of mean per unit
estimator.

4. EMPIRICAL STUDY

The performance of the suggested generalized shrinkage regression, ratio and
regression-cum-ratio estimators has been observed using the data of district census report
(1998), Punjab, Pakistan. This data is already used by Hanif, et al. (2009) for multivariate
ratio estimators and univeriate ratio estimators under multi-phase sampling design. The
empirical study is conducted for univariate cases which have more application as compared
to multivariate estimators. The description of variables and detail of parameters is given in
Appendix A. The suggested estimators are compared the estimators suggested by Hanif
et al. (2009) and Ahmad and Hanif (2010) for no information case. As these estimators are
suggested in multiphase design but the process of selecting the units was simple random
sampling. Through this comparison we have the aim to observe the performance of the
suggested estimators under the newly developed mixed sampling design (MPSS), further
the efficiency of the estimators is observed due to shrinkage strategy. The pair wise
comparison of phases is made to observe the performance of suggested estimators into
different phases.
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We considered five districts (Jhang, Faisalabad, Gujrat, Kasur, Sialkot) as natural
populations from the above stated census report. We considered a variable of interest,
denoted by Y and five auxiliary variables denoted by X’s to for empirical study. As the
expressions of MSE’s depend on unknown population parameters, the required are
provided in Table A-1 given in Appendix.

Table A-2, contains the MSE’s of the suggested generalized shrinkage regression, ratio
and regression-cum-ratio estimators under multiphase stratified systematic (MPSS) design.
As the expressions of MSE’s of all the three suggested estimators are same so the numerical
results are not separately given. The percent relative efficiency (PRE) of suggested
estimators is shown in Table A-3 in comparison with Hanif, et al. (2009) and Ahmad and
Hanif (2010) ratio and regression estimators under multiphase sampling design for no
information case. Further under multiphase design the results of univariate ratio estimator
of Hanif et al. (2009) and univariate regression estimator of Ahmad and Hanif (2010) for
no information case are same. These results clearly state that the performances of suggested
generalized shrinkage regression, ratio and regression-cum-ratio estimators under MPSS
design is much higher than multiphase design.

The pair-wise comparison also suggests that under multiphase design increase of phase
can significantly decrease the performance where under MPSS design increase of phases
not create much effect on the efficiency of estimators.

The pair-wise comparison of each phase was given in comparison tables. The
comparison of phases for each estimator is almost same for each district. Critical review of
Table A-2 shows that each proposed estimator provide small MSE’s on different phase for
each district. Such as in the district Jnang T;5 give minimum MSE than all other pair wise

combinations, similarly T,; perform better in district Faisalabad, T,s in district Gujrat,
T,, in District Kasur and T,; was efficient in district Sialkot. This comparison clearly

define that each district has its own variation and on the basis of their own variations the
suitable phases varies for each district but the use of large number of phases does not create
much effect as in district Jhang T,5 and T,5 variation is much closer and similarly observed

in other districts. It is also noting point that performance of estimators under proposed
sampling designs (MPSS) in these districts was much better than the estimators under
multiphase simple random sampling design.

To observe the design and shrinkage effect we compute the results of MSE’s in Table
A-4 by ignoring shrinkage concept and in Table A-5 we find percent relative efficiency of
suggested estimator. In this comparison it is again clearly shown that the performance of
the suggested estimators under MPSS design is better than the estimators suggested by
Hanif et al. (2009) and Ahmad and Hanif (2010) under multiphase design. Further we
observe the shrinkage effect be comparing Table A-3 and Table A-5. This comparison also
shows that shrinkage estimators performance is better than non-shrinkage estimators but
both tables gives much better result than multiphase simple random sampling design.

5. SIMULATION STUDY

We used the census data that is already used in empirical study for simulation study
after increasing the size by selecting a sample using simple random sampling with
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replacement. By the way the distribution of data remains the same. Also some random
noise is added to the data values to get closer to the real data. The population sizes are
10000, 8000, 7000, 5000 and 7500 respectively. The detail of simulated population
parameters is given in Table A-6. We generated 4000 independent samples from a
magnified population and computed the estimates using pair-wise phases. The percent
relative bias (PRB) is given in Table A-7. From Table A-7, column (1) contains the PRB
of suggested generalized shrinkage regression estimator, column (2) contains for ratio
estimator and column (3) contains for regression-cum-ratio estimator. Critically observing
the results of this table we conclude that there is a slightly difference exist between these
three suggested estimators. The PRB of column (3) regression-cum-ratio is much low than
others, so we can say that this estimator’s performance is better than the other two. These
results also suggested that increase in phase does not decrease the estimator’s performance.

Now we can say that the suggested generalized shrinkage regression, ratio and
regression-cum-ratio estimators under MPSS design are much better than ratio or
regression estimators under multiphase simple random sampling design.

6. CONCLUSION

In conclusion, multi-phase stratified systematic sampling design is a better choice than
multi-phase simple random sampling design while selecting a sample from district census
reports of Punjab Pakistan. As it is observed that for different districts, different pair of
phases provides better performance. So there is further need to investigate in general that
for what type of population which pair is preferable. The shrinkage estimators are better
than simple ones in term of efficiency but not suitable if the objective is to reduce the bias.

This paper fills the gap of univariate and multivariate shrinkage estimators under multi-
phase stratified systematic sampling design. The additional advantage is the use of multi-
auxiliary variables to get benefit of practically available information on several auxiliary
variables in term of gain in efficiency and reduction in bias. The construction of regression-
cum-ratio estimator has an extra advantage over regression and ratio estimator that it can
be applied when some auxiliary variable is suitable for regression and some are suitable
for ratio method. As the estimators are general in nature, the auxiliary variables that could
be negatively correlated with response variable can also be accommodated.

The practitioners can use the developed estimators to estimate the mean of single or
several correlated outcome variables in the presence of several auxiliary variables with
flexible set of estimation methods (regression, ratio, regression-cum-ratio) under a more
practically useable sampling design i.e. multi-phase stratified systematic sampling design.
The methodology developed in this paper is equally important and useful for any other
practical situation like this and can be tried for different settings because the suggested
sampling design and estimation methods have a large scope of application due to their
general settings.
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Y Population of currently married
X1 Population of both sexes
X Population of primary but below matric
X3 Population of matric and above
X4 Population of 18 years old and above
Xs Population of women 15-49 years old
Source: Districts Population Census Report (1998), Pakistan.
Table A-1
Parameters of Populations for Calculating the MSE’s of Suggested Estimators
Districts
Jhang Faisalabad Gujrat Kasur Sailkot
N 368 283 204 181 269
Ny 184 142 102 91 135
n2 92 71 51 45 67
N3 46 35 26 23 34
Ny 23 18 13 11 17
Ns 12 9 6 6 8
Y 860.110 1511.260 1101.280 1393.200 1058.740
oy 511.908 788.380 533.041 767.636 685.019
Ox1 5626.450 5426.030 3507.160 5515.420 4787.250
ox2 455.060 1677.920 940.480 1095.690 1172.710
oxs 170.670 525.670 381.690 357.890 603.220
oxa 2455.170 6289.710 8139.680 2719.210 2461.590
oxs 1064.480 1482.170 830.010 1355.640 1151.320
pyxt 0.428 0.943 0.995 0.998 0.999
pyx 0.912 0.927 0.941 0.758 0.983
pyx3 0.659 0.599 0.764 0.879 0.931
Pyxa 0.484 0.731 0.490 0.989 0.996
Pyxs 0.425 0.501 0.996 0.799 0.939
Pxix2 0.416 0.641 0.954 0.764 0.983
Pxix3 0.421 0.782 0.796 0.889 0.931
Dxixa 0.317 0.513 0.509 0.993 0.997
Pxixs 0.275 0.819 0.996 0.802 0.939
Pxax3 0.824 0.708 0.892 0.798 0.959
Dxaxa 0.475 0.359 0.5 0.764 0.985
Pxaxs 0.432 0.559 0.958 0.614 0.928
Dxaxa 0.59 0.543 0.42 0.896 0.939
pxaxs 0.464 0.685 0.797 0.719 0.887
Pxaxs 0.325 0.436 0.505 0.797 0.938
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Table A-2
MSE’s of Suggested Shrinkage Regression, Ratio and
Regression-Cum-Ratio Estimators for Pair Wise of Phases
District
Jhang Faisalabad Gujrat Kasur Sailkot
T12 (k=1, m=2) | 53980.170| 125593.900| 58108.320| 114995.100| 93676.220
T13 (k=1, m=3) | 56768.130| 114878.800| 56383.240| 120830.900| 96113.280
T14 (k=1, m=4) | 45355.040| 133748.200| 60255.550| 133630.800| 98830.870
T15 (k=1, m=5) | 44880.140| 128877.900| 51229.140| 122358.400| 103141.500
T23 (k=2, m=3) | 57629.550| 125294.500| 62426.840| 125499.700| 86075.820
T24 (k=2, m=4) | 55137.720| 119580.300| 63544.590| 120313.500| 93605.820
T25 (k=2, m=5) | 51090.440| 123834.200| 66374.680| 131205.700| 90619.570
T34 (k=3, m=4) | 57288.820| 130866.000| 58398.020| 126581.500| 95844.660
T35 (k=3, m=5) | 49872.370| 128968.400| 57283.290| 135940.400| 98105.820
T45 (k=4, m=5) | 47124.140| 133624.500| 64186.620| 126678.500| 100722.600
Table A-3
Relative Efficiency of Estimator Proposed by Hanif, et al. (2009) and
Ahmad and Hanif (2010) Over Suggested Shrinkage Estimators
District
Jhang Faisalabad Gujrat Kasur Sailkot
T12 (k=1, m=2) 393.25547 169.20844 164.11278 176.60842 10.20032
T13 (k=1, m=3) 2154.80341| 1036.68036 553.50054 746.33369 43.14108
T14 (k=1, m=4) 15922.70155| 5028.62476| 1830.53154| 2872.26451| 175.86232
T15 (k=1, m=5) 102781.45492| 31780.95647| 8220.70585| 13233.58522| 701.88002
T23 (k=2, m=3) 6199.71287| 2216.79595| 1799.24319| 1734.07603| 146.58641
T24 (k=2, m=4) 29038.44196| 11087.42366| 5308.05107| 7458.62740| 515.91418
T25 (k=2, m=5) 156509.04490 | 54459.69915| 16951.55015| 28051.39677| 2093.77165
T34 (k=3, m=4) 67847.06339| 21056.12497| 18326.27801| 15739.05971| 1311.38264
T35 (k=3, m=5) 316996.34026 | 95314.35466 | 54019.99110| 58400.49992| 4642.93682
T45 (k=4, m=5) | 552776135.54327 | 182600.57965 | 144998.67516 | 134257.56533 | 11070.16487
Table A-4
MSE'’s of Suggested Regression, Ratio and Regression-Cum-Ratio Estimators
for Pair Wise of Phases without Shrinkage
District
Jhang Faisalabad Gujrat Kasur Sailkot
T12 (k=1, m=2) 59345.270| 133237.350 60295.000 12115.350 94887.520
T13 (k=1, m=3) 62738.780| 125888.280 59057.320| 128779.000| 969886.370
T14 (k=1, m=4) 52552.240| 151211.130 62555.380| 140556.720 99520.660
T15 (k=1, m=5) 47320.440| 138787.590 52989.570| 128967.560| 113896.900
T23 (k=2, m=3) 61423.130| 129998.030 65086.650 | 134466.500 86999.990
T24 (k=2, m=4) 55137.720| 132235.530 64934.480| 129873.300 94535.410
T25 (k=2, m=5) 54115.380| 133842.270 68137.080| 138893.100 92061.070
T34 (k=3, m=4) 60509.130| 139722.440 61535.820| 137586.500 97154.000
T35 (k=3, m=5) 54027.570| 135663.760 59476.760| 140710.900 99045.660
T45 (k=4, m=5) 51118.250| 141225.330 66888.070| 129686.700| 116788.000
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Table A-5: Percent Relative Efficiency of Estimator Proposed by Hanif, et al. (2009)
and Ahmad and Hanif (2010) Over without Shrinkage Suggested Estimators

District
Jhang Faisalabad Gujrat Kasur Sailkot
T12 (k=1, m=2) 357.703268|  159.501431 158.161008| 1676.311704| 10.070102
T13 (k=1, m=3) 1949.737631 946.018136 528.438371 700.270782 4.275172
T14 (k=1, m=4) 13742.035843| 4447.883631| 1763.232595| 2730.733927| 174.643396
T15 (k=1, m=5) 97481.048063| 29511.737541| 7947.595933| 12555.407841| 635.600776
T23 (k=2, m=3) 5816.809775| 2136.588839| 1725.715903| 1618.440444| 145.029270
T24 (k=2, m=4) 29038.441960| 10026.332915| 5194.434898| 6909.607810| 510.841070
T25 (k=2, m=5) 147760.506680) 50387.469340| 16513.089745) 26498.819229| 2060.987201
T34 (k=3, m=4) 64236.226864| 19721.462422| 17391.794730| 14480.154565| 1293.709194
T35 (k=3, m=5) 292616.506165| 90610.342932| 52027.763718| 56420.556751| 4598.880193
T45 (k=4, m=5) | 509585128.598886| 172772.909477 | 139142.523667| 131143.339980| 9547.348940
Table A-6: Parameters of Simulated Populations for PRB of Suggested Estimators
Districts
Jhang Faisalabad Gujrat Kasur Sailkot
N 10000 8000 7000 5000 7500
Ny 5000 4000 3500 2500 3750
Ny 2500 2000 1750 1250 1875
N3 1250 1000 875 625 938
N4 625 500 438 313 469
Ns 313 250 219 156 234
Y 865.376 1507.438 1096.517 1387.577 1062.090
oy 493.397 776.801 518.077 765.396 672.087
Oxt 5744.959 5387.612 3466.628 5602.730 4692.195
ox2 465.110 1697.969 921.828 1037.277 1153.150
Ox3 170.721 519.998 371.974 362.581 583.563
Gxa 2472.054 6536.105 7206.235 2761.372 2416.695
Oxs 1136.245 1456.886 838.735 1370.214 1125.382
Pyt 0.523 0.891 0.938 0.980 0.963
Pyx2 0.861 0.912 0.961 0.716 0.970
Pyxa 0.621 0.583 0.752 0.832 0.936
Pyxa 0.514 0.755 0.522 0.951 0.986
Pyxs 0.403 0.505 0.977 0.732 0.951
Pxix2 0.422 0.660 0.953 0.770 0.972
Px1x3 0.34 0.581 0.701 0.815 0.94
Pxixa 0.361 0.388 0.415 0.922 0.91
Px1xs 0.211 0.757 0.891 0.813 0.926
Pxax3 0.732 0.711 0.821 0.811 0.915
DPrxoxa 0.402 0.291 0.443 0.755 0.93
Px2x5 0.44 0.521 0.901 0.57 0.865
Pxaxd 0.6 0.535 0.362 0.785 0.909
Pxaxs 0.455 0.683 0.703 0.725 0.818
Pxdxs 0.331 0.417 0.462 0.8 0.877
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Table A-7
Percent Relative Bias of suggested Regression, Ratio and
Regression-cum-Ratio estimators of 4000 samples
Districts
Jhang |Faisalabad| Gujrat Kasur Sailkot

treg(1) 167.9300 | 175.8981 | 159.1297 | 169.7127 | 180.5292

(k:I,lmZ:Z) tray | 167.0400 | 174.0779 | 1567814 | 166.6547 | 177.4033
treracy | 1666200 | 1751442 | 157.7327 | 168.3716 | 179.1042
tregry | 177.1776 | 172.2111 | 147.7502 | 1632177 | 184.5097
(kzllrﬁ:?)) traqy | 1741297 | 166.6433 | 142.0024 | 1553183 | 174.7512
treracy | 1761551 | 170.0643 | 144.3697 | 159.6254 | 180.0264
tregy | 1726916 | 153.6655 | 123.0060 | 165.3200 | 162.8270
(k:I,lr::: 4 |_frocy | 166.1666 | 1437942 | 114.0342 | 157.1100 | 1452866
treracry | 170.4890 | 1503022 | 118.4891 | 156.2100 | 155.2914
tregy | 1528424 | 117.1153 | 114.2309 | 53.7321 | 632727
(kzllr;"zs) tray | 1444182 | 107.0191 | 1111017 | 53.0017 | 57.1225
treracry | 1507813 | 1153850 | 110.2090 | 525602 | 54.0105
o |tescy | 439065 | 473610 | 344209 | 400506 | 57.4283

e tra(t 442430 | 49.0363 | 39.3712 | 41.0622 | 58.5163
(k=2,m=3) @

treray | 44.1296 | 475980 | 34.5835 | 41.0575 | 58.0673
tregay | 53.4929 | 43.9243 | 31.3449 | 404513 | 67.3999

(kzzzr;‘: 4| ftraw | 543252 | 482221 | 455304 | 39555 | 70.3054
treray | 54.1084 | 445815 | 31.9586 | 39.0291 | 69.0919
tregy | 513685 | 36.8603 | 28.0014 | 30.1100 | 435200
(k=-2r,2r’§=5) tray | 539050 | 46.8238 | 202516 | 25.8735 | 48.1476
treraty | 52.9058 | 38.8354 | 20.0510 | 24.1517 | 38.1353
tregery | -20.7787 | -25.2494 | -10.9290 | -3.0002 | -9.5162
(kzg%‘:@ tray | -21.3033 | -23.8607 | -9.8911 | -4.8876 | -8.9901
treray | 20.9413 | -25.7067 | -9.0010 | -4.1303 | -9.0738
tregy | -10.1207 | -17.9307 | -23.2525 | -29.5263 | -9.1083
(k:;?’ni’:s) tray | 104598 | -13.2141 | -18.1480 | -21.8877 | -9.5176

trerary | -10.0248 | -185759 | -16.0371 | -12.0000 | -8.8770




