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ABSTRACT 
 

In this article, we study the so-called the Weibull Weibull distribution. General 

explicit expressions for the quantile function, expansion of its density function, ordinary 

and incomplete moments, moments of the residual and reversed residual lifes, order 

statistics and Rényi and q–entropies are derived. The model parameters are estimated 

using the maximum likelihood method. Simulation results are provided to assess the 

accuracy and performance of the maximum likelihood estimators. The usefulness and 

flexibility of the Weibull Weibull model are illustrated using real data sets. 
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1. INTRODUCTION 
 

The Weibull (W) distribution is a very popular distribution for modeling lifetime data 

in reliability where the hazard rate function is monotone. However, in many applied areas 

such as lifetime analysis, the two-parameter W distribution is inadequate when the true 

hazard shape is of unimodal or bathtub shape. Many generalizations of the W distribution 

have been proposed in the statistical literature to handle with bathtub shaped failure rates. 

Mudholkar and Srivastava (1993) and Mudholkar et al. (1996) pioneered exponentiated 

W (EW) distribution to analyze bathtub failure data. Xie et al. (2002) proposed a three- 

parameter modified W distribution with a bathtub shaped hazard function. Carrasco et al. 

(2008) suggested the generalized modified W distribution. Cordeiro et al. (2016) 

proposed the Kumaraswamy exponential W distribution, among others. 
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Recently, new generated families of continuous distributions have attracted several 

statisticians to develop new models. These families are obtained by introducing one or 

more additional shape parameter(s) to the baseline distribution. Some of the generated 

families are: the beta-G (Eugene et al., 2002), gamma-G (Zografos and Balakrishanan, 

2009), Kumaraswamy-G (Cordeiro and de Castro, 2011), McDonald-G (Alexander et al., 

2012), transformed-transformer (Alzaatreh et al., 2013), Kumaraswamy odd log-logistic 

(Alizadeh et al., 2015), type 1 half-logistic (Cordeiro et al., 2016), Garhy generated 

family (Elgarhy et al., 2016), Kumaraswamy Weibull-G (Hassan and Elgarhy, 2016), 

additive Weibull-G (Hassan and Hemeda, 2016), type II half logistic-G ( Hassan et al. 

2017) and Weibull-G (W-G) (Bourguignon et al., 2014) families, among others. 
 

 The cumulative distribution function (cdf ) of the W-G family is given by  
 

( )
( ) 1 exp , 0, , 0,

1 ( )

G x
F x x

G x

   
        

   

          
(1)

 

 

where   and   are two positive shape parameters. The cdf (1) provides a wider family 

of continuous distributions. The probability density function (pdf) corresponding to (1) is 

given by 

 

1

1

( ) ( ) ( )
( ) exp .

1 ( )1 ( )

g x G x G x
f x

G xG x





    
   

    

          (2) 

 

Recently, many authors constructed generalizations based on the W-G family. For 

example, Tahir et al. (2015a) introduced the W Lomax, Merovci and Elbatal (2015) 

defined the W Rayleigh, Tahir et al. (2016) proposed the W Pareto, Tahir et al. (2015b) 

studied the W Dagum, Afify et al. (2016b) pioneered the W Fréchet, Hassan et al. (2016) 

introduced the W quasi Lindley, Afify et al. (2016a) proposed the W Burr XII 

distributions. 
 

Bourguignon et al. (2014) defined the Weibull-Weibull (WW) distribution. However, 

they do not investigate its several properties. Therefore, the main objective of this paper 

is to study the WW distribution defined from the W-G family and give a comprehensive 

account of some of its mathematical properties. Further, we prove empirically that the 

WW distribution provides better fits than at least three other competitive models in two 

applications. 
 

The WW distribution contains several lifetime distributions as special cases  

(see Table 1). We are motivated to study the WW distribution because (i) It contains a 

number of known lifetime sub models listed in Table 1; (ii) The WW distribution exhibits 

buthtab hazard rate which makes this distribution to be superior to other lifetime 

distributions, which exhibit only monotonically increasing/decreasing, or constant hazard 

rates. (iii) It is shown in Section 3.1 that the WW distribution can be viewed as a mixture 

of Weibull distribution introduced by Weibull (1951); and (iv) The WW distribution 

outperforms several of the well-known lifetime distributions with respect to two real data 

sets. 
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The remainder of the paper is organized as follows: In Section 2, we define the WW 

distribution and provide its special models. In Section 3, we derive a very useful 

representation for the WW density and distribution functions. Further, we derive some 

mathematical properties of the proposed distribution. The maximum likelihood method is 

used to estimate the model parameters in Section 4. In Section 5, simulation results to 

assess the performance of the proposed maximum likelihood estimation procedure are 

discussed. In Section 6, we prove imperially the importance of the WW distribution using 

two real data sets. Finally, we give some concluding remarks in Section 7.  

 

2. THE WW DISTRIBUTION 
 

The cdf of the W distribution with scale parameter 0   and shape parameter 0   

is given (for 0x  ) by  
  

 ( ; , ) 1 exp .G x x                     (3)
 

 

The corresponding pdf of (3) is given by 
 

 1( ; , ) exp .g x x x                     (4) 

 

The random variable X  is said to have a WW distribution, denoted by X WW 

 , , ,    , if its cdf is given (for 0x  ) by  

0x   ( ; , , , ) 1 exp exp( ) 1 ,F x x


         
 

         (5) 

 

where , and    are shape parameters and   is a scale parameter.  
 

 The corresponding pdf of X  is  
 

   
1

1( ; , , , ) exp 1 exp exp 1 .f x x x x x
 

                       
 (6) 

 

The hazard rate function (hrf), reversed hazard rate function and cumulative hazard 

rate function of X  are, respectively, given by 
 

   
1

1( ; , , , ) exp 1 exp ,h x x x x


           
 
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


                
     

        

 

and 

 ( ; , , , ) ln exp exp 1 .H x x


                
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Plots of the WW density for some selected parameter values are displayed in  

Figure 1. Figure 2 displays some possible shapes of the hrf of the WW model for selected 

parameter values. The plots in Figure 1 reveal that the pdf of the WW distribution can be 

reversed J-shape, right skewed, left skewed or concave down. It can be seen, from  

Figure 2, that the hrf can be decreasing, increasing or bathtub failure rate shapes. 
 

The WW model is a very flexible distribution that approaches different distributions 

when its parameters are changed. Table 1 lists the special sub-models of the WW 

distribution. 

 

Table 1 

Special Models of the WW Distribution 

S# Model         Author 

1 Weibull exponential    1     Oguntunde et al. (2015) 

2 Weibull Rayleigh    2     Merovci and Elbatal (2015) 

3 Exponential Weibull       1 New 

4 Exponential Exponential    1   1 New 

5 Exponential Rayleigh   2   1 New 

6 Rayleigh Weibull        2 New 

7 Rayleigh Exponential   1   2 New 

8 Rayleigh Rayleigh    2   2 New 

 

3. STATISTICAL PROPERTIES 
 

This section discusses some important statistical properties of the WW distribution. 

Let Z  be a random variable having the W distribution with cdf (3) and pdf (4). Then, the 

rth  ordinary and incomplete moments of Z  are given by 
 

 /
, 1 /r

r Z r        and    / 1/
, 1 / , ,r

r Z t r t           
 

respectively, where   1

0
,

t w xw t x e dx     is the lower incomplete gamma function. 
 

3.1 Useful Expansions  

Now, we derive a useful mixture representation for the pdf and cdf of the WW 

distribution. The pdf (6) can be rewritten as 
 

 

 
 

 
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1
1

1

exp 1 exp
( ) 1 exp exp .

expexp

x x x
f x x

xx


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


 


                       

 

 

Using the exponential series, we can write 
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Figure 1: Some Possible Shapes for the pdf of the WW Distribution  

 

 

  
Figure 2: Some Possible Shapes for the hrf of the WW Distribution 
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      (7)  

 

 Using (7), the WW density function reduces to 
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 
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1 1

1
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1 1
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(8)
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 Using the generalized binomial series, we can write 
 

 
   

 
 

( 1) 1

0

( 1) 1
1 1 exp 1 exp .

! ( 1 1)

k j

j

k j
x x

j k

    
 



             
         

  

 

Then, equation (8) reduces to 
 

 
 

 
 

 1 1 1
1

, 0

( 1) ( 1) 1
( ) exp 1 exp .

! ! ( 1) 1

k k k j

k j

k j
f x x x x

k j k

    
  



      
    
    



 

Consider the generalized binomial expansion, for 0b   is real non integer and 1,z    
 

 
11

0

1 ( 1) .
bb i i

ii

z z
 



 
    

 
                (9) 

 

Applying expansion (9) to the last equation gives 
 

 

 

 
 

1
1 1 1

, , 0

( 1) ( 1) 1
( ) exp ( 1) .

! ! ( 1) 1

k s k
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sk j s

k j
f x x s x

k j k

 
      



       
     

    
  

 

or, equivalently, we can write 
 

   1
0

( ) ,s s
s

f x g x





                      (10) 

 

where 
 

 1
1 1

, 0

( 1) ( ( 1) 1)

! !( 1) ( 1) 1

k s k
k j

s
sk j
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k j s k

     



       
    

     
  and    1s

g x


 is the pdf of 

the W distribution with shape parameter   and scale parameter  1s  . Thus, the WW 

density function can be expressed as a linear combination of W densities. Then, several 

of its structural properties can be obtained from equation (10) and those properties of the 

W distribution. 
 

 By integrating equation (10), the cdf of X  can be given in the mixture form 
 

   1
0

( ) ,s s
s

F x G x





   

 

where    1s
G x


 is the W cdf with with shape parameter   and scale parameter  1s  .  

 

3.2 Quantile Function 

The quantile function, say 
1( ) ( )Q u F u  of X  can be obtained by inverting (5) as 

follows  
 

  ( )1 exp 1 .Q uu e



 

    
 
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 After some simplifications, it reduces to  
 

 

1/
1/

1

( ) ln 1 ln(1 ) ,Q u u








   
    
    

                (11)  

 

where u  is a uniform random variable on the unit interval  0,1 .  In particuler, the 

median can be derived from (11) by setting 0.5.u   

 

3.3 Moments 

The rth  moment of X can be obtained from (10) as  
 

   1
0

(X ) .r r
r s s

s

E x g x dx



 

      

 

 Then, we have 
 

   
/

0

( 1) 1 / .
r

r s
s

s r
  



         

 

 The nth incomplete moment of X  can be expressed, based on (10), as  
 

       1
0

t tn n
n s

s

t x f x dx s x g x dx


 


      . 

 

 Hence, we have  
 

       
/ 1/

0

1 1 , 1
n

n s
s

r
t s s t

    



 
                

 . 

 

The nth  moment of the residual lifetime is defined (for 0t   and 1,2,...n  ) by 
 

 
1

( ) [( ) ] ( ) ,
( )

nn
n

t

m t E X t X t x t f x dx
R t



      

 

where ( )R t  is the reliability function. Then, we have  
 

   
/ 1/

0 0

1
( ) ( 1) 1 , ,

( )

n dn d

n s
s d

n d
m t t s t

dR t

    

 

   
          

  
   

 

where   1, a y

x
a x y e dy

      is the upper incomplete gamma function. 
 

 The nth moment of the reversed residual life is defined (for 0, 1,2,...t   ) by 
 

 

     
 

   0

1n nt
n nM t E t X X t M t t x f x dx

F t
     
    . 
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 Using equation (10), we can write 
 

   
 

   
/ 1/

0 0

1
1 1 1 ,

n dd n d
n s

d s

n d
M t t s t

dF t

    

 

   
               

  . 

 

The mean inactivity time (MIT) of X  follows from the above equation with 1n  . 

 

3.4 Order Statistics 

Let 1: 2: :n n n nX X X    be the order statistics of a random sample of size n  

following the WW distribution as given in (5) and (6), respectively. Then, the pdf of the 

kth  order statistic, :k nX , denoted by : ( )k nf x , is defined by  
 

   1
:

0

( )
( ) 1 ( ) ,

( , 1)

n k v v k
k n

v

n kf x
f x F x

vB k n k


 



 
   

   
             (12) 

 

where (.,.)B  is the beta function. Hence, we can write 

 
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1
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

  

 

 Using (6), we have 
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 Applying the exponential series and the generalized binomial expansion, we have 
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 By inserting the last equation in (12), we obtain  
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 Then, The pdf of :k nX  reduces to 
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where  
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and, as before,    1s
g x


 is the W pdf with shape parameter   and scale parameter 

 1s  . So, the density function of the WW order statistics is a linear combination of W 

densities. Based on equation (13), we can obtain some structural properties of :k nX  from 

those W properties. For example, the qth  moment of :k nX  is given by 
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3.5 Rényi and q-Entropies 
The Rényi entropy (Rényi, 1961) of X  is defined by 
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 Using the pdf (6) and the exponential series, we can write 
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Applying the generalized binomial expansion and after some algebra, the above 

equation reduces to 
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 The q-entropy is defined (for 0 and  1q q  ) by 
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4. MAXIMUM LIKELIHOOD ESTIMATION 
 

The maximum likelihood estimates (MLEs) of the unknown parameters for the WW 

distribution are determined based on complete samples. Let 1,..., nX X  be a random 

sample of size n  from the this distribution with vector of parameters ( , , , ) .T       

The total log-likelihood function for  can be expressed as  
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 The score vector elements come out as 
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 The MLEs ̂  of   can be determined by maximizing    (for a given x ) either 

directly by using the Mathcad, R (optim function), SAS (PROC NLMIXED), Ox 

program (sub-routine MaxBFGS) or by solving the above nonlinear system obtained by 

differentiating this equation and equating its four components to zero. 
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5. SIMULATION STUDY 
 

In this section, an extensive numerical investigation is carried out to assess on the 

finite sample behavior of the MLEs of  , ,    and  . We evaluate the performance of 

MLEs through their biases and mean square errors (MSEs) for sample sizes =10, 30, 50 

and 100. All results are obtained from 3000 Monte Carlo replications. The means, MSEs 

and biases for the different estimators will be reported from these experiments. Table 2 

presents the means of the MLEs of the parameters of the WW distribution and the 

corresponding biases and MSEs. It can be verified that the estimates are stable and quite 

close the true parameter values for all sample sizes. Further, the MSEs decrease when the 

sample size increases in all cases. 

 

Table 2 

The Parameter Estimation from WW Distribution using MLE 

n  Init MLE Bias MSE Init MLE Bias MSE 

10 

  0.5 0.5576 0.0576 0.0444 0.5 0.5544 0.0544 0.0412 

   0.5 0.6442 0.1442 0.2001 0.75 0.9879 0.2379 0.5166 

  0.5 0.6109 0.1109 0.0801 0.5 0.6687 0.1687 0.1801 

  0.5 0.6035 0.1035 0.8862 0.5 0.5818 0.0818 0.1835 

30 

  0.5 0.5145 0.0145 0.0097 0.5 0.5175 0.0175 0.0103 

   0.5 0.5198 0.0198 0.0330 0.75 0.8072 0.0572 0.0769 

  0.5 0.5370 0.0370 0.0242 0.5 0.5556 0.0556 0.0393 

  0.5 0.4517 -0.0483 0.0382 0.5 0.4495 -0.0505 0.0372 

50 

  0.5 0.5104 0.0104 0.0055 0.5 0.5101 0.0101 0.0052 

   0.5 0.5043 0.0043 0.0165 0.75 0.7771 0.0271 0.0374 

  0.5 0.5261 0.0261 0.0138 0.5 0.5331 0.0331 0.0187 

  0.5 0.4302 -0.0698 0.0233 0.5 0.4245 -0.0755 0.0226 

100 

  0.5 0.5056 0.0056 0.0026 0.5 0.5049 0.0049 0.0026 

  0.5 0.4866 -0.0134 0.0075 0.75 0.7530 0.0030 0.0171 

  0.5 0.5121 0.0121 0.0064 0.5 0.5166 0.0166 0.0087 

  0.5 0.4060 -0.0940 0.0170 0.5 0.4047 -0.0953 0.0170 

 

6. DATA ANALYSIS 
 

In this section, we use two real data sets to illustrate the importance and flexibility of 

the WW distribution. We compare the fits of the WW model with some models namely: 

the beta Weibull (BW) (Lee et al., 2007), Mcdonald Weibull (McW) (Cordeiro et al., 

2014) and exponentiated Weibull (EW) (Mudholkar and Srivastava, 1993) dsitributions.  
 

 The maximized log-likelihood ( 2 ),  Akaike information criterion (AIC), the 

corrected Akaike information criterion (CAIC), Bayesian information criterion (BIC), 

Hannan-Quinn information criterion (HQIC), Anderson-Darling  *A  and Cramér-Von 

Mises ( *W ) statistics are used for model selection.  
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Table 2 

The Parameter Estimation from WW Distribution using MLE (Continued) 

n  Init MLE Bias MSE Init MLE Bias MSE 

10 

  0.5 0.6397 0.1397 0.1895 0.5 0.5485 0.0485 0.0371 

   0.5 0.6090 0.1090 0.0788 0.5 0.6354 0.1354 0.1924 

  0.75 0.5593 -0.1907 0.1449 0.5 0.6052 0.1052 0.0768 

  0.5 0.5274 0.0274 0.0168 1.5 0.5580 -0.9420 0.9309 

30 

   0.5 0.5397 0.0397 0.0235 0.5 0.5186 0.0186 0.0307 

  0.75 0.4754 -0.2746 0.0974 0.5 0.5368 0.0368 0.0237 

  0.5 0.5103 0.0103 0.0056 1.5 0.5084 -0.9916 0.9951 

50 

  0.5 0.5038 0.0038 0.0169 0.5 0.5097 0.0097 0.0054 

   0.5 0.5251 0.0251 0.0138 0.5 0.5015 0.0015 0.0165 

  0.75 0.4601 -0.2899 0.0962 0.5 0.5235 0.0235 0.0137 

  0.5 0.5082 0.0082 0.0036 1.5 0.5024 -0.9976 1.0023 

100 

  0.5 0.4877 -0.0123 0.0077 0.5 0.5057 0.0057 0.0027 

  0.5 0.5124 0.0124 0.0065 0.5 0.4881 -0.0119 0.0079 

  0.75 0.4466 -0.3034 0.0980 0.5 0.5129 0.0129 0.0067 

  0.5 0.5547 0.0547 0.0407 1.5 0.4959 -1.0041 1.0118 

 

Example 1:  

 The data have been obtained from Nicholas and Padgett (2006). The data represent 

tensile strength of 100 observations of carbon fibers and they are:  
 

3.7, 3.11, 4.42, 3.28, 3.75, 2.96, 3.39, 3.31, 3.15, 2.81, 1.41, 2.76, 3.19, 

1.59, 2.17, 3.51, 1.84, 1.61, 1.57, 1.89, 2.74, 3.27, 2.41, 3.09, 2.43, 2.53, 

2.81, 3.31, 2.35, 2.77, 2.68, 4.91, 1.57, 2.00, 1.17, 2.17, 0.39, 2.79, 1.08, 

2.88, 2.73, 2.87, 3.19, 1.87, 2.95, 2.67, 4.20, 2.85, 2.55, 2.17, 2.97, 3.68, 

0.81, 1.22, 5.08, 1.69, 3.68, 4.70, 2.03, 2.82, 2.50, 1.47, 3.22, 3.15, 2.97, 

2.93, 3.33, 2.56, 2.59, 2.83, 1.36, 1.84, 5.56, 1.12, 2.48, 1.25, 2.48, 2.03, 

1.61, 2.05, 3.60, 3.11, 1.69, 4.90, 3.39, 3.22, 2.55, 3.56, 2.38, 1.92, 0.98, 

1.59, 1.73, 1.71, 1.18, 4.38, 0.85, 1.80, 2.12, 3.65. 

 

 For the data in Example 1, Table 3 gives the MLEs of the fitted models and their 

standard errors (SEs) in parenthesis. The values of goodness-of-fit statistics are listed in 

Table 4.  
 

 It is noted, from Table 4, that the WW distribution provides a better fit than other 

competitive fitted models. It has the smallest values for goodness-of-fit statistics among 

all fitted models. Plots of the histogram, fitted densities and estimated cdfs are shown in 

Figures 3 and 4, respectively. These figures supported the conclusion drawn from the 

numerical values in Table 4.  
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Example 2:  
 The second data set is obtained from Tahir et al. (2015) and represents failure times of 

84 Aircraft Windshield. The data are:  
 

0.040, 1.866, 2.385, 3.443, 0.301, 1.876, 2.481, 3.467, 0.309, 1.899, 

2.610, 3.478, 0.557, 1.911, 2.625, 3.578, 0.943, 1.912, 2.632, 3.595, 

1.070, 1.914, 2.646, 3.699, 1.124, 1.981, 2.661, 3.779, 1.248, 2.010, 

2.688, 3.924, 1.281, 2.038, 2.82,3, 4.035, 1.281, 2.085, 2.890, 4.121, 

1.303, 2.089, 2.902, 4.167, 1.432, 2.097, 2.934, 4.240, 1.480, 2.135, 

2.962, 4.255, 1.505, 2.154, 2.964, 4.278, 1.506, 2.190, 3.000, 4.305, 

1.568, 2.194, 3.103, 4.376, 1.615, 2.223, 3.114, 4.449, 1.619, 2.224, 

3.117, 4.485, 1.652, 2.229, 3.166, 4.570, 1.652, 2.300, 3.344, 4.602, 

1.757, 2.324, 3.376, 4.663. 
 

 Table 5 lists the MLEs of the fitted models and their SEs in parenthesis. The values of 

goodness-of-fit statistics are presented in Table 6. 

 

Table 3 

The MLEs and SEs of the Model Parameters for First Data Set 

Model Estimates (SEs) 

WW ( , , , )     
20.394 

(1.582) 

13.273 

(0.236) 

0.493 

(0.073) 

0.159 

(0.086) 
 

BW ( , , , )a b    
34.051 

(0.961) 

14.541 

(0.19) 

0.833 

(0.11) 

0.427 

(0.077) 
 

McW ( , , , , )a b c   
35.28 

(0.916) 

18.125 

(0.254) 

0.813 

(0.13) 

0.399 

(0.085) 

1.548 

(6.993) 

EW ( , , )a   
5.77 

(0.103) 

0.295 

(0.057) 

1135
 

(0.662) 
 

 

 

 

Table 4 

Goodness-of-Fit Statistics for First Data Set 

Model 2  AIC CAIC BIC HQIC *A
 *W  

WW 299.747 307.747 309.347 305.656 309.54 0.45081 0.06256 

BW 317.214 325.214 326.814 325.214 329.431 1.22496 0.23356 

McW 308.116 318.116 319.716 318.116 323.388 1.22090 0.23286 

EW 373.861 377.861 378.305 376.815 378.757 2.81959 0.51324 
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Table 5 

The MLEs and SEs for Second Data Set 

Model Estimates (SEs) 

WW ( , , , )     
24.862 

(1.44) 

3.752 

(0.298) 

0.199 

(0.069) 

0.545 

(0.113) 
 

BW ( , , , )a b    
53.874 

(2.717) 

20.528 

(0.278) 

1.076 

(0.278) 

0.231 

(0.184) 
 

McW ( , , , , )a b c   
51.321 

(5.329) 

19.762 

(0.605) 

1.119 

(0.48) 

0.23 

(0.424) 

1.525 

(38.539) 

EW ( , , )a   
7.017 

(0.134) 

0.144 

(0.063) 

1773 

(0.827) 
  

 

 
Figure 3: Estimated Densities of the Fitted Models for Data Set 1 

 

 
Figure 4: Estimated cdfs of for Data Set 1 
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Table 6 

Goodness-of-Fit Statistics for Second Data Set 

Model 2  AIC CAIC BIC HQIC *A
 *W

 

WW 261.389 269.389 269.895 269.086 273.298 0.65619 0.07529 

BW 289.948 297.948 298.455 297.645 301.857 3.34711 0.48715 

McW 283.983 293.983 294.752 293.604 298.869 3.33313 0.4847 

EW 320.347 326.347 326.647 324.196 326.302 32.74879 7.04167 

 

It is observed, from Table 6, that the WW distribution gives a better fit than other fitted 

models. Plots of the histogram, fitted densities and estimated cdfs are displayed in 

Figures 5 and 6, respectively. 

 

 

 

Figure 5: Estimated pdfs for Data Set 2  
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Figure 6: Estimated cdfs for Data Set 2  

 

 

7. CONCLUSIONS 
 

 In this paper, we study a four-parameter model, named the Weibull Weibull (WW) 

distribution. The WW model is motivated by the wide use of the Weibull distribution in 

practice. The WW pdf can be expressed as a mixture of Weibull densities. We derive 

explicit expressions for the quantile function, ordinary and incomplete moments, 

moments of the residual and reversed residual function, order statistics and Rényi and q-

entropies. The maximum likelihood estimation method is used to estimate the model 

parameters. We provide some simulation results to assess the performance of the 

proposed model. The practical importance of the WW distribution is demonstrated by 

means of two real data sets.  
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