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ABSTRACT 
 

 This paper discusses maximum likelihood and Bayes estimation of the two unknown 

parameters of Nadarajah and Haghighi distribution based on record values. It assumed that 

in Bayes case, the unknown parameters of Nadarajah and Haghighi distribution have 

gamma prior densities. Explicit forms of Bayes estimators cannot be obtained. Lindley 

approximation is exploited to obtain point estimators for the unknown parameters. The 

Bayesian and non-Bayesian predictions of both point and interval predictions of the future 

record values are also discussed. A simulation study is used to the comparison between the 

Bayesian and non-Bayesian methods. Analysis of a real dataset is presented for illustrative 

purposes. 
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1. INTRODUCTION  
 

 In a sequence of events, the event value that exceeds all previous values is of particular 

importance in the scientific and applied fields and so their values are recorded. In sporting 

events, for example, focus attention is usually on recording results that exceed their 

predecessor, as the hydrologists usually tend to monitor the higher values of the floods. 

Also, the meteorologists usually concern with upper and lower record temperatures. For 

more details on the concept of record values and their application see, for example, 

Ahsanullah (2004) and Arnold et al. (1998). The statistical treatment of the record values 

has been introduced for the first time by Chandler (1952). Since many studies on record 

values and their associated statistical inference have been done for some distributions by 

several authors such as Selim (2012) studied Bayesian estimation of Chen distribution 

based on record values. Hussian and Amin (2014) discussed the Bayesian and non-

Bayesian estimations and prediction of record values from the Kumaraswamy inverse 

Rayleigh distribution. Asgharzadeh et al. (2016) derived the maximum likelihood (ML) 

and Bayes estimators for the two unknown parameters of the logistic distribution based on 

record data. 
 

 Nadarajah and Haghighi (2011) recently introduced a new generalization of the one 

parameter exponential distribution by introducing a shape parameter of its cumulative 

distribution function (cdf) to become as follow 
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F(x) = 1 − exp{1 − (1 + λx)α}, x > 0, 𝜆, 𝛽 > 0. (1.1) 
 

and the probability density function (pdf) is  
 

f(x) = αλ(1 + λx)α−1exp{1 − (1 + λx)α}, x > 0, 𝜆, 𝛽 > 0 (1.2) 
 

where λ > 0 and α > 0 are scale and shape parameters, respectively. The Nadarajah and 

Haghighi distribution will be denoted by (NH) distribution. The NH distribution is 

introduced as an alternative to the gamma, Weibull and exponentiated exponential 

distributions in lifetime studies. This distribution has a little number of studies regard to 

classical and Bayesian estimation. Among these studies, Singh et al. (2015) discussed the 

classical and Bayesian estimations for NH model under progressive type-II censored data. 

The ML and Bayes estimators of the unknown parameters of NH distribution under 

progressive type-II censored data with binomial removals have been also obtained by Singh 

et al. (2014). MirMostafaee et al. (2016) derived recurrence relations for moments of record 

values from NH distribution, and they also derived the BLUEs of the unknown two 

parameters of NH distribution. 
 

 The objective of this paper is twofold; to study the Bayesian and non-Bayesian 

estimation of the unknown parameters of the NH distribution based on record data and to 

study the Bayesian and non-Bayesian prediction of the future record values based on record 

data of the NH distribution. The rest of the paper is organized as follows; the maximum 

likelihood and Bayes estimations are discussed in Section 2. Bayesian and non-Bayesian 

predictions are discussed in Section 3. The estimation and prediction procedures are 

applied to real data set and simulation data in Section 4, 5 respectively. Finally, conclusions 

appear in Section 6. 
 

2. ESTIMATION 
 

In this section, we study the classical and Bayesian estimation of the two unknown 

parameters of Nadarajah and Haghighi distribution based on a sample of record values.  

 

2.1 Maximum Likelihood Estimation 

 Let XU(1) = x1, XU(2) = x2, … , XU(m) = xm are the first m observed upper record values 

from NH distribution with cdf (1.2) and pdf (1.1). Then, the likelihood function of the m 

upper records is given by (Ahsanullah (2004)) 
 

𝐿( 𝛼, 𝜆 ∣∣ 𝑥 ) = (𝛼𝜆 )𝑚𝑒𝑥𝑝{1 − (1 + 𝜆𝑥𝑚)
𝛼}∏ (1 + 𝜆𝑥𝑖)

𝛼−1
𝑚

𝑖=1
 (2.1) 

 

Taking the logarithm of the likelihood function (2.1), we get  
 

𝑙𝑛𝐿( 𝛼, 𝜆 ∣∣ 𝑥 ) = 𝑚 𝑙𝑛(𝛼𝜆) + 1 − (1 + 𝜆𝑥𝑚)
𝛼

+ (𝛼 − 1)∑𝑙𝑛(1 + 𝜆𝑥𝑖)

𝑚

𝑖=1

 
(2.2) 

 

 Then, the MLEs of the parameters α and λ are a solution of the following likelihood 

equations 
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𝑚

𝛼
− (1 + 𝜆𝑥𝑚)

𝛼 𝑙𝑛(1 + 𝜆𝑥𝑚) +∑𝑙𝑛(1 + 𝜆𝑥𝑖) = 0

𝑚

𝑖=1

 (2.3) 

 

𝑚

𝜆
− 𝛼𝑥𝑚(1 + 𝜆𝑥𝑚)

𝛼−1 + (𝛼 − 1)∑
𝑥𝑖

(1 + 𝜆𝑥𝑖)
= 0

𝑚

𝑖=1

 (2.4) 

 

 The previous equations (2.3), (2.4) cannot be solved analytically for α and λ. Therefore, 

we suggest using the iterative methods to find the numerical solutions of these equations. 
 

 The asymptotic variance–covariance matrix of the MLE for the parameters α and λ can 

be approximated as follows 
 

𝐼(𝛼, 𝜆) = [
−𝐿𝛼𝛼 −𝐿𝛼𝜆
−𝐿𝜆𝛼 −𝐿𝜆𝜆

]
�̂�,�̂�

−1

= [
�̂�𝛼𝛼 �̂�𝛼𝜆
�̂�𝜆𝛼 �̂�𝜆𝜆

]  (2.5) 

 

where  
 

𝐿𝛼𝛼 =
𝜕2𝐿

𝜕𝛼2
= −

𝑚

𝛼2
− ln2(1 + 𝜆𝑥𝑚) (1 + 𝜆𝑥𝑚)

𝛼  (2.6) 

 

𝐿𝜆𝜆 =
𝜕2𝐿

𝜕𝜆2
= −

𝑚

𝜆2
− 𝛼(𝛼 − 1)𝑥𝑚

2(1 + 𝜆𝑥𝑚)
𝛼−2

− (𝛼 − 1)∑
𝑥𝑖
2

(1 + 𝜆𝑥𝑖)
2

𝑚

𝑖=1

 

(2.7) 

 

𝐿𝛼𝜆 = 𝐿𝜆𝛼 =
𝜕2𝐿

𝜕𝛼𝜕𝜆
= −𝑥𝑚(1 + 𝜆𝑥𝑚)

𝛼−1[𝛼 ln(1 + 𝜆𝑥𝑚) + 1] +∑
𝑥𝑖

(1 + 𝜆𝑥𝑖)

𝑚

𝑖=1

 

 (2.8) 
 

 The asymptotic normality of the MLEs can be used to compute approximate 100(1 −
τ)% confidence intervals for the parameters α and λ, as follow 
 

�̂� ± 𝑧𝜏 2⁄ √�̂�𝛼
2    and    �̂� ± 𝑧𝜏 2⁄ √�̂�𝜆

2 

 

where zτ 2⁄  is an upper τ 2⁄ % of the standard normal distribution.  

 

2.2 Bayes Estimation  

 Assuming that the unknown parameters α and λ are independent and follow gamma 

distribution i. e. α ~gamma(a, b) and λ ~gamma(c, d). Thus, the joint prior distribution 

for α and λ is 
 

𝜋(𝛼, 𝜆) ∝ 𝛼𝑎−1𝜆𝑐−1𝑒−𝑏𝛼−𝑑𝜆 , 𝛼, 𝜆 > 0 (2.9) 
 

where 𝑎, 𝑏, 𝑐 and 𝑑 are the hyper parameters that are assumed to be nonnegative and known. 

Combining the joint prior (2.9) with the likelihood function (2.1) and applying Bayes’ 

theorem, we get the joint posterior function of α and λ as follows 
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𝜋(𝛼, 𝜆|𝑥) =
𝐿(𝛼, 𝜆 ∣∣ 𝑥 )𝜋(𝛼, 𝜆)

∫ ∫ 𝐿( 𝛼, 𝜆 ∣∣ 𝑥 )𝜋(𝛼, 𝜆)
∞

0

∞

0
𝑑𝛼𝑑𝜆

 

=
1

𝐾
𝛼𝑎+𝑚−1𝜆𝑐+𝑚−1𝑒−𝑏𝛼−𝑑𝜆−(1+𝜆𝑥𝑚)

𝛼
∏ (1 + 𝜆𝑥𝑖)

𝛼−1
𝑚

𝑖=1
 (2.10) 

 

where 
 

𝐾 = ∫ ∫ 𝛼𝑎+𝑚−1𝜆𝑐+𝑚−1𝑒−𝑏𝛼−𝑑𝜆−(1+𝜆𝑥𝑚)
𝛼
∏ (1 + 𝜆𝑥𝑖)

𝛼−1
𝑚

𝑖=1

∞

0

∞

0

𝑑𝛼𝑑𝜆 (2.11) 

 

 The Bayes estimators of α and λ under the squared error loss function (SELF) are the 

posterior mean as follow 
 

�̂� = 𝐸(𝛼|𝑥) =
1

𝐾
∫ ∫ 𝛼𝑎+𝑚𝜆𝑐+𝑚−1𝑒−𝑏𝛼−𝑑𝜆−(1+𝜆𝑥𝑚)

𝛼

∞

0

∞

0

 

∏ (1 + 𝜆𝑥𝑖)
𝛼−1

𝑚

𝑖=1
𝑑𝛼𝑑𝜆 

(2.12) 

and 

�̂� = 𝐸(𝜆|𝑥) =
1

𝐾
∫ ∫ 𝛼𝑎+𝑚−1𝜆𝑐+𝑚𝑒−𝑏𝛼−𝑑𝜆−(1+𝜆𝑥𝑚)

𝛼

∞

0

∞

0

 

∏ (1 + 𝜆𝑥𝑖)
𝛼−1

𝑚

𝑖=1
𝑑𝛼𝑑𝜆 

(2.13) 

 

 It may be noted here that, the integral ratios in (2.12) and (2.13) cannot be expressed in 

simple closed forms. Therefore, we suggest using the Lindley’s approximation method to 

obtain the Bayes estimators of α and λ. Lindley (1980) introduced a method to approximate 

the ratio of integrals as in (2.10). This approximation has been used to achieve the Bayes 

estimation based on record values by many authors; see, among others, Ahmadi et al. 

(2009) and Badr (2015). Let we have a ratio of integrals of the following form 
 

𝐸(𝑢(𝜃)|𝑥) =
∫𝑢(𝜃)𝑒ℒ(𝜃)+𝜌(𝜃)𝑑𝜃

∫ 𝑒ℒ(𝜃)+𝜌(𝜃)𝑑𝜃
 (2.14) 

 

where 𝜃 = (𝜃1, 𝜃2, … , 𝜃𝑛) and ℒ(𝜃) is the logarithm of the likelihood function,  

𝜌(𝜃) = 𝑙𝑜𝑔(𝜋(𝜃)), 𝜋(𝜃) is the joint prior distribution of θ and 𝑢(𝜃) is a function of 𝜃. 

This ratio of integrals can be asymptotically approximated using Lindley’s approach as 

follows 
 

𝐸(𝑢(𝜃)|𝑥) = [𝑢(𝜃) +
1

2
∑∑𝜎𝑖𝑗[𝑢𝑖𝑗 + 2𝑢𝑖𝜌𝑗]

𝑚

𝑗=1

𝑚

𝑖=1

+
1

2
∑∑∑∑ℒ𝑖𝑗𝑘𝜎𝑖𝑗𝜎𝑘𝑙𝑢𝑖

𝑚

𝑙=1

𝑚

𝑘=1

𝑚

𝑗=1

𝑚

𝑖=1

]

�̂�

 

(2.15) 
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where 𝑢𝑖𝑗 =
𝜕2𝑢

𝜕𝜃𝑖𝜕𝜃𝑗
, 𝑢𝑖 =

𝜕𝑢

𝜕𝜃𝑖
, ℒ𝑖𝑗𝑘 =

𝜕3ℒ

𝜕𝜃𝑖𝜕𝜃𝑗𝜕𝜃𝑘
, 𝜌𝑗 =

𝜕𝜌

𝜕𝜃𝑗
, 𝜎𝑖𝑗 =

−1

ℒ𝑖𝑗
 

 

 Accordingly, the Lindley’s approximation of (2.12) and (2.13) are 
 

�̂�𝐿𝐵 = �̂� + �̂�1�̂�11 +
1

2
�̂�11(ℒ̂122�̂�22 + ℒ̂111�̂�11) (2.16) 

and 

�̂�𝐿𝐵 = �̂� + �̂�2�̂�22 +
1

2
�̂�22(ℒ̂112�̂�11 + ℒ̂222�̂�22) (2.17) 

 

 That can be rewritten as follow 
 

𝜆𝐿𝐵 =

{
 
 
 
 
 

 
 
 
 
 𝜆 +

(
𝑐−1

𝜆
−𝑑)

𝑚

𝜆2
+𝛼(𝛼−1)𝑥𝑚

2 (1+𝜆𝑥𝑚)
𝛼−2+(𝛼−1)∑

𝑥𝑖
2

(1+𝜆𝑥𝑖)
2

𝑚
𝑖=1

    +

2𝑚

𝜆3
−𝛼(𝛼−1)(𝛼−2)𝑥𝑚

3 (1+𝜆𝑥𝑚)
𝛼−3+(𝛼−1)∑

2𝑥𝑖
3

(1+𝜆𝑥𝑖)
3

𝑚
𝑖=1

2[
𝑚

𝜆2
+𝛼(𝛼−1)𝑥𝑚

2 (1+𝜆𝑥𝑚)
𝛼−2+(𝛼−1)∑

𝑥𝑖
2

(1+𝜆𝑥𝑖)
2

𝑚
𝑖=1 ]

2

  + 
−𝑥𝑚ln(1+𝜆𝑥𝑚)(1+𝜆𝑥𝑚)

𝛼−1(𝛼ln(1+𝜆𝑥𝑚)+2)

2[
𝑚

𝜆2
+𝛼(𝛼−1)𝑥𝑚

2 (1+𝜆𝑥𝑚)
𝛼−2+(𝛼−1)∑

𝑥𝑖
2

(1+𝜆𝑥𝑖)
2

𝑚
𝑖=1 ]

[
𝑚

𝛼2
+ln2(1+𝜆𝑥𝑚)(1+𝜆𝑥𝑚)

𝛼] }
 
 
 
 
 

 
 
 
 
 

𝛼=�̂�,𝜆=�̂�

   (2.18) 

and 
 

𝛼𝐿𝐵 =

{
  
 

  
 𝛼 +

(
𝑎−1

𝛼
−𝑏)

𝑚

𝛼2
+ln2(1+𝜆𝑥𝑚)(1+𝜆𝑥𝑚)

𝛼
 +

2𝑚

𝛼2
−ln3(1+𝜆𝑥𝑚)(1+𝜆𝑥𝑚)

𝛼

2[
𝑚

𝛼2
+ln2(1+𝜆𝑥𝑚)(1+𝜆𝑥𝑚)

𝛼]
2

+ 
−𝛼(𝛼−1)𝑥𝑚

2 (1+𝜆𝑥𝑚)
𝛼−2[

1
(𝛼−1)

+
1

𝛼
+ln(1+𝜆𝑥𝑚)]−∑

𝑥𝑖
2

(1+𝜆𝑥𝑖)
2

𝑚
𝑖=1

2[
𝑚

𝜆2
+𝛼(𝛼−1)𝑥𝑚

2 (1+𝜆𝑥𝑚)
𝛼−2+(𝛼−1)∑

𝑥𝑖
2

(1+𝜆𝑥𝑖)
2

𝑚
𝑖=1 ][

𝑚

𝛼2
+ln2(1+𝜆𝑥𝑚)(1+𝜆𝑥𝑚)

𝛼]
}
  
 

  
 

𝛼=�̂�,𝜆=�̂�

  
(2.19) 

 

where �̂� and �̂� are MLEs of α and 𝜆, respectively. 

 

3. THE PREDICTION 
 

 In this section, we study the classical and Bayesian predictions of unknown future 

record values based on a sample of observed record values from NH distribution.  

 

3.1 Non-Bayesian Prediction 

 Let 𝑋𝑈(1) = 𝑥1, 𝑋𝑈(2) = 𝑥2, … , 𝑋𝑈(𝑚) = 𝑥𝑚 are the first m observed upper record 

values taking from 𝑁𝐻(𝛼, 𝜆) distribution, where 𝛼 and λ are unknown parameters. Based 

on this sample of the record values, we intend to predict the future 𝑠𝑡ℎ upper record value 

𝑋𝑈(𝑠), 𝑚 < 𝑠. The joint predictive likelihood function of 𝑋𝑈(𝑠) = 𝑥𝑠, is given by Basak and 

Balakrishnan (2003) as follows 
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𝐿(𝑥𝑠; 𝛼, 𝜆, 𝑥) =
[𝑙𝑛 �̅�(𝑥𝑚; 𝛼, 𝜆) − 𝑙𝑛 �̅�(𝑥𝑠; 𝛼, 𝜆)]

𝑠−𝑚−1

𝛤(𝑠 − 𝑚)
 

∏
𝑓(𝑥𝑖; 𝛼, 𝜆)

�̅�(𝑥𝑖 ; 𝛼, 𝜆)

𝑚

𝑖=1
𝑓(𝑥𝑠; 𝛼, 𝜆) 

 

 

(3.1) 

 

 Then, the predictive likelihood function for the 𝑁𝐻(𝛼, 𝜆) distribution is 
 

𝐿(𝑥𝑠; 𝛼, 𝜆, 𝑥) ∝ (𝛼𝜆)
𝑚+1(1 + 𝜆𝑥𝑠)

𝛼−1𝑒𝑥𝑝{1 − (1 + 𝜆𝑥𝑚)
𝛼}

× [(1 + 𝜆𝑥𝑠)
𝛼 − (1 + 𝜆𝑥𝑚)

𝛼]𝑠−𝑚−1

×∏ (1 + 𝜆𝑥𝑖)
𝛼−1

𝑚

𝑖=1
 

 

 

(3.2) 

 

 Taking the natural logarithm of the predictive likelihood function (3.2) we get 
 

𝑙𝑛𝐿(𝑥𝑠; 𝛼, 𝜆, 𝑥) = (𝑚 + 1) 𝑙𝑛(𝛼𝜆) + (𝛼 − 1) 𝑙𝑛(1 + 𝜆𝑥𝑠)
− (1 + 𝜆𝑥𝑚)

𝛼

+ (𝑠 − 𝑚 − 1) 𝑙𝑛[(1 + 𝜆𝑥𝑠)
𝛼 − (1 + 𝜆𝑥𝑚)

𝛼] + 1

+ (𝛼 − 1)∑𝑙𝑛(1 + 𝜆𝑥𝑖)

𝑚

𝑖=1

 

 

 

(3.3) 

 

 Differentiating the equation (3.3) with respect to 𝜆 and 𝑥𝑠, and by equating to zero, we 

obtain the following likelihood equations  
 

𝑚 + 1

𝛼
+ 𝑙𝑛(1 + 𝜆𝑥𝑠) − 𝑙𝑛(1 + 𝜆𝑥𝑠) (1 + 𝜆𝑥𝑠)

𝛼 +∑𝑙𝑛(1 + 𝜆𝑥𝑖)

𝑚

𝑖=1

+ (𝑠 − 𝑚 − 1)
𝑙𝑛(1 + 𝜆𝑥𝑠) (1 + 𝜆𝑥𝑠)

𝛼 − 𝑙𝑛(1 + 𝜆𝑥𝑚) (1 + 𝜆𝑥𝑚)
𝛼

(1 + 𝜆𝑥𝑠)
𝛼 − (1 + 𝜆𝑥𝑚)

𝛼

= 0 

 

 

(3.4) 

 

𝑚 + 1

𝜆
+
(𝛼 − 1)𝑥𝑠
(1 + 𝜆𝑥𝑠)

− 𝛼𝑥𝑠(1 + 𝜆𝑥𝑠)
𝛼−1 +∑

(𝛼 − 1)𝑥𝑖
(1 + 𝜆𝑥𝑖)

𝑚

𝑖=1

+ (𝑠 − 𝑚

− 1)
𝛼𝑥𝑠(1 + 𝜆𝑥𝑠)

𝛼−1 − 𝛼𝑥𝑚(1 + 𝜆𝑥𝑚)
𝛼−1

(1 + 𝜆𝑥𝑠)
𝛼 − (1 + 𝜆𝑥𝑚)

𝛼
= 0 

 

 

 

 

(3.5) 

 

(𝛼 − 1)𝜆

(1 + 𝜆𝑥𝑠)
− 𝛼𝜆(1 + 𝜆𝑥𝑠)

𝛼−1 +
(𝑠 − 𝑚 − 1)𝛼𝜆(1 + 𝜆𝑥𝑠)

𝛼−1

(1 + 𝜆𝑥𝑠)
𝛼 − (1 + 𝜆𝑥𝑚)

𝛼
= 0 (3.6) 

 

 The three likelihood equations (3.4), (3.5) and (3.6) can be solved simultaneously using 

numerical solution to yield the predictive maximum likelihood estimators (PMLE) �̂�∗ and 

�̂�∗ of the parameters α and 𝜆 respectively, and MLP �̂�𝑠 of the 𝑠𝑡ℎ upper record value.  

 

3.2 Highest Conditional Prediction Interval 

 To make prediction interval for the 𝑠𝑡ℎ upper record value x𝑠, where 1 ≤ m < 𝑠. 
Arnold et al. (1998) presented the conditional pdf of 𝑋𝑈(𝑠) given 𝑋𝑈(𝑚) as follows 
 

𝑓(𝑥𝑠|𝑥𝑚; 𝛼, 𝜆)  



Mahmoud A. Selim 83 

=
[ln �̅�(𝑥𝑚; 𝛼, 𝜆) − ln �̅�(𝑥𝑠; 𝛼, 𝜆)]

𝑠−𝑚−1

Γ(𝑠 − 𝑚)

𝑓(𝑥𝑠; 𝛼, 𝜆)

�̅�(𝑥𝑚; 𝛼, 𝜆)
, 𝑥𝑚 < 𝑥𝑠 < ∞ 

(3.7) 

 

 For NH(α, λ) distribution with cdf and pdf defined in (1.1) and (1.2), the conditional 

pdf of XU(s) given XU(m) can be approximated by replacing the unknown parameters α and 

λ by their maximum likelihood estimates α̂ and λ̂ to become 
 

𝑓(𝑥𝑠|𝑥𝑚; 𝛼, 𝜆) =
�̂��̂� (1 + �̂�𝑥𝑠)

�̂�−1
𝑒𝑥𝑝 {−(1 + �̂�𝑥𝑠)

�̂�
}

𝛤(𝑠 − 𝑚)𝑒𝑥𝑝 {−(1 + �̂�𝑥𝑚)
�̂�
}

[(1 + �̂�𝑥𝑠)
�̂�

− (1 + �̂�𝑥𝑚)
�̂�
]
𝑠−𝑚−1

 

 

 

 

(3.8) 

 

Then, the 100(1 − 𝜏)% highest conditional density (HCD) prediction limits for 𝑋𝑈(𝑠) are 

given by 
 

𝐿𝐻𝐶𝐷 = (1 + 𝜐1)𝑥𝑚  𝑎𝑛𝑑 𝑈𝐻𝐶𝐷 = (1 + 𝜐2)𝑥𝑚 (3.9) 
 

where 𝜐1and 𝜐2 are the simultaneous solution of the following equations: 
 

∫
�̂��̂� (1 + �̂�𝑥𝑠)

�̂�−1
𝑒𝑥𝑝 {−(1 + �̂�𝑥𝑠)

�̂�
}

𝛤(𝑛 − 𝑚)𝑒𝑥𝑝 {−(1 + �̂�𝑥𝑚)
�̂�
}

(1+𝜐2)𝑥𝑚

(1+𝜐1)𝑥𝑚

 

[(1 + �̂�𝑥𝑠)
�̂�
− (1 + �̂�𝑥𝑚)

�̂�
]
𝑠−𝑚−1

𝑑𝑥𝑠 = 1 − 𝜏 

 

 

 

(3.10) 

and  

𝑓((1 + 𝜐1)𝑥𝑚|𝑥𝑚) = 𝑓((1 + 𝜐2)𝑥𝑚|𝑥𝑚) (3.11) 
 

we can simplify the eq. (3.11) as follows 
 

[
1 + �̂�(1 + 𝜐1)𝑥𝑚

1 + �̂�(1 + 𝜐2)𝑥𝑚
]

𝛼−1

[
(1 + �̂�(1 + 𝜐1)𝑥𝑚)

�̂�
−(1 + �̂�𝑥𝑚)

�̂�

(1 + �̂�(1 + 𝜐2)𝑥𝑚)
�̂�
−(1 + �̂�𝑥𝑚)

�̂�
]

𝑠−𝑚−1

× [
𝑒−[1+�̂�(1+𝜐1)𝑥𝑚]

�̂�

𝑒−[1+�̂�(1+𝜐2)𝑥𝑚]
�̂�
] = 1 

 

 

 

(3.12) 

 

 Using the numerical solution of the equations (3.10) and (3.12) yield the values 𝜐1and 

𝜐2, and then the prediction limits (𝐿𝐻𝐶𝐷 , 𝑈𝐻𝐶𝐷) are obtained from equations in (3.9).  

 

3.3 Bayesian prediction method 

 The Bayesian predictive density function of XU(s) for given the past (m) records, is 
 

𝑞(𝑥𝑠|𝑥) = ∫𝑓(𝑥𝑠|𝑥𝑚; 𝜃)𝜋(𝜃|𝑥)𝑑𝜃

𝜃

 (3.13) 

 

where 𝑓(𝑥𝑠|𝑥𝑚; 𝜃) is the conditional density function as provided in (3.7), and 𝜋(𝜃|𝑥) the 

posterior density function. Thus, the predictive density function of 𝑥𝑠 given the observed 

past (m) records 𝑥 for 𝑁𝐻(𝛼, 𝜆) distribution is 
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𝑞(𝑥𝑠|𝑥) = ∫∫
𝜆𝑐+𝑚𝛼𝑎+𝑚(1 + 𝜆𝑥𝑠)

𝛼−1

𝑗0𝛤(𝑠 − 𝑚)
𝑒−(𝑏𝛼+𝑑𝜆+(1+𝜆𝑥𝑠)

𝛼)

𝜆

[(1

𝛼

+ 𝜆𝑥𝑠)
𝛼

− (1 + 𝜆𝑥𝑚)
𝛼]𝑠−𝑚−1∏ (1 + 𝜆𝑥𝑖)

𝛼−1
𝑚

𝑖=1
𝑑𝛼𝑑𝜆 

 

 

(3.14) 

 

 The Bayes point prediction of the sth upper record value based on the squared error 

loss function is given by 
 

�̂�𝑠 = 𝐸(𝑥𝑠|𝑥)

= ∫ ∫ ∫
𝜆𝑐+𝑚𝛼𝑎+𝑚𝑥𝑠(1 + 𝜆𝑥𝑠)

𝛼−1

𝐾𝛤(𝑠 − 𝑚)
𝑒−(𝑏𝛼+𝑑𝜆+(1+𝜆𝑥𝑠)

𝛼)

∞

0

∞

0

∞

𝑥𝑚

 

[(1 + 𝜆𝑥𝑠)
𝛼 − (1 + 𝜆𝑥𝑚)

𝛼]𝑠−𝑚−1∏ (1 + 𝜆𝑥𝑖)
𝛼−1

𝑚

𝑖=1
𝑑𝛼𝑑𝜆𝑑𝑥𝑠 

 

 

 

(3.15) 

 

 To make a prediction interval for 𝑋𝑈(𝑠)based on upper record values, we need to derive 

Bayesian prediction bounds for 𝑋𝑈(𝑠) by evaluating 𝑃(𝑋𝑈(𝑠) ≥ 𝛿|𝑥), where 𝛿 is a positive 

value, as follows 
 

𝑃(𝑋𝑈(𝑠) ≥ 𝛿|𝑥) = ∫ 𝑞(𝑥𝑠|𝑥)𝑑𝑥𝑠

∞

𝛿

 (3.16) 

 

 The Bayesian predictive bounds of a two-sided interval with cover τ, for the future 

upper record value XU(s), is such that 𝑃[𝐿𝐵 < 𝑋𝑈(𝑠) < 𝑈𝐵] = 𝜏, where LB and UB are the 

lower and upper Bayesian predictive bounds, which can be obtained by solving the 

following two equations: 
 

𝑃(𝑋𝑈(𝑠) > 𝐿𝐵|𝑥) =
(1 + 𝜏)

2
 (3.17) 

and  

𝑃(𝑋𝑈(𝑠) > 𝑈𝐵|𝑥) =
(1 − 𝜏)

2
 (3.18) 

 

where 𝑃(𝑋𝑈(𝑠) > 𝐿𝐵|𝑥) and 𝑃(𝑋𝑈(𝑠) > 𝑈𝐵|𝑥) are given by (3.16) after replacing δ by 𝐿𝐵 

and 𝑈𝐵, respectively. It is not possible to obtain the solutions analytically. Therefore, the 

numerical integration procedures are required to solve the above two equations to obtain 

𝐿𝐵 and 𝑈𝐵. 

 

4. APPLICATION TO REAL DATA 
 

 To illustrate the practical usefulness of the proposed procedures in this paper, we 

consider the following real data set which represent the total annual rainfall (in inches) 

during the month of January from 1880 to 1916 recorded at Los Angeles Civic Center (see 

the website of Los Angeles Almanac: www.laalmanac.com/weather/we08aa.htm). These 

data are, 1.33, 1.43, 1.01, 1.62, 3.15, 1.05, 7.72, 0.2, 6.03, 0.25, 7.83, 0.25, 0.88, 6.29, 0.94, 

5.84, 3.23, 3.7, 1.26, 2.64, 1.17, 2.49, 1.62, 2.1, 0.14, 2.57, 3.85, 7.02, 5.04, 7.27, 1.53, 6.7, 

0.07, 2.01, 10.35, 5.42, 13.3. 
 

http://www.laalmanac.com/weather/we08aa.htm
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 To check the validity of NH model to fit this data, the Kolmogorov-Smirnov (K-S) 

goodness of fit test is used based on MLEs (α̂ = 1.233 and �̂� = 0.217). The result of 

Kolmogorov-Smirnov test is K − S = 0.0977 with p − value = 0.872. Thus, the NH 

model provides a good fit to this data. This can be also concluded through the straight line 

pattern of Quantile-Quantile (Q-Q) plot of MLEs in Fig. 1. Now, the following eight upper 

record values are extracted from the previous data set: 1.33, 1.43, 1.62, 3.15, 7.72, 7.83, 

10.35, 13.3. 
 

 In order to estimate the unknown parameters α and λ, the first six records (m=6) are 

considered as the observed upper record values, while the two remains record values will 

be predictable via ML and Bayes methods. Using the previous six upper record values, the 

ML estimates of α and θ are α̂ML = 0.875 and λ̂ML = 1.052. The Lindley approximation 

of the Bayes estimates of α and λ under the SE loss function for the hyper-parameters (a =

1, b = 7, c = 3, d = 1) are α̂BS = 0.901 and λ̂BS = 0.255. To assess the performance of 

these estimators, the empirical and fitted cdf is plotted using maximum likelihood and 

Bayes estimates in Figure 2. These plots have shown that the Bayes estimators provide a 

better fit than the maximum likelihood estimators. 
 

 In the previous upper record sample, only the first six record values are considered as 

observed records and the last two records as unseen. Then the first six upper record values 

are used to predict the future 8th upper record value of rainfall. The maximum likelihood 

point prediction for the 8th upper record value is (8.739) and the highest conditional 

interval with 95% confidence level is (7.899, 11.287). The Bayesian point prediction for 

the 8th upper record value is (12.182) and the 95% prediction interval is (12.587, 13.338). 
 

 It is clear that the Bayesian predictions of the 8th record are much better than both 

maximum likelihood and highest conditional interval predictions. Also, it is notable that 

the 95% Bayesian prediction interval for the 8th upper record contains the true value of the 

8th upper record. 

 

 
Fig. 1: Quantile-Quantile(Q-Q) Plot for Rainfall Data  

using MLEs are �̂� = 𝟏. 𝟐𝟑𝟑 and �̂� =  𝟎. 𝟐𝟏𝟕. 
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Fig. 2: Empirical and Fitted cdf for Rainfall Data using MLEs (Upper Panel); 

Empirical and Fitted cdf for Rainfall Data using Bayes Estimates (Bottom Panel). 

 

5. NUMERICAL EXAMPLE 
 

 The discussed procedures in this paper were implemented using the MathCAD  

(2001) program. The simulation data from NH(α, λ) distribution for each combination  

of α = 0.5, 1, 1.5 and λ = 0.5, 1.5 are generated using the transformation  

𝑥 =
(1−𝑙𝑛 (1−𝑢))

1 𝛼⁄
−1

𝜆
, 0 ≤ 𝑢 ≤ 1, where 𝑢 is uniform random variable. Subsequently,  

the first 12𝑡ℎ upper record values are listed in Table 1. Finally, the percentage errors (PE) 

are computed to assess the performance of the estimators by formula,  

𝐸𝑃 =
|𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑣𝑎𝑙𝑢𝑒−𝑒𝑥𝑎𝑐𝑡 𝑣𝑎𝑙𝑢𝑒|

|𝑒𝑥𝑎𝑐𝑡 𝑣𝑎𝑙𝑢𝑒|
100%.  
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 The Bayesian estimation and prediction are obtained under the squared error (SE) loss 

function using informative and non-informative priors, when (𝑎, 𝑏, 𝑐, 𝑑 > 0) and ( 𝑎 =
𝑏 = 𝑐 = 𝑑 = 0.0001), respectively. The results of the ML and Bayes estimates for the 

parameters α and λ along with the corresponding percentage errors (PE) are shown in 

Tables 2 and 3. Also, the results of the Bayesian and non-Bayesian predictions for the 

future upper record value both point and interval predictions along the corresponding 

percentage errors are shown in Tables 4 and 5.  

 

6. RESULTS AND DISCUSSION  
 

 From Tables 2 and 3 we observed that; while the PE of the Bayes estimates with non-

informative priors for the shape parameter α are smaller than PE of maximum likelihood 

estimates, the PE of maximum likelihood estimates for the scale parameter λ are smaller 

than PE of Bayes estimates with non-informative prior. However, the PE of Bayes 

estimates under informative prior for both parameters are smaller compared to the others. 

Moreover, the performances of all estimators are improved when the sample size increases. 

As may be seen from Tables 4 and 5 that, the Bayes point prediction for the future upper 

record value under informative as well as non-informative have smaller percentage error 

than that for maximum likelihood predicted values. The width of the Bayesian prediction 

interval is shorter as compared to highest conditional prediction interval. Also, according 

to the percentage errors of predicted values, the performances of all predictors are 

improved when the sample size increases. Lastly, the Bayesian method to both of 

estimating the parameters and prediction of future record values are superior to maximum 

likelihood method for NH distribution. More work is needed in this direction. 

 

Table 1 

Samples of Upper Record Values for Different Parameter Values 

𝜆 𝛼 𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝑦6 𝑦7 𝑦8 𝑦9 𝑦10 𝑦11 𝑦12 

0.5 

0.5 5.227 12.268 24.633 35.497 48.677 58.365 85.999 105.747 149.696 180.206 241.282 264.31 

1 0.964 2.541 3.212 7.451 10.684 11.273 13.383 14.803 16.893 18.891 21.573 22.159 

1.5 0.678 1.105 1.155 3.224 4.009 4.533 4.968 6.125 6.392 6.956 7.044 7.537 

5.1 

0.5 0.797 2.77 5.334 25.173 26.145 28.697 38.774 46.389 62.658 77.075 91.951 96.607 

1 0.45 1.061 1.370 1.587 1.797 2.027 2.975 3.338 3.758 4.307 4.658 5.233 

1.5 0.244 0.523 0.705 1.136 1.582 1.782 2.079 2.173 2.451 2.677 2.972 3.196 
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Table 2 

ML and Bayes Estimates for α and λ and the Corresponding Percentage Errors (in 

the Parentheses) when 𝛌 = 𝟎. 𝟓, and Hyper Parameters (𝒂 = 𝟐, 𝒃 = 𝟒, 𝒄 = 𝟐, 𝒅 = 𝟓) 

𝛂 M 
MLEs Non-informative Bayes  Informative Bayes 

�̂� �̂� �̂�𝐋𝐁 �̂�𝐋𝐁 �̂�𝐋𝐁 �̂�𝐋𝐁 

0.5 

8 
0.739 

(47.866%) 
0.175 

(65.057%) 
0.709 

(41.751%) 
0.161 

(67.856) 
0.695 

(38.991%) 
0.206 

(58.778%) 

9 
0.624 

(24.819%) 
0.258 

(48.398%) 
0.605 

(20.91%) 
0.243 

(51.489%) 
0.6 

(19.901%) 
0.303 

(39.464%) 

10 
0.615 

(22.957%) 
0.266 

(46.794%) 
0.598 

(19.662%) 
0.252 

(49.636%) 
0.594 

(18.883%) 
0.308 

(38.405%) 

1 

8 
1.166 

(16.575%) 
0.377 

(24.648%) 
1.106 

(10.569%) 
0.343 

(31.462%) 
1.045 

(4.521%) 
0.361 

(27.707%) 

9 
1.113 

(11.279%) 
0.409 

(18.159%) 
1.064 

(6.442%) 
0.376 

(24.733%) 
1.02 

(2.038%) 
0.39 

(21.902%) 

10 
1.093 

(9.327%) 
0.421 

(15.729%) 
1.052 

(5.213%) 
0.391 

(21.817%) 
1.017 

(1.667%) 
0.403 

(19.494%) 

1.5 

8 
1.128 

(24.784%) 
0.981 

(96.299%) 
1.071 

(28.61%) 
0.893 

(78.546%) 
1.141 

(329.22%) 
0.591 

(18.293%) 

9 
1.39 

(7.32%) 
0.662 

(32.446%) 
1.325 

(11.659%) 
0.610 

(21.916%) 
1.2.2 

(39122%) 
0.548 

(9.570%) 

10 
1.421 

(5.263%) 
0.632 

(26.432%) 
1.363 

(9.157%) 
0.587(17.4

52%) 
1.434 

(790.3%) 
0.542 

(8.414%) 
 

Table 3 

ML and Bayes estimates for α and λ and the Corresponding Percentage Errors (in 

the Parentheses) when 𝛌 = 𝟏. 𝟓, and Hyper Parameters (𝒂 = 𝟐, 𝒃 = 𝟒, 𝒄 = 𝟑, 𝒅 = 𝟏) 

𝛂 M 
MLEs Non-informative Bayes  Informative Bayes 

�̂� �̂� �̂�𝐋𝐁 �̂�𝐋𝐁 �̂�𝐋𝐁 �̂�𝐋𝐁 

0.5 

8 
0.596 

(19.166%) 
0.852 

(43.216%) 
0.576 

(15.111%) 
0.798 

(46.79%) 
0.571 

(14.235%) 
1.32 

(12.006%) 

9 
0.545 

(8.924%) 
1.089 

(27.367%) 
0.53 

(6.028%) 
1.04 

(30.685%) 
0.529 

(5.718%) 
1.671 

(11.369%) 

10 
0.536 

(7.261%) 
1.132 

(24.545%) 
0.524 

(4.833%) 
1.087 

(27.554%) 
0.523 

(4.622%) 
1.69 

(12.672%) 

1 

8 
1.463 

(46.296%) 
1.049 

(30.05%) 
1.383 

(38.253%) 
0.955 

(36.302%) 
1.274 

(27.37%) 
1.111 

(25.948%) 

9 
1.388 

(38.767%) 
1.136 

(24.287%) 
1.323 

(32.30%) 
1.045 

(30.301%) 
1.244 

(24.397%) 
1.196 

(20.289%) 

10 
1.242 

(24.219%) 
1.371 

(8.592%) 
1.193 

(19.332%) 
1.273 

(15.165%) 
1.143 

(14.317%) 
1.436 

(4.283%) 

1.5 

8 
2.017 

(34.435%) 
0.905 

(39.641%) 
1.897 

(26.46%) 
0.827 

(44.844%) 
1.658 

|(10.512%) 
0.931 

(37.917%) 

9 
1.68 

(11.987%) 
1.197 

(20.179%) 
1.597 

(6.491%) 
1.104 

(26.382%) 
1.46. 

(2.051%) 
1.227 

(18.174%) 

10 
1.634 

(8.908%) 
1.246 

(16.914%) 
1.564 

(4.273%) 
1.159 

(22.702%) 
1.463 

(2.483%) 
1.273 

(15.114%) 
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Table 4 

The Bayesian and Non-Bayesian Predictions for the Future sth Upper Record Value 

and the Corresponding Percentage Errors (in the Parentheses), when 𝛌 = 𝟎. 𝟓 

𝛂 m, s 
Non-Bayesian Predictions Non-Informative Bayes Informative Bayes 

�̂�𝐬 𝐋𝐇𝐂𝐃, 𝐔𝐇𝐂𝐃 �̂̃�𝐬 𝐋𝐁, 𝐔𝐁 �̂̃�𝐬 𝐋𝐁, 𝐔𝐁 

0.5 

8,10 
117.989 
(34.525) 

105.747, 
192.094 

1449431 
(139.24) 

133.744, 
137.378 

177911 
(129.3) 

139.693, 
143.921 

9,11 
168.641 
(30.106) 

149.773, 
214.724 

200.512 
(16.897) 

191.21, 
196.352 

204.21 
(15.39) 

197.6, 
203.361 

10,12 
201.723 
(23.68) 

181.156, 
259.374 

229.726 
(13.085) 

163.02, 
228.833 

230.29 
(12.87) 

162.34, 
230.845 

1 

8, 10 
15.867 

(16.009) 
14.803, 
22.458 

20.512 
(8.581) 

13.628, 
18.286 

20.223 
(7.051) 

13.628, 
18.286 

9, 11 
18.118 

(16.015) 
16.893, 
24.972 

20.783 
(3.662) 

15.692, 
20.378 

22.231 
(3.050) 

15.552, 
20.821 

10, 12 
20.205 
(8.818) 

18.891, 
27.15 

22.825 
(3.006) 

17.678, 
22.351 

22.637 
(2.157) 

17.544, 
22.751 

1.5 

8,10 
6.614  

(4.924) 
6.125,  
9.378 

7.842 
(12.739) 

5.661, 
7.457 

7.428 
(6.786) 

5.739, 
7.171 

9,11 
6.784  

(3.687) 
6.392,  
8.942 

7.878 
(11.838) 

5.974, 
7.559 

7.561 
(7.337) 

6.036, 
7.34 

10,12 
7.353  

(2.446) 
6.956,  
9.411 

8.359 
(10.907) 

6.549, 
8.072 

8.087 
(7.295) 

6.605, 
7.88 

 

Table 5 

The Bayesian and Non-Bayesian Predictions for the Future sth Upper Record Value 

and the Corresponding Percentage Errors (in the Parentheses) when 𝛌 = 𝟏. 𝟓 

𝛂 m, s 
Non-Bayesian Predictions Non-Informative Bayes Informative Bayes 

�̂�𝐬 𝐋𝐇𝐂𝐃, 𝐔𝐇𝐂𝐃 �̂̃�𝐬 𝐋𝐁, 𝐔𝐁 �̂̃�𝐬 𝐋𝐁, 𝐔𝐁 

0.5 

8, 10 
52.485  

(31.904) 
46.28,  
67.08 

64.443 
(16.39) 

59.054, 
60.662 

67.801 
(12.032) 

62.473, 
64.547 

9,11 
71.303 

(22.455) 
63.44,  
89.11 

81.324 
(11.56) 

78.170, 
80.143 

82.362 
(10.429) 

80.918, 
83.286 

10,12 
87.213 
(9.724) 

78.04,  
110.36 

92.06 
(4.707) 

93.303, 
95.396 

90.597 
(6.221) 

95.166, 
97.586 

1 

8,10 
3.574 

(17.021) 
3.338,  
4.773 

4.200 
(2.478) 

3.937, 
4.005 

4.208 
(2.292) 

3.942, 
4.011 

9,11 
4.010 

(13.921) 
3.758,  
5.251 

4.590 
(1.469) 

4.346, 
4.412 

4.597 
(1.299) 

4.352, 
4.418 

10, 12 
4.595 

(12.192) 
4.307,  
5.272 

5.155 
(1.491) 

4.914, 
4.981 

5.163 
(1.34) 

5.030, 
5.112 

1.5 

8,10 
2.286 

(17.676) 
2.173,  
2.941 

2.754 
(2.876) 

2.020, 
2.594 

2.707 
(1.124) 

2.016, 
2.602 

9,11 
2.588 

(12.922) 
2.451,  
3.307 

2.957 
(0.516) 

2.299, 
2.862 

2.965 
(0.226) 

2.296, 
2.870 

10, 12 
2.820 

(11.768) 
2.677,  
3.532 

3.157 
(1.213) 

2.529, 
3.071 

3.165 
(0.984) 

2.527, 
3.077 
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