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ABSTRACT 
 

 Exponential distributions have a pivotal role in the domain of reliability and life 

testing. The purpose of this paper is to construct a new multivariate exponential 

distribution based on the D-vine copula. Frank’s copula from the Archimedean family 

and Gaussian copula from the elliptical family are implemented on the exponential 

distribution in the first stage. Then, the D-vine copula is applied in the second stage to 

construct a new multivariate exponential distribution. This paper focuses on Frank’s and 

Gaussian copula and aimed at assessing the behavior of the association of the new 

multivariate distribution-parameters. 
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1. INTRODUCTION 
 

 Real-world phenomena are complex processes and their analysis requires certain 

assumptions to be made by the analyst. The purpose is to simplify the process of 

mathematical and statistical analysis. However, a balance needs to be maintained 

between simplifying assumptions and the reliability of the conclusions drawn based on 

those assumptions. There cannot be too many assumptions such that the reliability of the 

probabilistic model becomes questionable. The assumptions should be enough to 

facilitate calculations but not so many that the calculated model fails to represent the real 

world. In the decade of 50s, scientists initiated data analysis of the instrument’s operating 

time. The aim of the study was to find a model that could resemble closely with the real 

world and has minimal assumptions. The findings of the study showed that the 

instrument’s lifetime has exponential distribution (Gupta, Zeng and Wu, 2010). Further 

studies showed that exponential distribution is a useful tool for obtaining a first 

approximation. Hence, exponential distribution, its characterizations, properties, and 

models became an important area of study in the academic research. Some of the 

examples of the implementation of exponential distributions include time elapsed 

between spinal cords’ impulses and calculation of telephone calls’ length. 
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 Construction of multivariate distributions is one of the classical fields of research in 

statistics, and hence, it continues to be an active field of research. Multivariate 

exponential distributions have proven to be an important class of distributions, and 

flexible multivariate distributions are necessary in many fields. A copula is a method of 

formalizing the dependence structures of random vectors. In many application fields, 

copula models have become increasingly popular during the last 10 years. Furthermore, 

in many cases of statistical modeling, it is essential to obtain the joint distribution 

between multiple random variables.  
 

 Although the marginal distribution of each of the random variables is known, their 

joint distribution may not be easy to obtain from these marginal distributions. Knowing 

the scale-free measures of dependence between random variables, the author used copula 

models to obtain the joint distribution. An interesting property of the copula method is 

that it is an approach to constructing a multivariate distribution of known marginal 

distributions. 
 

 However, the use of copula models in higher dimensions is considered a difficult 

challenge for researchers because constraints exist on the parameters of multivariate 

copulas, which can create inflexibility. The first appearance of pair-copulas was also 

noted(Joe, 1996). Two research studies have introduced the main concept of pair-copula 

constructions into a cascade of bivariate copulas and presented a method of organizing 

this process through vines using a graphical model; these researchers also briefly 

discussed simulations from vines (Bedford & Cooke, 2001; Kurowicka & Cooke, 2005). 

To overcome associated problems, a study developed the pair-copula constructions 

(PCCs) and reviewed easy and clear methods from algorithms to simulate the execution 

of D-vines and C-vines (Aas, et al., 2009). The D-vine copula and its inference were 

presented by a study in their investigational process (Aas& Berg, 2009). A study 

discussed the estimation of the parameters of PCCs, including the stepwise semi-

parametric (SSP) estimator. Also, he presented its asymptotic properties. This study 

further selected the most suitable pair copula for the PCCs in a given data set. Moreover, 

he presented a multivariate exponential distribution based on D-vine with pair-copula: 

Gumbel copula for all cases. He also introduced estimated parameters for D-vine only 

(Haff, 2013). 
 

 The canonical vine (C-vine) and D-vine are popular types of PCCs, and the D-vine is 

more easily applied and more flexible than the C-vine. The C-vine relationship for one 

variable was observed to be predefined. Nevertheless, the selection of pairs for modeling 

the dependence in D-vine is unconstrained process.  
 

 The process of globalization has created a close interconnection among the economies 

of the world. Due to this close connectivity, fluctuations in one financial market have a 

substantial impact on other markets of the world. It was recently witnessed when China 

devalued its currency. Almost all stock markets of the world were affected from these 

changing economic conditions in China. Similarly, reduction in oil prices affected the 

markets across the world. All these factors necessitate understanding the relevance 

among different markets to minimize the risks of investment. The traditional method 

applied in this respect is the Pearson correlation. However, this type of relationship is 

relevant only when linear relationships are involved between two variables. In the real 
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world, the distributions of financial variables are neither symmetric nor linear. The 

researchers stress the need of a new method that could evaluate the correlations. Copula 

functions have this capability that they can analyze the variables that are asymmetric and 

nonlinear in nature (Chen, Yang & Zhou, 2012). Another important feature of copula 

functions is that marginal distributions in these functions are unrestricted. Vine copulas 

are preferred for their flexibility of dealing with complex dependence patterns. These 

dependencies can be evaluated in a tree structure that provides ease in the evaluation of 

multiple dependencies (Allen, et al. 2013). 
 

 In this study, the author focuses on the D-vine copula. The paper focuses on Frank’s 

and Gaussian copulas because both are symmetric; however the classes are different. The 

author is interested to see whether the copulas family is affecting on the exponential 

distribution or not. 
 

 The remainder of the paper is organized as follows. Section 2 describes the D-vine 

copula and h-function and explains the theoretical inference of the D-vine copula. Section 

3 introduces construction of the new multivariate exponential distribution based on the D-

vine copula. Section 4 describes a simulation study performed on the proposed 

multivariate exponential distribution based on the D-vine copula. Finally, the results are 

discussed in the final section together with conclusions.  

 

2. THE D-VINE COPULA 
 

 Copula modeling techniques have gained increased importance during the last decade. 

The estimation and modeling methods were first presented by Sklar in 1959 (Flores, 

2009). The unique feature of this technique is that it permits the decomposition of the 

distribution. The multivariate distribution is decomposed and univariate margins are 

formed (Kauermann & Schellhase, 2014). These univariate margins are exhibited through 

copula. According to the theorem of Sklar, the joint distribution can be expressed as 

(Flores, 2009): 
 

 (        )   .  (  )     (  )/ 
 

 In the above equation,                represent p-dimensional random vector and 

  (  )   (  )   (  )     (  ) are univariate marginal distributions. The distribution 

function is denoted by C, the copula. 
 

 A study emphasize the usefulness of copulas in case of multivariate vector for the 

modeling of dependence (Haug, Kluppelberg & Peng, 2011). They stressed the need of 

testing and estimation methods for tail copulas and extreme value copulas. In the 

literature, there are three types of vine copulas called C-vine, D-vine and R-vine copulas. 

These regular vine copulas present a specific method used to decompose multivariate 

densities. High dimensional distributions can be constructed by applying the regular vines 

of the PCCs. In this paper, the author focuses on the D-vine copula (for additional details, 

Section 4). Figure 1, shows the D-vine specifications in three dimensions. For three 

variables, there are two trees  . Tree    has d+1-j nodes and i=d-j edges, where j=1, 2 

and d=number of dimensions. In a pair-copula such as that used to build the modeling 

dependence, the author finds that each edge is associated with two variables. 

Furthermore, the dependencies between variables represent the naming of the edge  
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in the connecting pair-copula density. In the first tree    , the dependence between  

two pairs of variables, (1, 2), (2,3) are used to build the corresponding pair-copula, 

     (      )     (      ). In the second tree,   , the third variable (1,3|2) is modeled by 

using the conditional dependence with the associated pair-copula density       (        ). 

Where                  as the densities of copula                 . 

 

 
Fig. 1: Tree Representation of Three-Dimensional D-vine 

 

 According to the above explanation of the D-vine specification, one can write the 

multivariate density function of d-dimension based on the D-vine copula as follows 
 

 (       )  ∏ (  )

 

   

∏ ∏                  

   

   

   

   

 

 . (  |             )  (    |             )/  

 

 

 

(1) 

 

 The representation in Eq. (1) has been suggested in a past study (Aas et al., 2009). In 

the three-dimensional case (d=3), this definition becomes  
 

 (        )   (  )  (  )  (  ) 

         ( (  )  (  ))     ( (  )  (  )) 

           ( (     )  (     ))  

 

 

(2) 

 

 According to both C-vine and D-vine copulas, one can choose among the three 

variables       and   in six different ways. Hence, this paper is concerned with the  

D-vine copula, so there are three different ways, which provides the vine permutation 

property between random variables. It is now clear that each conditional marginal can be 

decomposed into the appropriate pair-copula times a conditional marginal density, using 

the general formula: 
 

 (   )           
. ( |   )  (  |   )/   ( |   )  (3) 

 

where   (          )
 and    denotes the vector  , excluding the component   .  
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2.1 The h-function 

 The crucial question for constructing a PCCs model is how to obtain conditional 

distributions        
 for a d-dimensional vector  . The author uses the h-function to 

represent the conditional distribution function of the cumulative distributions. The 

notation of the h-function is introduced for convenience. 
 

 In Eq. (3), there is a need of an expression for the arguments of the          
 

arguments, i.e.,       
 and        

. In (Joe, 1996) the following relationship is derived 

(under certain regularity conditions) 
 

     
          

        

. (4) 

 

 Components of the derivation of (4) are shown in the Appendix. If   is univariate, i.e., 

   , Eq.(4) reduces to  
 

     
    

   

  (5) 

 

 However, when   and   are uniform, the expression in (5) is called the h-function. 

(See ref. 5). 
 

 (     )       
     (     )

  
 . (6) 

 

 In Eq. (6),   is the vector of parameters for the current copula. The  ( ) is the 

conditioning variable. Hence,    (     )      
   as the inverse of  (     ) with 

respect to x. These examples are the most common and applicable copulas, and their  

h-functions. 

 

2.2 Full Inference for a D-vine Copula 

 A study discussed the estimation parameters for PCCs(Haff, 2013). The D-vine log-

likelihood with data set   (           )                ) and parameter set   

is given by 
 

 (   )  ∑ ∑ ∑    ,       (   ) (     )(   (   )   (     ) 

   

   

   

   

 

   

 

                        (   )        )-. 

 

 

 

(7) 
 

where the conditional distributions    (   )   (     ) and                  are determined 

using the h-function. Additionally, applying the previous relationship can raise a  

pair-copula term in tree j, which is possible using the pair-copulas for previous trees 

        and sequentially applying the relationship in Eq. (7). The log-likelihood 

should be numerically maximized over all parameters. 
 

 The root nodes should be determined in each tree. The dependence with respect to 

one variable occurs only in the first D-vine tree. The selection of copulas for bivariate 

variables is modeled in the same way as the first root node. The second root node is 

conditioned on the variable pairs. Generally, the root node selected for each tree and all 
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dependence pairs take into account the modeled conditions for this node, i.e., for all root 

nodes in the trees, which is also in accordance with a past study (Nævestad, 2009). 
 

 In the domain of actuarial analysis, an important factor is the analysis of risk 

management. In this respect, it is important to take into account aggregate claims in 

Archimedean copula. Portfolio of single claims to generate the aggregate claims can be 

represented in the following equation (Furmanczyk, 2015): 
 

   ∑   

 

   

 

 

 In the above equation, X1, X2, X3, ….,Xn denote the single claims. The importance and 

uniqueness of this equation is that n dependent risks are represented by a portfolio. The 

overall dependence structure can then be represented by the Archimedean copula. 
 

 This work, applies the following sequential estimation procedure to estimate the 

values of the parameters that maximize the D-vine log-likelihood in Eq. (7): 
 

 Choose the first root node and determine all pair-copula types with respect to this root 

node in the first tree.  
 

 Select the copulas and the estimated parameters using the original data. Use the 

copula parameters that were rated in the first tree and the h-function condition as shown 

in the Appendix. Next, compute the observations (i.e., distribution functions conditioned 

on the first root node) for the second tree.  
 

 Choose the second root node and determine all pair-copula types with respect to this 

root node in the second tree. Use the conditional distribution function from (c) to estimate 

the parameters in the selected copulas in the second tree. 

 

3. CONSTRUCTION OF THE NEW MULTIVARIATE  

EXPONENTIAL DISTRIBUTION 
 

 Assuming that a univariate random variable X follows an exponential distribution 

with parameter    it is well known that the probability density and the cumulative 

distribution functions of X are respectively given by 
 

  ( )             (   )  (8) 
 

  ( )              (9) 
 

 The concept of constructing the new multivariate exponential distribution based on 

PCCs can be demonstrated in two steps. The first step uses two distinct bivariate 

exponential distributions. In this step, the author applies Frank’s and Gaussian copulas 

separately to the exponential distribution with the distribution function given by (8), 

considering different values of the parameter  . The second step applies the D-vine 

copula to the two bivariate exponential distributions obtained in the first step to construct 

the new multivariate exponential distribution. A study defines the parameters that may be 

used in case of exponential distributions for new characterizations (Bairamov, 2000). He 

emphasizes that the underlying distribution must either be new worse than used (NWU) 

or new better than used (NBU). Further details are given below. 
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Step 1:  
 Construct two bivariate exponential distributions based on Frank’s and Gaussian 

copulas. 
 

 Let       
(  ), where    

(  ) is the distribution function of the exponential 

distribution, given by Eq.(9) after indexing X and   by j,      . Next, the joint copula 

distribution functions of    and    based on Frank’s copula take the following form 

(Nelsen 2010): 
 

 (       )         {   
(       )(       )

     
}  (10) 

 

where   as a dependence parameter that may assume any real value *(    )   +. Hence, 

the joint distribution functions of the two exponential random variables   and    are 
 

    (     )   (       ), 
 

where  (       ) is given by Eq.(10). Consequently, the bivariate exponential density 

function based on Frank’s copula of the pair (     ) is given by  
 

      
(     )     

(  )   
(  ) 

 (     )  (11) 
 

where 

 

and    
(  ) is the probability density function of the exponential distribution given by (8) 

after indexing X and   by      .  
 

 Similarly, the Gaussian copula is implemented in the exponential distribution margins 

to obtain a bivariate exponential distribution based on the Gaussian copula. The Gaussian 

copula with association parameter   as presented (Nelsen, 2010) is,  
 

 (       )    .   (  )  
  (  )/  (13) 

 

where   and     are the  (   ) distribution function and its inverse, i.e.,  

   * ( )+   , and  
 

 ( )  ∫
    (

   

 
)
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and    is the bivariate standard normal distribution function with   correlation given by  
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Step 2:  

 Implement the D-vine to construct the new multivariate exponential distribution. 
 

 Let     (         )   ( ), where   ( )   (   
(  )    

(  )    
(  )), if the 

joint distribution function has marginals     
(  ) and corresponding densities    

(  ) and 

       . Hence, by recursive conditioning, the joint density function is defined using  
 

  ( )           
(        )     

(  )      
(     )         

(        )  (14) 
 

Consequently,  

      
(     )  

      
(     )

   
(  )

 
    .   

(  )    
(  )/    

(  )   
(  )

   
(  )

 

      .   
(  )    

(  )/    
(  )  
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(        )   

         
(        )

      
(     )

 

 
      (      

(     )       
(     ))      

(     )      
(     )

      
(     )

 

        (      
(     )       

(     ))      
(     ) 

        (      
(     )       

(     ))    .   
(  )    

(  )/    
(  )  

 

 From Eq. (14), one can find the probability density function that can be represented 

with the bivariate copula models                     with densities                       so-

called pair-copulas, which may be chosen independently, and thus, we can achieve a wide 

range of different structures of dependence. Because of the decomposition in Eq. (14), 

there exist many such iterative PCCs, which are not unique, as stated in the notes(Kao, 

2011). The probability density function for a new multivariate exponential distribution 

based on the D-vine in the three-dimensional case (     ) is given by: 
 

 

where      is the density of the bivariate exponential based on Frank’s copula given by 

Eq.(10),     is the density of the bivariate exponential based on the Gaussian copula 

given by Eq.(13), and                 
(        ), the conditional distribution. 

 

4. SIMULATION STUDY 
 

 By simulating samples of sizes 50, 100, and 1000, to simulate a data set from a 

specified three-dimensional D-vine copula, for simplicity, it was assumed that the 

marginal distributions are uniformly drawn from exponential distributions. Next, the 

author generates the three-dimensional sample   (        ) from a specified D-vine 

copula as follows:  
 

     .   
(  )    

(  )/      .   
(  )    

(  )/ 

       .      
(     )       

(     )/ 

  ( )           
(        )     

(  ).   
(  )    

(  ) 
 

 

(15) 
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1. Assume that   ,   ,    are independent uniform [0,1] random variables and 

proceed with 
 

       
 

       
  (     )  

 

        
  (        )  

 

 The conditional distribution functions     (  |   )  where             is the 

vector   after eliminating   , are given by 
 

    (     )  
    (  (  )   (  )    )

   (  )
  

 

     (        )  
      (    (     )     (     )      )

     (     )
  

 

 Using the relationship between the conditional distribution function and the  

h-function in Subsection (2.1), we obtain 
 

    (     )      (         )   

and 

     (        )       (    (     )     (     )      ) 

      (   (         )|   (         )      )  
 

2. Set      , 
 

      
  (         ), 

      
  (     

  (  |   (         )      )|      )  
 

where the h-function and its inverse     are given in Appendix A. 
 

 For the data simulation the authorized the package CD-vine in R packages 

(Brechmann & Schepsmeier, 2013). Furthermore, the Vine package implemented by a 

study was also applied (Fernandez & Soto, 2014). The marginal exponential distribution 

parameters are estimated using the maxLik package (details in Toomet et al., 2013).  
 

 Three random samples each is of size 100 are simulated from Frank’s and Gaussian 

copulas, separately, with different values for the copula parameters( i.e. a different 

sample is simulated for each parameter). The estimated mean and mean square error 

(MSE) of the simulated samples are computed. Table 1 and Table 2 list different 

parameter values of Frank’s copula and Gaussian copula, respectively. They include the 

means and the MSE of the generated samples. The simulated observations with the 

smallest MSE, is chosen to ensure the homogeneity. i.e., for Frank’s and Gaussian copula 

parameters, the author selected the values 5 and 0.75 respectively. It must be noted that 

the zero is not included in the range of Frank’s copula parameter.  

 

  



On a Multivariate Exponential Distribution Based on a D-vine Copula 84 

Table 1 

Estimated Mean and MSE of Simulated Samples with Different Values  

of Frank’s Copula Parameter 

Parameter Mean est MSE 

7 6.6178 0.0678 

5 4.6795 0.0508 

-5 -5.1878 0.0534 

-7 -7.1510 0.0726 

 

Table 2 

Estimated Mean and MSE of Simulated Samples with Different Values  

of the Gaussian Copula Parameter 

Parameter Mean est MSE 

0.75 0.7377 0.0001 

0.5 0.4707 0.0004 

0 -0.0444 0.0009 

-0.5 -0.5183 0.0004 

-0.75 -0.755 0.0001 

 

 For estimating the parameters of the new multivariate exponential distribution, a 

random vector   (        ) is simulated assuming that each   , i=1,2,3, is a standard 

exponential (i.e.,     follows an exponential distribution with parameter     ). 
 

 In Step 1, the cdfs of    and    are applied to construct one bivariate exponential 

based on Frank’s copula. Similarly, the cdfs of    and    are applied to construct another 

bivariate exponential based on the Gaussian copula.  
 

 Next, random samples of sizes N=50, 100, 1000 are simulated from the bivariate 

exponential distribution based on Frank’s copula with     . Similarly, samples are 

simulated from the bivariate exponential distribution based on the Gaussian copula with 

       .  
 

 The CDVine package in R is applied to estimate the copula parameters    and    . 

Table 3 shows the maximum likelihood estimates (MLEs) of Frank’s and Gaussian 

copula parameters    and   .  

 

Table 3 

MLEs of Frank’s and Gaussian Copula Parameters    and    

Sample Size: N Initial value 50 100 1000 

Frank 5   ̂ 5.162 5.526 4.937 

Gaussian 0.75   ̂ 0.777 0.7622 0.785 

 

 Next, the maxLik package in R is applied to compute the MLE of the marginal 

parameters of each of Frank’s and Gaussian bivariate exponential distributions. Table 4 

shows the MLEs of the marginal parameters of the two bivariate exponential 

distributions, where the parameter values are           . 
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Table 4 

Estimated Parameters for the Bivariate Exponential-Distribution-based Copula 

Sample Size: N 
Frank’s Gaussian 

 ̂   ̂   ̂   ̂  

50 1.14 1.04 0.98 0.97 

100 0.95 0.95 1.08 1.08 

1000 1.08 1.08 1.08 1.08 

 

 It can be observed that the ML estimates of the parameters       and   , i=1,2,3, are 

close to their actual values. Moreover, from Tables 3 and 4, it is clear that the sample 

sizes do not affect the estimation (see, e.g., Flores, 2009).  
 

 Figures 2 and 3 present the cdf and pdf plots of the bivariate exponential distributions 

based on Frank’s and Gaussian copulas, respectively. 
 

 
Fig. 2: Plots of cdf and pdf the Bivariate Exponential Distribution  

based on Frank’s Copula 
 

 
Fig. 3: Plots of cdf and pdf the Bivariate Exponential Distribution  

based on the Gaussian Copula 
 

 In step 2, A D-vine copula is simulated; the new multivariate exponential distribution. 

Random samples of sizes N=50, 100, 1000 are simulates from the cumulative exponential 

distributions for a three-dimensional D-vine copula. Frank’s and Gaussian copulas are 

applied as described in Section 3. The parameters of the new multivariate exponential 

distribution based on the proposed three-part model using different parameter marginal 

distributions are estimated. 
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4.1 Selection among D-vine Copula Models 

 The vector entrances in the D-vine should be compatible with the pairs and the 

associations between the selections of copula pair terms (Brechmann & Schepsmeier, 

2013). 
 

Table 5 

Selection among D-vine Copula Models 

(1,2),(2,3) (Tree 1) 

(1,3|2) (Tree 2) 
 

 By applying an example of the D-vine copula model in three closed dimensions to a 

selection of pair-copula terms            and       , the author finds the following. In tree 

1, the pair-copulas      and      are Frank’s copula with parameter         and Gaussian 

copula with parameter      = 0.7, respectively. While in tree 2, pair copula        in the 

tree 2 is a Gaussian copula with parameter       . Table 6 shows the settings for 

simulating the D-vine data for three different models. Thedatasetsof sample sizes 50, 100 

and 1000 are generatedfrom this D-vine using the simulation algorithm presented 

previously.  
 

 The sequential estimation procedure in Subsection 2.2 is applied to select a D-vine 

model and verify whether this D-vine model is consistent with the settings. Then the pair-

copula is chosen using the AIC. The selected copula model for each pair is found to be 

consistent with the settings. Table 7 shows the computed values of the AICs for each 

pair-copula. The smallest AIC indicates a better estimate. Hence, the computed values of 

the AICs in Table 7 suggest that the three models of the D-vine distribution with 

Gaussian copulas and a parameter equals to 0.5 provide better fit for the data than other 

models.  
 

 Although the sequential estimation usually provides good parameter estimates, these 

estimates can be improved by a joint MLE. The numerical results for all estimated 

parameters for the pair-copula are presented in Table 8. 
 

Table 6 

Settings for Simulation of D-vine Data 

 Pairs Family 
Parameter 

N=50 N=100 N=1000 

Model (1) 

   (       ) 

     Frank                      

     Gaussian                            

       Gaussian                                     

Model(2) 

   (         ) 

     Frank                      

     Gaussian                            

       Gaussian                                     

Model (3) 

   (     ) 

     Frank                      

     Gaussian                            

       Gaussian                                     
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Table 7 

AICs for each Pair-Copula 

Pairs Frank Gaussian Gaussian 

Model (1) 

N=50 

-357.48 -455.75 -235.06 

Model (2) -378.59 -519.30 -162.94 

Model (3) -747.53 -822.79 -410.49 

Model (1) 

N=100 

-31.67 -46.02 -14.42 

Model (2) -16.28 -39.48 -22.60 

Model (3) -64.73 -76.86 -26.59 

Model (1) 

N=1000 

-12.79 -36.25 -5.15 

Model (2) -7.25 -27.92 -11.78 

Model (3) -30.53 -32.30 -13.63 

 

Table 8 

Estimated Parameters for a Three-Dimensional D-vine Copula 

Parameter 
N=50 N=100 N=1000 Real  

Value Start Final Start Final Start Final 

Model 

1 

     4.2951 4.5434 5.5784 5.6837 5.5258 5.6484 5 

     0.6647 0.8235 0.7122 0.7914 0.7449 0.7467 0.7 

       0.4927 0.4054 0.4832 04387 0.5170 0.5130 0.5 

Log-likelihood 33.433 51.980 534.069  

Model 

2 

     3.9908 5.1626 3.442 4.5545 4.724 4.814 5 

     0.6844 0.7748 0.304 0.6639 0.4056 0.7003 0.7 

       0.4419 0.6206 0.5262 0.4901 0.459 0.4235 0.5 

Log-likelihood 29.4409 45.0130 534.085  

Model 

3 

     4.5813 4.7845 5.1363 5.344 5.021 5.980 5 

     0.6498 0.6407 0.7518 0.7522 0.7004 0.7005 0.7 

       0.5899 0.5908 0.5055 0.5023 0.5818 0.5826 0.5 

Log-likelihood 30.7301 78.039 807.238  

 

 Figure 4 shows a bivariate contour plot of the Frank copula corresponding to a 

bivariate exponential distribution with different margins. In addition, the figure shows the 

specified bivariate Frank copula and parameter values. 
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Fig. 4: Contour Plot of Frank’s Copula for a Marginal Exponential Distribution 

 

 A study has proposed the vector of contour levels for exponential margins with 

default value levels = (0.01, 0.05, 0.1, 0.15, 0.2) as typically good choices (Brechmann & 

Schepsmeier, 2013). From Figure 5, it is noted that the probability density function takes 

different shapes. Thus, one can use the bivariate exponential distribution for the analysis 

of bivariate skewed data sets. This paper constructed the new multivariate exponential 

distribution based D-vine copula. 
 

 
Fig. 5: Contour Plot of the Gaussian Copula for a  

Marginal Exponential Distribution 
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4.2 Simulation Results for the Estimated Parameters of the Marginal Distribution 

 The author considered three different sets of the marginal parameters:    (       )   
   (         )  and    (     ). The results are the estimated marginal parameters 

listed in Table 9. Finally, in the table, it is shown that the estimated parameter from the 

inverse function is close to the proposed parameter, meaning that the estimate is a good 

value.  

 

Table 9 

Estimated Parameter Marginal Distribution from the Maximum Likelihood Method 

Parameter   ̂   ̂   ̂ 

Models True values EV by MLE N=1000 

Model 1 (1,1.5,2) 1.013 1.601 2.075 

Model 2 (0.5,1,1.5) 0.636 1.201 1.511 

Model 3 (1,1,1) 0.974 1.045 1.039 

 

 Figure 6 shows the pair-wise scatter plots of the three variables as verification. The 

same plot is used for all of the pairs, meaning that there are no lower or upper limits. The 

distributions might be symmetric in the components, and the observations in the lower 

and upper plots could have equal values or none. The same figure shows the contour plot 

of the density functions of the copula for the pairs (1,2; 2,3; 1,3|2) and the estimated 

parameters from the simulated D-vine. The plots are all quite similar. 

 

 
Fig. 6: Pair-wise Scatter Plots and Contours of the Three Variables 
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5. CONCLUSION 
 

 This article introduced the new multivariate exponential distribution based on D-vine 

copulas for dependence structures in multivariate exponential distributions and illustrated 

its performance on simulated data from a three-dimensional D-vine. All parameters were 

estimated. The estimates were notably close to the real parameter values in the cases of 

large sample sizes. Moreover, the new multivariate exponential distribution based on 

PCCs with three dimensions is symmetrical. However, if higher dimensions are applied, 

an asymmetric multivariate exponential distribution based on PCCs is possible. The paper 

focused on Frank’s and Gaussian copulas because both are symmetric, but their classes 

are different. The author concludes that the PCCs provide more flexibility in constructing 

multivariate models than known copulas. 

 

6. FUTURE WORK 
 

 Copula functions have proved very significant in the statistical analysis when the 

variables under consideration are asymmetric and nonlinear. There is a high volatility and 

increased uncertainty in various aspects of lives. Hence, the assumptions of normal 

distribution may have a substantial impact on the conclusions drawn from statistical 

analysis. The new multivariate exponential distribution, based on D-vine copulas, is 

presented in this study. It can become a useful resource for the analysts in the 

engineering, financial, and academic world. The findings of the study authenticated that 

the estimations were close to the real parameters. Hence, the model has the potential of 

handling nonlinearity and asymmetry of data. 
 

 In future work, the author intends to apply the method with D-vine or C-vine in three 

dimensions on a real data set. In addition, the author plans to use a new distribution with 

a more flexible dependence structures and compare it with the new multivariate 

exponential parameter estimated in this study. 
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APPENDIX 

 

A. Expressions of the h- and    f Functions of Various Bivariate Copulas  

 

Gaussian Copula 

 The distribution function of the Gaussian copula in two dimensions with correlation 

parameter  is given by 
 

  (     )    .   ( )    ( )/  
 

where    is the bivariate Gaussian function with correlation parameter   and   denotes 

the standard univariate normal distribution function with     as the inverse. For this 

copula, the h and    functions are  
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 Frank’s copula is described by 
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 The derivations of these formulas are given in (Aas et al. 2009) and (Nævestad, 

2009). 
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B. Bivariate Copulas  
 

 The most stable theorem is the Sklar’s theorem (Sklar, 1959) which shows the 

described dependence between variables in statistics. Furthermore, this concept 

formalizes the important role of copulas and establishes the connection between 

multivariate and univariate margins for distribution functions. 

 

Sklar’s Theorem.  

 Let margins        . From F, we obtain a d-dimensional distribution function. Thus, 

a copula C can exist such that for all   (       )
     

 

 ( )     ( (  )    (  ))              (B.1) 
 

if         are continuous and C is unique. Conversely, if         are cumulative 

univariate distribution functions, then the function  ( ) defined by Eq. (B.1) is a joint 

distribution function with margins        , and C is a copula.  
 

 In this section, we introduce certain famous bivariate copulas that were used in this 

paper as candidates of the pair-copula. 
 

 The functions  (        )  where       , are multivariate distribution functions 

with d-dimensional copulas that can be used to characterize the dependency between d 

random variables while allowing for arbitrary marginal distributions. We develop 

multivariate copulas using only bivariate copulas as building blocks, and therefore, we 

concentrate in this section on d = 2. In particular, the famous theorem of (Sklar, 1959) 

describes the connection between the marginals and the copula of the joint distribution 

(Joe, 1997). For this purpose, let F(·,·) denote a bivariate cdf with marginal cdfs    and 

  , respectively; thus, there exists a two-dimensional copula cdf defined as 
 

  (     )    (  (  )   (  ))(   ) 
 

such that for all (     )    
 holds. For continuous    and   , C(·, ·) is unique and is 

defined by 
 

 (     )     (  
  (  )   

   (  ))  
 

 The given density is  (     )   
   (     )

      
. 

 

 The most important and commonly used copulas in finance are the Gaussian types. 

Both belong to the class of elliptical copulas (for a precise definition, see, e.g., (Joe, 

1996). Another class that is often discussed and utilized is the Archimedean copulas (see, 

e.g., (Sklar, 1959)).  

 

 


