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ABSTRACT 
 

 In this paper, we suggested generalized shrinkage regression, ratio and regression-cum-

ratio estimators for population mean in multi-phase stratified systematic (MPSS) sampling 

design using multi-auxiliary information when information on all auxiliary variables is not 

available for population. The expressions of mean square error and bias are derived for 

suggested estimators. The extension of these estimators in bivariate and multivariate is also 

discussed and some important special cases are deduced from the general class. An 

empirical and simulation studies are conducted to assess the performance of proposed 

design and estimators and found suggested MPSS design perform better than estimators of 

multi-phase simple random sampling estimators.  
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1. INTRODUCTION 
 

 The prime objective of survey statisticians is to introduce such an estimating 

methodology for population parameters which provide precise results. Mean estimation 

has always been a mandatory question in the theory of survey sampling. Provided a 

sampling design, many estimation and selection procedures has been developed by 

researchers to improve the precision and efforts are still continuing. The use of auxiliary 

information for the accuracy and precision of estimators is always appreciated and many 

ratio, product and regression estimators are available in the literature using single, two and 

multiple auxiliary variables.  
 

 In practical surveys, the problem is to estimate population means of variables of 

interest. For example, in a typical socio-economic survey conducted in rural areas in Indo-

Pak subcontinent, the multiple variables of interests may be size of household, monthly 

income and expenditure of the household, number of unemployed persons, number of 

illiterates, number of persons engaged in agriculture, amount of land owned, leased and 

leased out, number of cattle owned etc. In some situations, the auxiliary information may 

be available through the past census data or conveniently collected. For example, in a 

village land survey, the information on the variables such as area of the village, cultivable 

mailto:muqaddas.javed@uog.edu.pk


Generalized Multivariate Shrinkage Estimators in MPSS Sampling 196 

area, grazing grounds etc. may be easily obtained through the past census data and may be 

used to estimate the means of variables of interest. 
 

 Bowley (1926) and Neyman (1934) have provided the foundation for the use of 

auxiliary information and Olkin (1958) was the first who used multi-auxiliary information 

for the estimation of study variables when information on all auxiliary variables is available 

for population. Later on Raj (1965) achieved higher precision of difference estimator using 

information of several auxiliary variates and showed that difference estimator is 

comparable to ratio estimator.  
 

 Sen (1972) used multi-auxiliary information for the development of multivariate ratio 

estimators using two-phase sampling. Sahoo and Sahoo (1993) proposed a class of 

estimators using the information of two auxiliary variables under two-phase sampling. 

Ahmed (2003) has used multi-auxiliary information for chain based general estimators 

under multiphase sampling, while Paradhan (2005) has put forward chain regression 

estimators using information of several auxiliary variates in two phase sampling design. 

Tikkiwal and Ghiya (2004) have worked on a generalized class of composite estimators 

for small domains using auxiliary information under different sampling designs.  
 

 If we have information on multi-auxiliary variables, practically sometimes either 

information for all these auxiliary is available from population or available for some 

variables or not available for all auxiliary variables. These three cases are first time 

discussed by Samiuddin and Hanif (2007) and categorized their estimators in the following 

three cases: i) estimators when information on all auxiliary variables is known for 

population (Full Information Case (FIC)), ii) estimators when information on some 

auxiliary variables is known for population (Partial Information Case (PIC)), and  

iii) estimators when information on all auxiliary variables is unknown for population (No 

Information Case (NIC)). Hanif et al. (2009) proposed generalized multivariate ratio 

estimator in multiphase sampling using multi- auxiliary variables considering FIC and 

NIC. Regression, ratio, regression-in-regression and regression-cum-ratio estimation 

methods are used for estimating population mean of single/several study variable(s) in  

two-phase/multi-phase sampling using multi-auxiliary variables for FIC, PIC and NIC by 

Ahmad et al. (2009a, 2009b, 2010a, 2010b, 2010c, 2013)., Some other useful contributions 

on the application of two phase and auxiliary information in estimation methods include 

Srivastava (1971), Das and Tripathi (1978), Khare and Srivastava (1981), Srivastava and 

Jhajj (1983), Upadhyaya and Singh (1983), Sukhatme et al. (1984), Mukhopadhyay (2000), 

Cochran (1977), Kadilar and Cingi (2006), Javed, et al. (2014), Noor-ul-Amin et al. (2016), 

Zaman and Bulut (2019), Abid et al. (2018), Zaman and Bulut (2020) and Iqbal, et al. 

(2020). 
 

 In this paper, we suggest generalized shrinkage regression, ratio and regression-cum-

ratio estimators for estimation of population mean of the variables of interest. Estimators 

are developed under multiphase stratified systematic sampling design using multi-auxiliary 

information when information on all auxiliary variables is unknown for populations that 

usually occur in practical situations. 
 

 After introducing the topic in section 1, sampling scheme, useful notations and 

mathematical expectations are discussed in section 2. Generalized shrinkage regression, 

ratio and regression-cum-ratio estimators are suggested in section 3. The extension of 
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suggested estimators in bivariate and multivariate is also discussed and special cases are 

deduced in section 3. In the last section the performance of the suggested estimators is 

discussed based on empirical study.  

 

2. MULTI-PHASE STRATIFIED SYSTEMATIC SAMPLING 
 

 Let a population of size N  is stratified in to L  homogeneous strata. hN ,  h k
n  and  h m

n  

denote the thh  population stratum size, thk -phase stratum sample size and thm -phase 

stratum sample size respectively. Sample sizes are allocated proportionally at both phases 

and samples are selected using systematic sampling from every stratum at each phase.  
 

 Let jy  and ix  denote the thj  study and thi  auxiliary variables for 1,...,j p  and 

1,...,i q  with population means jY  and iX ; variances 2

jyS  and 2

ixS ; and coefficient of 

variation (CV’s) 
jyC  and 

ixC  respectively. The covariance between thj  study and thi

auxiliary variable is denoted by 
j iy xS . Further suppose 

 ss k
jy

 
( )

ss m
jy  and 

 ss k
ix

 
( )

ss m
ix  

denote the thk ( )thm  phase sample means of thj  study and thi  auxiliary variables 

respectively.  
 

 To derive the vector of bias and variance covariance matrices of proposed estimators, 

we define the following absolute sampling errors and then require expressions of 

mathematical expectations under MPSS sampling design. Let the sampling errors 

   j ss mss m
y j je y Y  , 

   i ss kss k
x i ie x X   and 

   i ss mss m
x i ie x X  , and further it is assumed 

that 
     

0
j i iss m ss m ss k

m y m x k xE e E e E e
    
       

    
. Also, 

 

       

     

     

2 2 2 2 2 2

1 1

1

* * * *

1

, ,

,

,

j hj h j i hi h ij iss m ss m

j i hj hi h h h h j ij i j iss m ss m

j i hj hi h h h h j ij i j iss k ss k

L L

m y y y y m x x x xh m h m
h h

L

m y x y x y x y x y xh m
h

L

k y x y x y x y x y xh k
h

E e S S E e S S

E e e S S S

E e e S S S

 





  
          

  


      

 


      

 

 




   

   

 

             

       

/ /

0

for

,

i lss k ss k

i lss m ss m

j i j i j i iss m ss k ss m ss k ss m ss k ss m

j i j iss k ss k ss m ss m

k x x

m x x

m y x k m k y x k m k y x x

k y x m y x

E e e

E e e

i l

E e e E E e e E E e e e

E e e E e e


 
 


  

 



     
             

  
    

  

(1) 
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where   

 
 

 
2

1h h

h k

h k

N N

N n


  ,  

 

 
2

1h h

h m

h m

N N

N n


  ,    1 1

hj hjy yh m
n     ,

   1 1
hi hix xh m

n     ,    * 1 1
hj hjy yh k

n      

and    * 1 1
hi hix xh k

n     . 

 

 For bivariate case, let  

  

         
   

 
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2
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,

1
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j i il lss m ss m ss k

j y y ijq q

j
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 
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 
   

  

     
              

  
       

 1l

 
 

 

,     (2) 
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q
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l
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q

y x y x
l

s
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i q i

E D D S S E D D

S S
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S S
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

 
 


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    
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       
  

  
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 
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3. GENERALIZED SHRINKAGE REGRESSION, RATIO AND  

REGRESSION-CUM-RATIO ESTIMATORS FOR  

POPULATION MEAN UNDER MPSS DESIGN 
 

 In this section we proposed regression, ratio and regression-cum-ratio estimators for 

the estimation of population mean. Estimators are suggested when information on 

population parameters for auxiliary variables are unknown. The estimators are suitable 

when the relationship between study and auxiliary variables is linear. Further correlation 

between auxiliary variables must not be significant. Special cases are also discussed in this 

section.  

 

3.1 Generalized Shrinkage Regression Estimator 

 Using notations given in section 2, we can suggest the following generalized regression 

estimator 
 

        (1)
1

-
ss k ss m

q

reg i i i regss m
i

t y x x t


 
      

 
 ,          (5) 

 

where   and i  be the optimizing constants. To derive the expression for bias and MSE, 

we can write regt in sampling error form as  

  
     1

i iss m ss k ss m

q

reg y i x x
i

t Y e e e



     

 
 . 

 

 For MSE of regt , first we can write 

     
     

2
2

1
i iss m ss k ss m

q

reg m reg m y i x x
i

MSE t E t Y E e e e


 
       

  
     (6) 

   
       1

y i iss m ss m ss k ss m

q

m y y i x x
i

E e e e e


  
      

   
  

   
       

2

1
y y i iss m ss m ss k ss m

q

m y i m y x x
i

E e E e e e


   
       

   
 . 

 

 Using relevant results of expectations from (1), we have 
 

     2 *

1
i i

q

reg y i yx yx
i

MSE t S S S


    .             (7) 

 

 For the optimum value of thi  component of  , differentiating (7) with respect to each 

component and solving the q  equation for ' s , we have   
 

  
     

   

 *

2 *
; 1,2...

i iss m ss k ss m
i i

i i
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m y x x
yx yx

i

x x
m x x

E e e e S S
i q

S S
E e e

 
       

   


 
 

.      (8) 
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 Then optimum MSE of regt is  

       
2

2 * *

1
i i i i

q

reg y yx yx x x
i

MSE t S S S S S


    . 

 

 Now for MSE of (1)regt , using Shahbaz and Hanif (2009) shrinkage theorem, we  

have      
1

2
(1) 1reg reg regMSE t MSE t Y MSE t


  

 
 with  

1
21opt regY MSE t


   

 
, 

where    reg regMSE t Var t , as regt is an unbiased estimator. 

 

 The bivariate version of shrinkage regression estimator can be written as  
 

   
11

12
2 22 2 2 1

0

0

reg

regreg
reg

t
t t

t
 

  
    

     

,  

  where 
      

1
reg ss m ss k ss m

q

j j ij i i
i

t y x x


    for 1,2.j   

 

 We, rewrite 
regjt  in sampling errors as 

  
 

 
   1
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q
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y ijt Y e e ex x


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or         2 12 1 12 1q q
reg y xt Y D B D
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    

 

 The expression of variance covariance matrix is as 

  
         
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    
 

 

 

 Using the results of we get the variance covariance matrix as: 
 

  
               1 12 2 1 2 2 2 2 2 2reg q qq q q q q q

t y yx x y xB B B B
      

        .     (9) 

 

 Hence   
 2×2

tt Σ
regregMSE   

 

 The expression of optimum value of 1Λ  and MSE of  2
treg  using the multivariate 

Shrinkage Estimators theorem (see Ahmad and Hanif (2016)) are 
 

  
1

1 regYY YY MSE t


    ;      2

1
regreg

MSE t YY YY YY MSE t YY

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where         reg reg reg reg reg
reg

tMSE t E t Y t Y B t B t       and

   reg regB t E t Y  , and        E t E t t E t Var treg reg reg reg regtreg


     ,  

as  t 0B reg  . The expression of variance covariance matrix 
regt is given in (9). 

 

 The multivariate version of  2reg
t  can be defined by replacing 2 by p  in bivariate 

version. 
 

3.2 Generalized Shrinkage Ratio Estimator 

 Using notations given in section 2, we can suggest the following generalized ratio 

estimator 

          1
1

i

ss k ss m

q

i i rara ss m
i

t y x x t




    ,   

where   and i  be the optimizing unknown constants. Following the procedure of 

deriving MSE of above section, we can write  
 

     2 *

1
i i

q

ra y i yx yx
i i

Y
MSE t S S S

X

    .    

 

and expression of Bias is as 
 

     
1

*
ra j i j i

i

q
i

i
y x y xBias t S S

X


  .    

 Following the previous section, the optimum value of thi component of   is,   

  
     

   

 
 

*

2 *
; 1,2...

i iss m ss k ss m
i i

i i
i iss k ss m

i m y x x
i yx yx

i

x x
m x x

X E e e e X S S
i q

Y S S
YE e e

 
       

   


 
 

.       (10) 

 

 Then optimum MSE and Bias of rat  is  
 

      
2

2 * *

1
i i i i

q

ra y yx yx x x
i

MSE t S S S S S


    ,  

 

same as for regression case but it is approximately derived.  
 

       
2 1

* *

1

1
i i i ira yx yx x x

i

q

Bias t S S S S
Y





    . 

 Now for MSE and Bias of (1)rat , again using Shahbaz and Hanif (2009) and Ahmad 

and Hanif (2016) shrinkage theorems, we have  
 

             
122 2

1
2ra ra ra rara

MSE t Y MSE t Bias t Y MSE t YBias t
      

   
, 



Generalized Multivariate Shrinkage Estimators in MPSS Sampling 202 

 

       1 opt rara
Bias t Bias t Y Y     , 

 

where  
1

2 2( ) 2 ( )opt ra ra raY YBias t Y YBias t MSE t


       
   

. 

 

 The bivariate version of shrinkage regression estimator can be written as  
 

   
11

22
22 2 2 2 1

0

0

ra
rara

ra

t
t t

t
 

   
    

   
,  

 

where 
 

 

 
1

ij

ss k

ss m

ss m

q i

j j
i i

x
t y

x









 

 for 1,2.j   

 

 Using the above method, expression of  raMSE t  and  raB t is  
 

   
     2 1 1 2 2 2

ra y x y x tMSE t
  

      

and 

   
      2 1 2 1q q

ra y x y xB t E D D
  

    , 

 

where 
               2 2 22 2 2 2 2 2 2 2q qq q q q q q

t y x y yx x
      

           

 

 The expression of   2raMSE t and   2raBias t are  

 

     

       

2

1
2

rara

ra ra ra

MSE t YY YY YB t

YY MSE t YB t YY YB t


    

     

 

and  

              2 ra raraBias t B t I Y B t Y I       , 

 

where        2

1
2ra ra raYY YB t YY MSE t YB t


        .  

 

 The multivariate can be defined by replacing 2 by p  in bivariate version. 

 

3.3 Generalized Shrinkage Regression-cum-Ratio Estimator 

 Using notations given in section 2, we can suggest the following generalized 

regression-cum-ratio estimator 

            

 

1
1 1

i
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ss k ss m
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ql i

i i i rerarera ss m
i i l i

x
t y x x t

x



  


           

 

  ,        (14) 
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where  , i  and i  are unknown optimizing constants. Following the procedure of 

deriving MSE of above sections, we can write  
 

   
         

2
2

1 1
i i i iss m ss k ss m ss k ss m

ql
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m rera m y i x x x x
i i l i

Y
E t Y E e e e e e

X  

   
          

   
   

and 

        2 * *

1 1
i i i i

ql
i

rera y i yx yx yx yx
i i l i

Y
MSE t S S S S S

X  


       . 

 

 The optimum values of i  and i  are same as given in (8) and (13) respectively but 

now ; 1,2,...,i l  for   and ; 1, 2,...,i l l q    for  . Then optimum MSE of rerat  is  
 

         
2 2

2 * * * *

1 1
j j i j i i i j i j i i i

ql
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i i l

MSE t S S S S S S S S S
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or 

       
2

2 * *

1
j j i j i i i

q

rera y y x y x x x
i

MSE t S S S S S


    ,  

 

it is same as for regression. The expression of Bias is  
 

       
2 1

* *

1

1
j i j i i i

q

rera y x y x x x
i l

Bias t S S S S
Y



 

    . 

 

 Now for MSE of (1)rerat , again using Shahbaz and Hanif (2009) shrinkage theorem, we 

have  

           
122 2

1
2rera rera rera rerarera
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      

   
 

and 

       1 opt rerarera
Bias t Bias t Y Y    , 

 

where  
1

2 2( ) 2 ( )opt rera rera reraY YBias t Y YBias t MSE t


       
   

 . 

 

 The bivariate version of shrinkage regression-cum-ratio estimator can be written as  
 

   
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32
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0

0

rera
rerarera

rera

t
t t

t
 

   
    

   
,  

where 
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  for 1,2.j   

 

 Using previous approach, the expressions of MSE and Bias of  2rera
t  can be  

obtained as 
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       
       2 2 2 22 1 1 2

rera rera rera t ty x y xMSE t B t B t
  

      , 
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      2 1 2 1l l

rera y x y xB t E D D
  
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and the expression of   2treraMSE  and   2treraBias  are  

 

  
     

       

2
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and   

              2rera rera reraBias t B t I Y B t Y I       , 

 

where        3

1
2rera rera reraYY YB t YY MSE t YB t


        .  

 

 The multivariate version can be defined by replacing 2 by p  in bivariate version. 
 

Note: The bivariate regression-cum-ratio estimator reduced to bivariate regression 

estimator for 0ij   and becomes bivariate ratio estimator for 0ij  . Further if 

both ij  and ij  are zero then it reduces to bivariate version of mean per unit 

estimator.  

 

4. EMPIRICAL STUDY 
 

 The performance of the suggested generalized shrinkage regression, ratio and 

regression-cum-ratio estimators has been observed using the data of district census report 

(1998), Punjab, Pakistan. This data is already used by Hanif, et al. (2009) for multivariate 

ratio estimators and univeriate ratio estimators under multi-phase sampling design. The 

empirical study is conducted for univariate cases which have more application as compared 

to multivariate estimators. The description of variables and detail of parameters is given in 

Appendix A. The suggested estimators are compared the estimators suggested by Hanif  

et al. (2009) and Ahmad and Hanif (2010) for no information case. As these estimators are 

suggested in multiphase design but the process of selecting the units was simple random 

sampling. Through this comparison we have the aim to observe the performance of the 

suggested estimators under the newly developed mixed sampling design (MPSS), further 

the efficiency of the estimators is observed due to shrinkage strategy. The pair wise 

comparison of phases is made to observe the performance of suggested estimators into 

different phases.  
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 We considered five districts (Jhang, Faisalabad, Gujrat, Kasur, Sialkot) as natural 

populations from the above stated census report. We considered a variable of interest, 

denoted by 𝑌 and five auxiliary variables denoted by 𝑋’s to for empirical study. As the 

expressions of MSE’s depend on unknown population parameters, the required are 

provided in Table A-1 given in Appendix. 
 

 Table A-2, contains the MSE’s of the suggested generalized shrinkage regression, ratio 

and regression-cum-ratio estimators under multiphase stratified systematic (MPSS) design. 

As the expressions of MSE’s of all the three suggested estimators are same so the numerical 

results are not separately given. The percent relative efficiency (PRE) of suggested 

estimators is shown in Table A-3 in comparison with Hanif, et al. (2009) and Ahmad and 

Hanif (2010) ratio and regression estimators under multiphase sampling design for no 

information case. Further under multiphase design the results of univariate ratio estimator 

of Hanif et al. (2009) and univariate regression estimator of Ahmad and Hanif (2010) for 

no information case are same. These results clearly state that the performances of suggested 

generalized shrinkage regression, ratio and regression-cum-ratio estimators under MPSS 

design is much higher than multiphase design.  
 

 The pair-wise comparison also suggests that under multiphase design increase of phase 

can significantly decrease the performance where under MPSS design increase of phases 

not create much effect on the efficiency of estimators.  
 

 The pair-wise comparison of each phase was given in comparison tables. The 

comparison of phases for each estimator is almost same for each district. Critical review of 

Table A-2 shows that each proposed estimator provide small MSE’s on different phase for 

each district. Such as in the district Jhang 15T  give minimum MSE than all other pair wise 

combinations, similarly 13T  perform better in district Faisalabad, 15T  in district Gujrat, 

12T  in District Kasur and 23T  was efficient in district Sialkot. This comparison clearly 

define that each district has its own variation and on the basis of their own variations the 

suitable phases varies for each district but the use of large number of phases does not create 

much effect as in district Jhang 15T  and 45T  variation is much closer and similarly observed 

in other districts. It is also noting point that performance of estimators under proposed 

sampling designs (MPSS) in these districts was much better than the estimators under 

multiphase simple random sampling design. 
 

 To observe the design and shrinkage effect we compute the results of MSE’s in Table 

A-4 by ignoring shrinkage concept and in Table A-5 we find percent relative efficiency of 

suggested estimator. In this comparison it is again clearly shown that the performance of 

the suggested estimators under MPSS design is better than the estimators suggested by 

Hanif et al. (2009) and Ahmad and Hanif (2010) under multiphase design. Further we 

observe the shrinkage effect be comparing Table A-3 and Table A-5. This comparison also 

shows that shrinkage estimators performance is better than non-shrinkage estimators but 

both tables gives much better result than multiphase simple random sampling design. 

 

5. SIMULATION STUDY 
 

 We used the census data that is already used in empirical study for simulation study 

after increasing the size by selecting a sample using simple random sampling with 
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replacement. By the way the distribution of data remains the same. Also some random 

noise is added to the data values to get closer to the real data. The population sizes are 

10000, 8000, 7000, 5000 and 7500 respectively. The detail of simulated population 

parameters is given in Table A-6. We generated 4000 independent samples from a 

magnified population and computed the estimates using pair-wise phases. The percent 

relative bias (PRB) is given in Table A-7. From Table A-7, column (1) contains the PRB 

of suggested generalized shrinkage regression estimator, column (2) contains for ratio 

estimator and column (3) contains for regression-cum-ratio estimator. Critically observing 

the results of this table we conclude that there is a slightly difference exist between these 

three suggested estimators. The PRB of column (3) regression-cum-ratio is much low than 

others, so we can say that this estimator’s performance is better than the other two. These 

results also suggested that increase in phase does not decrease the estimator’s performance.  
 

 Now we can say that the suggested generalized shrinkage regression, ratio and 

regression-cum-ratio estimators under MPSS design are much better than ratio or 

regression estimators under multiphase simple random sampling design.  

 

6. CONCLUSION 
 

 In conclusion, multi-phase stratified systematic sampling design is a better choice than 

multi-phase simple random sampling design while selecting a sample from district census 

reports of Punjab Pakistan. As it is observed that for different districts, different pair of 

phases provides better performance. So there is further need to investigate in general that 

for what type of population which pair is preferable. The shrinkage estimators are better 

than simple ones in term of efficiency but not suitable if the objective is to reduce the bias.  
 

 This paper fills the gap of univariate and multivariate shrinkage estimators under multi-

phase stratified systematic sampling design. The additional advantage is the use of multi-

auxiliary variables to get benefit of practically available information on several auxiliary 

variables in term of gain in efficiency and reduction in bias. The construction of regression-

cum-ratio estimator has an extra advantage over regression and ratio estimator that it can 

be applied when some auxiliary variable is suitable for regression and some are suitable 

for ratio method. As the estimators are general in nature, the auxiliary variables that could 

be negatively correlated with response variable can also be accommodated.  
 

 The practitioners can use the developed estimators to estimate the mean of single or 

several correlated outcome variables in the presence of several auxiliary variables with 

flexible set of estimation methods (regression, ratio, regression-cum-ratio) under a more 

practically useable sampling design i.e. multi-phase stratified systematic sampling design. 

The methodology developed in this paper is equally important and useful for any other 

practical situation like this and can be tried for different settings because the suggested 

sampling design and estimation methods have a large scope of application due to their 

general settings.  
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APPENDIX  
 

Table-A 

Variables Description 
Y Population of currently married 

X1 Population of both sexes 

X2 Population of primary but below matric 

X3 Population of matric and above 

X4 Population of 18 years old and above 

X5 Population of women 15-49 years old 

Source: Districts Population Census Report (1998), Pakistan. 
 

Table A-1 

Parameters of Populations for Calculating the MSE’s of Suggested Estimators 

 
Districts 

Jhang Faisalabad Gujrat Kasur Sailkot 

N 368 283 204 181 269 

n1 184 142 102 91 135 

n2 92 71 51 45 67 

n3 46 35 26 23 34 

n4 23 18 13 11 17 

n5 12 9 6 6 8 

Y 860.110 1511.260 1101.280 1393.200 1058.740 

y 511.908 788.380 533.041 767.636 685.019 

x1 5626.450 5426.030 3507.160 5515.420 4787.250 

x2 455.060 1677.920 940.480 1095.690 1172.710 

x3 170.670 525.670 381.690 357.890 603.220 

x4 2455.170 6289.710 8139.680 2719.210 2461.590 

x5 1064.480 1482.170 830.010 1355.640 1151.320 

yx1 0.428 0.943 0.995 0.998 0.999 

yx2 0.912 0.927 0.941 0.758 0.983 

yx3 0.659 0.599 0.764 0.879 0.931 

yx4 0.484 0.731 0.490 0.989 0.996 

yx5 0.425 0.501 0.996 0.799 0.939 

x1x2 0.416 0.641 0.954 0.764 0.983 

x1x3 0.421 0.782 0.796 0.889 0.931 

x1x4 0.317 0.513 0.509 0.993 0.997 

x1x5 0.275 0.819 0.996 0.802 0.939 

x2x3 0.824 0.708 0.892 0.798 0.959 

x2x4 0.475 0.359 0.5 0.764 0.985 

x2x5 0.432 0.559 0.958 0.614 0.928 

x3x4 0.59 0.543 0.42 0.896 0.939 

x3x5 0.464 0.685 0.797 0.719 0.887 

x4x5 0.325 0.436 0.505 0.797 0.938 
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Table A-2 

MSE’s of Suggested Shrinkage Regression, Ratio and  

Regression-Cum-Ratio Estimators for Pair Wise of Phases 

 
District 

Jhang Faisalabad Gujrat Kasur Sailkot 

T12 (k=1, m=2) 53980.170 125593.900 58108.320 114995.100 93676.220 

T13 (k=1, m=3) 56768.130 114878.800 56383.240 120830.900 96113.280 

T14 (k=1, m=4) 45355.040 133748.200 60255.550 133630.800 98830.870 

T15 (k=1, m=5) 44880.140 128877.900 51229.140 122358.400 103141.500 

T23 (k=2, m=3) 57629.550 125294.500 62426.840 125499.700 86075.820 

T24 (k=2, m=4) 55137.720 119580.300 63544.590 120313.500 93605.820 

T25  (k=2, m=5) 51090.440 123834.200 66374.680 131205.700 90619.570 

T34 (k=3, m=4) 57288.820 130866.000 58398.020 126581.500 95844.660 

T35 (k=3, m=5) 49872.370 128968.400 57283.290 135940.400 98105.820 

T45 (k=4, m=5) 47124.140 133624.500 64186.620 126678.500 100722.600 
 

Table A-3 

Relative Efficiency of Estimator Proposed by Hanif, et al. (2009) and  

Ahmad and Hanif (2010) Over Suggested Shrinkage Estimators 

 
District 

Jhang Faisalabad Gujrat Kasur Sailkot 

T12 (k=1, m=2) 393.25547 169.20844 164.11278 176.60842 10.20032 

T13 (k=1, m=3) 2154.80341 1036.68036 553.50054 746.33369 43.14108 

T14 (k=1, m=4) 15922.70155 5028.62476 1830.53154 2872.26451 175.86232 

T15 (k=1, m=5) 102781.45492 31780.95647 8220.70585 13233.58522 701.88002 

T23 (k=2, m=3) 6199.71287 2216.79595 1799.24319 1734.07603 146.58641 

T24 (k=2, m=4) 29038.44196 11087.42366 5308.05107 7458.62740 515.91418 

T25  (k=2, m=5) 156509.04490 54459.69915 16951.55015 28051.39677 2093.77165 

T34 (k=3, m=4) 67847.06339 21056.12497 18326.27801 15739.05971 1311.38264 

T35 (k=3, m=5) 316996.34026 95314.35466 54019.99110 58400.49992 4642.93682 

T45 (k=4, m=5) 552776135.54327 182600.57965 144998.67516 134257.56533 11070.16487 
 

Table A-4 

MSE’s of Suggested Regression, Ratio and Regression-Cum-Ratio Estimators  

for Pair Wise of Phases without Shrinkage 

 
District 

Jhang Faisalabad Gujrat Kasur Sailkot 

T12 (k=1, m=2) 59345.270 133237.350 60295.000 12115.350 94887.520 

T13 (k=1, m=3) 62738.780 125888.280 59057.320 128779.000 969886.370 

T14 (k=1, m=4) 52552.240 151211.130 62555.380 140556.720 99520.660 

T15 (k=1, m=5) 47320.440 138787.590 52989.570 128967.560 113896.900 

T23 (k=2, m=3) 61423.130 129998.030 65086.650 134466.500 86999.990 

T24 (k=2, m=4) 55137.720 132235.530 64934.480 129873.300 94535.410 

T25  (k=2, m=5) 54115.380 133842.270 68137.080 138893.100 92061.070 

T34 (k=3, m=4) 60509.130 139722.440 61535.820 137586.500 97154.000 

T35 (k=3, m=5) 54027.570 135663.760 59476.760 140710.900 99045.660 

T45 (k=4, m=5) 51118.250 141225.330 66888.070 129686.700 116788.000 
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Table A-5: Percent Relative Efficiency of Estimator Proposed by Hanif, et al. (2009)  

and Ahmad and Hanif (2010) Over without Shrinkage Suggested Estimators 

 
District 

Jhang Faisalabad Gujrat Kasur Sailkot 

T12 (k=1, m=2) 357.703268 159.501431 158.161008 1676.311704 10.070102 

T13 (k=1, m=3) 1949.737631 946.018136 528.438371 700.270782 4.275172 

T14 (k=1, m=4) 13742.035843 4447.883631 1763.232595 2730.733927 174.643396 

T15 (k=1, m=5) 97481.048063 29511.737541 7947.595933 12555.407841 635.600776 

T23 (k=2, m=3) 5816.809775 2136.588839 1725.715903 1618.440444 145.029270 

T24 (k=2, m=4) 29038.441960 10026.332915 5194.434898 6909.607810 510.841070 

T25  (k=2, m=5) 147760.506680 50387.469340 16513.089745 26498.819229 2060.987201 

T34 (k=3, m=4) 64236.226864 19721.462422 17391.794730 14480.154565 1293.709194 

T35 (k=3, m=5) 292616.506165 90610.342932 52027.763718 56420.556751 4598.880193 

T45 (k=4, m=5) 509585128.598886 172772.909477 139142.523667 131143.339980 9547.348940 
 

Table A-6: Parameters of Simulated Populations for PRB of Suggested Estimators 

 
Districts 

Jhang Faisalabad Gujrat Kasur Sailkot 

N 10000 8000 7000 5000 7500 

n1 5000 4000 3500 2500 3750 

n2 2500 2000 1750 1250 1875 

n3 1250 1000 875 625 938 

n4 625 500 438 313 469 

n5 313 250 219 156 234 

Y 865.376 1507.438 1096.517 1387.577 1062.090 

y 493.397 776.801 518.077 765.396 672.087 

x1 5744.959 5387.612 3466.628 5602.730 4692.195 

x2 465.110 1697.969 921.828 1037.277 1153.150 

x3 170.721 519.998 371.974 362.581 583.563 

x4 2472.054 6536.105 7206.235 2761.372 2416.695 

x5 1136.245 1456.886 838.735 1370.214 1125.382 

yx1 0.523 0.891 0.938 0.980 0.963 

yx2 0.861 0.912 0.961 0.716 0.970 

yx3 0.621 0.583 0.752 0.832 0.936 

yx4 0.514 0.755 0.522 0.951 0.986 

yx5 0.403 0.505 0.977 0.732 0.951 

x1x2 0.422 0.660 0.953 0.770 0.972 

x1x3 0.34 0.581 0.701 0.815 0.94 

x1x4 0.361 0.388 0.415 0.922 0.91 

x1x5 0.211 0.757 0.891 0.813 0.926 

x2x3 0.732 0.711 0.821 0.811 0.915 

x2x4 0.402 0.291 0.443 0.755 0.93 

x2x5 0.44 0.521 0.901 0.57 0.865 

x3x4 0.6 0.535 0.362 0.785 0.909 

x3x5 0.455 0.683 0.703 0.725 0.818 

x4x5 0.331 0.417 0.462 0.8 0.877 
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Table A-7 

Percent Relative Bias of suggested Regression, Ratio and  

Regression-cum-Ratio estimators of 4000 samples 

 
Districts 

Jhang Faisalabad Gujrat Kasur Sailkot 

T12 

(k=1,m=2) 

𝑡𝑟𝑒𝑔(1) 167.9300 175.8981 159.1297 169.7127 180.5292 

𝑡𝑟𝑎(1) 167.0400 174.0779 156.7814 166.6547 177.4033 

𝑡𝑟𝑒𝑟𝑎(1) 166.6200 175.1442 157.7327 168.3716 179.1042 

T13 

(k=1,m=3) 

𝑡𝑟𝑒𝑔(1) 177.1776 172.2111 147.7502 163.2177 184.5097 

𝑡𝑟𝑎(1) 174.1297 166.6433 142.0024 155.3183 174.7512 

𝑡𝑟𝑒𝑟𝑎(1) 176.1551 170.0643 144.3697 159.6254 180.0264 

T14 

(k=1,m=4) 

𝑡𝑟𝑒𝑔(1) 172.6916 153.6655 123.0060 165.3200 162.8270 

𝑡𝑟𝑎(1) 166.1666 143.7942 114.0342 157.1100 145.2866 

𝑡𝑟𝑒𝑟𝑎(1) 170.4890 150.3022 118.4891 156.2100 155.2914 

T15 

(k=1,m=5) 

𝑡𝑟𝑒𝑔(1) 152.8424 117.1153 114.2309 53.7321 63.2727 

𝑡𝑟𝑎(1) 144.4182 107.0191 111.1017 53.0017 57.1225 

𝑡𝑟𝑒𝑟𝑎(1) 150.7813 115.3850 110.2990 52.5602 54.0105 

T23 

(k=2,m=3) 

𝑡𝑟𝑒𝑔(1) 43.9065 47.3610 34.4209 40.0596 57.4283 

𝑡𝑟𝑎(1) 44.2430 49.0363 39.3712 41.0622 58.5163 

𝑡𝑟𝑒𝑟𝑎(1) 44.1296 47.5980 34.5835 41.0575 58.0673 

T24 

(k=2,m=4) 

𝑡𝑟𝑒𝑔(1) 53.4929 43.9243 31.3449 40.4513 67.3999 

𝑡𝑟𝑎(1) 54.3252 48.2221 45.5304 39.5555 70.3054 

𝑡𝑟𝑒𝑟𝑎(1) 54.1084 44.5815 31.9586 39.0291 69.0919 

T25 

(k=2,m=5) 

𝑡𝑟𝑒𝑔(1) 51.3685 36.8603 28.0014 30.1100 43.5200 

𝑡𝑟𝑎(1) 53.9050 46.8238 20.2516 25.8735 48.1476 

𝑡𝑟𝑒𝑟𝑎(1) 52.9058 38.8354 20.0510 24.1517 38.1353 

T34 

(k=3,m=4) 

𝑡𝑟𝑒𝑔(1) -20.7787 -25.2494 -10.9290 -3.0002 -9.5162 

𝑡𝑟𝑎(1) -21.3033 -23.8607 -9.8911 -4.8876 -8.9901 

𝑡𝑟𝑒𝑟𝑎(1) -20.9413 -25.7067 -9.0010 -4.1303 -9.0738 

T35 

(k=3,m=5) 

𝑡𝑟𝑒𝑔(1) -10.1207 -17.9397 -23.2525 -29.5263 -9.1083 

𝑡𝑟𝑎(1) -10.4598 -13.2141 -18.1489 -21.8877 -9.5176 

𝑡𝑟𝑒𝑟𝑎(1) -10.0248 -18.5759 -16.0371 -12.0000 -8.8770 

 


