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ABSTRACT 
 

 This study deals with estimating information about failuretimes of items under  

step-stress partially accelerated life tests for competing risk based on adaptive  

type-I progressive hybrid censoring criteria. The life data of the units under test is 

assumed to follow the Weibull distribution. The point and interval maximum likelihood 

estimations are obtained for distribution parameters and tampering coefficient. The 

performance of the resulting estimators of the developed model parameters are evaluated 

and investigated by using a simulation algorithm. 
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1. INTRODUCTION 
 

 In the modern era, it is very hard to obtain information in regard to lifetime of items 

or systems with high reliability under usual operating conditions. In such problems, an 

experimental process called “accelerated life testing” (ALT) is conducted, where 

products are tested under higher stress than normal to find and induce their failure 

information. Commonly used stress patterns are step-stress and constant-stress (Nelson 

1990). Thus, ALTs or partially accelerated life tests (PALTs) are conducted to minimise 

the lives of systems or items and to reduce the experimental time and the cost incurred in 

the experiment. Using step-stress PALT (SSPALT), a product or system is first subjected 

to normal (use) conditions for a pre-specified duration of time, and if it survives then it is 

put into service at accelerated condition until the termination time of the experiment. 
 

 Although PALT procedure can be conducted to shorten the test time of an experiment 

but it still takes a long time to wait for all the units to get failed. Therefore, censoring 

schemes has been an important tool to consider. (Commonly used censoring schemes are 

Type-I and Type-II). The most common in use are Type-I and Type-II censoring schemes 

(see, e.g., Balakrishnan and Ng (2006)). Suppose there are n  units under particular 

experimental considerations. Under the traditional Type-I censoring plan, the specimens 

are tested up to a pre-fixed time point 0T . On the other hand, the Type-II censoring plan 

needs the process to continue until the pre-specified number of failures m n  are 
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obtained. The mixture of these two censoring schemes is called as hybrid censoring 

scheme. Many of the researchers have used this censoring scheme as a tool for their 

research (see, e.g., Gupta and Kundu (1988), Childs et al. (2003), Kundu (2007) and  

N. Balakrishnan and Debasis Kundu (2013)). One of the major limitations of this 

censoring scheme is the lack of flexibility to remove some units from the experiment at 

any point other than the termination point. To overcome this drawback, a more general 

censoring scheme called progressive Type-I censoring scheme or progressively Type-I 

hybrid censoring scheme are introduced. In order to overcome this limitation and for the 

further efficiency of the estimate of the parameters, (Ng et al., 2009) introduced another 

censoring scheme called adaptive type-II censoring scheme. In this censoring scheme the 

experimenter prefix the effective sample size m  under the given corresponding 

progressive censoring scheme, however at each failure time, the items progressively 

taken off from the experiment may change in number. 
 

 Recently, Lin and Huang (2012), presented an advanced hybrid censoring scheme 

called an adaptive type-I progressive hybrid censoring scheme (AT-I PHCS). Here,  

n  identical specimens are placed under an experiment with the progressive censoring 

scheme  1 ,..., , 1, ;mR R m n
 
and the experiment is permanently stopped at a prefixed 

time 0T , where 'iR s  are whole numbers fixed in advance. At each failure time 

 1, , 2, ,, , ... ,m n m nt t  1 2, ,...R R  of the remaining units are randomly taken off from the 

test, respectively. When the first failure 1, ,m nt
 
occurs, randomly 1R  test items from the 

experiment are removed. Similarly, at the time when the second unit fails 2, , ,m nx  

remove 2R
 
items from the remaining ones and so on. Suppose J denote the total number 

of units that failed before or up to time T . If possible suppose the thm  failure , ,m m nt
 

occurs before time 0T  (i.e. , , 0m m nt T ), then the experiment will not be terminated but 

will go on to perceive failures without any further removals until time 0T . Finally, at time 

point T all the remaining units 1
J

J iiR n J R
    

are taken off from the test and the 

experiment automatically gets terminated. In this case, the progressive censoring design 

becomes 1 2 1, ,..., , ,...,m m JR R R R R , where 1 2 ... 0.m m JR R R    
 
On the other hand, 

if , , 0m m nt T , the process will constitute a progressive censoring scheme as 

1 2, ,..., JR R R . 
 

 A lot of literature is available on SS-PALT analysis, see Goel (1971), DeGroot and 

Goel (1979), Bhattacharyya and Soejoeti (1989), Bai and Chung (1992), Abdel-Ghani 

(1998) and Abdel-Ghaly et al. (2002a, 2002b), Abdel-Ghani (2006), Ismail (2009), and 

Ismail (2012a), etc. Also, under hybrid censoring, Ismail (2012b) constructed SSPALT 

model for estimation purposes using Weibull failure data.  
 

 For an experimenter, it is equally important to judge the effect of failure cause apart 

from shortening the test time by using SSPALT along with different censoring schemes. 

It has become essential for an experimenter to recognise the difference between different 

failure causes in order to have exact information about failures. These failure causes are 
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competing for the failure of the product. In hybrid censored life tests, Kundu and Gupta 

(2007) discussed competing risk model by assuming that the lifetimes of items under 

different causes of failure are independent exponential random variables. Competing risk 

has also been analysed by using SSPALT under progressively hybrid censoring. 

Competing risks model in SSPALT using progressively type-I hybrid censored data and 

Weibull distribution has also been discussed (Chunfang Zhang et al., 2016). 
 

 Based on the adaptive progressive hybrid censoring scheme using competing risk, few 

interesting studies have been made under ALT; for example, see Ashour and Nassar 

(2014, 2016). But there has been no previous study related to PALT in this aspect. 

Hence, this study will focus on adaptive progressively type-I hybrid censoring scheme 

using competing risk under step-stress PALT. The whole design under SSPALT using 

competing risk is discussed in section 2.  

 

2. MODEL DESCRIPTION AND TEST METHOD 
 

 In modern life testing analysis, there may be more than one causes of an experimental 

unit to get failed. These “causes” are competing for the failure of an item. In this section, 

a design is framed to estimate the parameters and tempering coefficient in SSPALT under 

adaptive type-I progressive hybrid censoring scheme assuming that the failure causes are 

independent Weibull variables.  
 

2.1 Basic Assumptions 

1. Under SSPALT, the product is first tested at a normal stress level 0S
 
and at time 

  the same is increased to 1 0 1,S S S . 

2. At each stress level, there are p  causes of a unit to get failed, denoted as

1 ,..., pX X . 

3. Under normal stress level 0S , the hazard rate function (HRF) for each failure 

cause , 1,2,... ,kX k p , is 

      11 / , 0; 0, 0k
k k k k k kh x x x

                (1) 

4. The HRF of kX  under SSPALT is given by tampered failure rate (TFR) model as 
 

  
   

   

1

2

, 0

,

k k

k

k k k

h x h x x
h

h x h x x


    

 
   

 

 

 where,  1 , 1,2,...k for all k p     , is a tempering coefficient. The 

corresponding  

 Survival function is given by 

  

    
        

1

2

exp / , 0

exp / / / , .

k

k k k

k k

k

k k k k k

S x x x

S

S x x x





  

      


 
            
  

 (2) 
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5. In presence of independent failure causes, record the latent failure time as a joint 

random variable  ,  T  , where,  1,..., pC C   and for 1,2,...,k p  

  
1,

0, .

i k
k

i k

if T X
C

if T X


 


 

 

2.2 The Testing under Type-I PHCS 

 Suppose n  items are placed under test and let 1 2, ,..., nt t t  be their corresponding 

lifetimes. Under SSPALT scheme the units are first subjected to normal stress level 0S

and then at time   the stress is increased to 1S . Let m  be the prefixed number of failure 

under both stress levels. The termination time 0T  along with removals 

 1 2, ,..., ,..., mR R R R  
is also fixed in advance. At the time of thi  failure  : : , ,i m n i it R

units are removed from the experiment and at the stress changing time  , 0R   units 

would be withdrawn from the surviving ones and so on. Suppose j  be the total number 

of failures that happen prior to time point 0T . In case the thm  failure : :m m nt
 
occurs prior 

to time 0T  (i.e. : : 0m m nt T ), the test will not stop, but will continue to perceive failures 

up to time 0T  without any further removals. Once the time 0T  is reached, all the 

remaining units 1
J

J iiR n J R
   are removed and the test will terminate automatically. 

On the other hand, if the time 0T
 
is reached before the thm  failure (i.e. : : 0m m nt T ) the 

test is terminated at the time 0T . The observed data in the SSPALT under adaptive type-I 

PHCS using competing risk is 
 

Case I: when : : 0m m nt T  

  
       0 1: : 1 1 2: : 2 2 : :, , , , , ,..., , , , , ,

u u um n m n n m n n nS t R t R t R R    
   

  

     

       
1 1: : 1, 1 2: : 2 2 1: : 1 1

: : : 1; ; 1 : : 0

, , , , ,..., , , ,

, , , , ,0 ,..., , ,0 , ,

u u u u u un m n n n n m n n n m m n m m

m m n m m m m n m j m n j j

S t R t R t R

t R t t T R

        


 

   

  
 

 

Case II: : : 0m m nt T
 

  
       0 1: : 1 1 2: : 2 2 : :, , , , , ,..., , , , , ,

u u um n m n n m n n nS t R t R t R R    
  

  
     *

1 1: : 1, 1 2: : 2 2 : : 0, , , , ,..., , ,
u u u u u un m n n n n m n n n m m n m m jS t R t R t T R R          

 
 

Case III: : : 0m m nt T  

  
       0 1: : 1 1 2: : 2 2 : :, , , , , ,..., , , , , ,

u u um n m n n m n n nS t R t R t R R    
 

  
       1 1: : 1, 1 2: : 2 2 : : 0, , , , ,..., , , , ,

u u u u u un m n n n n m n n n j m n j j jS t R t R t R T R
          
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where,
 un  are the failure numbers at normal conditions. 

 The total failure number J and finally censored number JR in SSPALT is   

  

*
: : 0

1

*
: : 0

1

*
: : 0

1

, , ,

, , ,

, , ,

m

J i m m n
i

m

J i m m n
i

J

J i m m n
i

J m R n J R if t T

J m R n m R if t T

J m R n J R if t T








     




    



    








  

 

3. ESTIMATION PROCEDURE 
 

 The MLE is used here because it is very sound and gives the estimates of the 

parameters with good statistical properties. Here, in this section, we describe the point 

and interval estimation of the tempering coefficient and parameters of Weibull model 

based on adaptive type-I progressive hybrid censoring (APHC) using competing risk 

factor. 
 

3.1. Point Estimation 
 This subsection discusses the procedure of obtaining the point ML estimates of 

parameters and tempering coefficient based on obtained data from APHC. The likelihood 

function under SSPALT using competing risk under given censoring scheme is obtained. 
 

 Let 1 2, ,..., nt t t
 
be the n  independently and identically distributed lifetimes of units 

following the Weibull distribution. The J  completely observed (ordered) lifetimes are 

denoted by 
 

  1: : : : 1: : : :... ... ...
u um n n m n n m n J m nt t t t       

        
( )  

 

 Based on the observed data and the assumptions discussed in section 2, the likelihood 

function under SSPALT using competing risk under the given censoring schemes is 

proportional to 
 

  

             1 1
1 1 1 2 2 2

1 1 1

/
u

jik i ik i

np j
RR C R C R

i i i ik k k k k k
k i i

L t S h t S t h t S t S T


  

  

    

 

  (4) 

 

 Substituting (1), (2) and (3) in the above function, we get 
 

  

    2

1

1 2
1 1

/ exp
k

k k k ik kk

p j
r r cr

k kik k k
k i

L t t A A

 
 

 

 
       

 
      (5) 

where, 

  
1 2 1 2

1 1 1

, ,
u

u

nj j

k k k ik k ik k ik
i i i n

r r r c r c r c
   

        

  

 1
1

1
u

k k

n

k i i
i

A t R R
 




     
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     2

1

1 kk k k k k

j

k i i j
i

A R t R T
    



                  
 . 

 

 Taking logarithm of the likelihood equation (5), we get 
 

       2 1 2
1 1

/ 1 k

p j

k k k k k k ik i k kk
k i

l L t q r In In r In c Int A A


 

 
            

 
   

                        (6) 
 

where, q
 
is proportionality constant. We equate the partial derivatives of equation (6) to 

zero with respect the each parameter in the parameter set Θ, as 
 

        1

1 1

1 0k k k k k

p j

u i i jk
k i

l
j n R t R T

     

 

 
            

  
    (7) 

     1 2 1 2
1

0k

j
k

k k ik i k k k k kk
ik k

rl
r In c Int A A In B B






            

  (8) 

  1 2

1
0

k

k k k

k k k

r A Al
 


   

  
         (9) 

 

where,  

  

 2 2 1 2
1

, , , and are denoted in 6 for 1,2,...,  and
p

u k k k k k
k

n j r r r A A k p


    

  
 1

1

1 .
u

k k

n

k i i i j
i

B R t Int R In
 



      

  

 2 0
1

1
u

j

k i ik j k
i n

B R C R C

 

    

  
 kk k

ik i iC In t Int In
 

       

 

 From equation (8), the maximum likelihood estimator of k , for 1,2, ,k p   can be 

obtained as 

  

 
1

1 2ˆ
kk k

k
k

A A

r

 
   

  

                 (10)

 
 

 The popular Newton-Raphson iterative algorithm is employed to find the MLE’s 

1 2
ˆ ˆ ˆ ˆ, ,..., and k   

 
by substituting equation (10) into equation (8). When the values of 

1 2
ˆ ˆ ˆ, ,..., k    are obtained, using (10), ˆ

k  
can be easily computed and hence

 ˆ ˆˆ, , , 1,2,...,k k k p      . 
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3.2 Interval Estimation 

 The approximate confidence interval of the model parameters based on the 

asymptotic distribution of the maximum likelihood estimators of the vector of unknown 

parameters  1 1 2 2
ˆ ˆ ˆ ˆˆ ˆ ˆ, , , , ,..., , .p p        

 
is derived. The variance-covariance matrix 

consisting of negative partial derivatives of equation (5) with respect to parameters is also 

constructed. For 1,2, ,k p   we have; 
 

  

2

11 2 2

uj n
I


  

 
 

 

  

      

    

2

1 2
1

1

1

1 ,

k k k k k

u

k k k k k

u

j

i i i jkk
i nk

j

i i jk
i n

I R t Int In R T InT In

R t R T

    

 

    

 

 
            

  

 
       

 





 

 

        

       

    

2
2 22

2 2 2
1

2 2

1

2 2

1

1 1

1 ,

u
k k k

k kk

u

k k k

n

k k i i i k j kkk k
ik

j

i k i i k
i n

j k kk

I r R t Int In R In In

R In In t Int In

R In In InT In T
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

 

 

  

 
           

  

 
            
 

           
  





 
 

        
2

11
1 2 1 22 2 1

,k

k k k k k k k k kk k
k k

I r A A In B B
  




             

 

 

  
        

2
22

1 22 1 2 1 2
1 ,k

k k k k kkk k

k

I r A A
  

 


        


 

 

Therefore we have the approximate 100(1-γ) % confidence intervals for ,   and    , as 
 

  /2 11 ,k Z I                   (13) 
 

    /2 2 2
ˆ ,k k k

Z I                  (14) 

 

    /2 2 1 2 1
ˆ ,k k k

Z I  
                (15) 

 

 Here /2Z  
is the  / 2 -th percentile of variate following  0,1N . 

 

4. SIMULATION STUDY 
 

 The simulation procedures to examine the performance of the ML estimators  

in respect of their confidence intervals and MSEs under different values of 
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0, , ,  and n m T
 

are performed. Before starting the test, fix the testing conditions,  

i.e., normal stress level 0S , accelerated stress level 1S , sample size n , failure  

number m, removal numbers  1 2, ,..., , ,mR R R R  competing risk number k , the  

stress changing time  , the censored time T of type-1 APHCS, the values of  

parameters and tempering coefficient (acceleration factor). The simulated observed data

 1 2 1 2 1 0, ,..., , , ,..., , ,..., ,
u u un n n m m jt t t t t t t t t T    and approximated estimates in presence 

of competing risks under SSPALT with type-I APHCS are obtained. Based on the given 

assumption, the detailed procedures are given below: 

1. For the failure time at the usual level of stress 0S , generate a progressive type-I 

censoring data       1 2
, ,...,

m
U u u u  from  0,1U  distribution with sample size 

n R
 
and the removed units  1 2, ,..., mR R R  by the simulation algorithm given 

by Balakrishnan and Sindu (1995). 

2. Use the inverse CDF method to generate the type-k ordered samples 

      1 2
, ,...,

k k mk
t t t  under competing risk and attain the observed failure time 

 : : 1 2 1min , ,...,i m n i i kt t t t  
 
and the indicator i  

of failure causes for 1 ui n  . 

3. If un m
 
or 

1

0,
un

ik
i

c



 

for any arbitrary cause of failure, restart the procedure 

from step 1 until 
1

1
un

ij
i

c


  and uk n m  , so that the failure time 1 2, ,..., ,
unt t t 

can be obtained.  

4. Now, for obtaining the failure time under accelerated stress level 1S , repeat  

the step in (1) to generate       1 2
, ,...,

um n
U u u u   


  with sample size 

1

un

u l
l

n R n R


  
 

and withdrawn numbers 
21 2, ,...,

un n mR R R  . 

5. Again, for given values of parameters we use inverse CDF method i.e. using 

   

1

1
1 1

k
k

k

k

k

t In U












   
      

    

to generate the competing risk ordered 

sample 
       1 2

, ,...,
u u

jki n k i n k
t t t

 
 and obtain the observed failure time

 : : 1 2min , ,...,i m n i i ikt t t t  and i  
for 1un i j   . The experiment is terminated 

at 0T
 
until J  failures are obtained. 
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6. For arbitrary failure cause if 
1

0
u

j

ik
i n

c
 

 , repeat the procedure in step  

(4) and make sure that 
1

1
u

j

ik
i n

c
 

  so as the failure times at accelerated stress 

level can be obtained. 

7. The MLEs are obtained as  1 1 2 2
ˆ ˆ ˆ ˆˆ ˆ ˆ, , , , ,..., , .p p          from equation (10) 

using the iterative technique. Also by using Equations (11), (12) and (13),  

we compute the asymptotic confidence intervals. 

8. Replicate the whole procedure in steps 1-7 N times and find the mean estimates, 

MSEs and interval lengths (ILs) of ˆ .  

9. For different values of  0, , ,n m T  we specify  1 1 2 22, , , , ,k        under 

following five adaptive progressive hybrid censoring plans/schemes in SSPALT: 

a) 1 2 10, ... 0, ,m mR R R R R n m        

b) 1 20, ; ... 0,mR R n m R R        

c) 1 2 11, ... 0, 1,m mR R R R R n m          

d) 1 20, 1, ... 0,mR R n m R R         

e) 1 21, ... 0,mR n m R R R         

 

Table 1 

Mean numbers of MLEs along with their MSEs and ILs when Setting 

   1 1 2 2, , , , 1.5,2,4,4,3      ,    0, , , 25,5,1.8,2.2n m T 
 

&    0, , , 40,10,1.8,2.2n m T  . 

V
al

u
es

 

 0, , ,n m T  (25, 5, 1.8, 2.2) (40, 10, 1.8, 2.2) 

Scheme (a) (b) (c) (d) (e) (a) (b) (c) (d) (e) 

  
MLEs 

MSEs 

ILs 

1.942 

0.846 

3.213 

2.112 

1.519 

4.193 

1.812 

0.671 

2.126 

2.132 

1.639 

4.117 

1.784 

0.092 

2.119 

1.835 

0.792 

3.098 

1.652 

0.679 

4.118 

1.675 

0.612 

2.039 

1.675 

0.615 

3.908 

1.672 

0.075 

1.798 

1  

MLEs 

MSEs 

ILs 

2.731 

0.671 

2.989 

2.674 

0.697 

2.896 

2.998 

0.903 

2.975 

2.677 

0.691 

4.767 

2.563 

0.467 

2.961 

2.367 

0.645 

2.664 

2.354 

0.602 

2.612 

2.654 

0.719 

3.109 

2.315 

0.587 

5.234 

2.490 

0.361 

2.478 

1  

MLEs 

MSEs 

ILs 

3.127 

0.891 

4.886 

3.263 

0.267 

4.014 

3.212 

0.511 

4.322 

3.133 

0.897 

4.665 

3.953 

0.192 

3.551 

3.564 

0.673 

4.234 

3.342 

0.219 

4.167 

3.712 

0.510 

4.661 

3.198 

0.612 

4.167 

4.515 

0.169 

2.781 

2  

MLEs 

MSEs 

ILs 

3.244 

0.829 

5.087 

3.415 

0.899 

4.789 

3.122 

0.913 

4.344 

3.419 

0.998 

5.122 

3.501 

0.752 

4.251 

3.812 

0.776 

5.008 

3.776 

0.791 

3.910 

4.017 

0.817 

3.761 

3.998 

0.917 

4.110 

3.798 

0.681 

3.885 

2  

MLEs 

MSEs 

ILs 

3.011 

0.139 

4.532 

2.567 

0.409 

3.912 

2.051 

0.500 

4.766 

2.452 

0.699 

4.988 

3.150 

0.172 

3.976 

3.361 

0.322 

4.010 

3.297 

0.211 

3.889 

3.122 

0.202 

4.673 

3.197 

0.201 

4.329 

3.151 

0.118 

2.212 
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Table 2 

Mean numbers of MLEs along with their MSEs and ILs when Setting

   1 1 2 2, , , , 1.5,2,4,4,3      ,    0, , , 70, 15, 1.8, 2.6n m T 
 

&    0, , , 100, 25, 2, 3n m T 
 

V
al

u
es

 

 , , ,n m T
 

(70, 15, 1.8, 2.6) (100, 25, 2.0, 3.0) 

Scheme (a) (b) (c) (d) (e) (a) (b) (c) (d) (e) 

  
MLEs 

MSEs 

ILs 

1.661 

0.446 

1.778 

1.355 

0.547 

1.875 

1.786 

0.762 

2.063 

1.746 

0.766 

2.199 

1.567 

0.113 

1.347 

1.617 

0.398 

1.512 

1.417 

0.488 

1.677 

1.592 

0.600 

1.791 

1.677 

0.667 

1.765 

1.553 

0.108 

1.114 

1  

MLEs 

MSEs 

ILs 

2.454 

0.519 

1.578 

2.398 

0.476 

1.767 

2.437 

0.461 

1.796 

2.511 

0.600 

2.012 

2.167 

0.300 

1.387 

2.313 

0.277 

1.513 

2.301 

0.155 

1.600 

2.308 

0.267 

1.189 

1.799 

0.178 

1.922 

2.144 

0.645 

1.298 

1  

MLEs 

MSEs 

ILs 

4.410 

0.797 

1.956 

4.519 

0.695 

2.099 

4.378 

0.601 

2.124 

4.614 

0.886 

2.675 

4.286 

0.370 

1.456 

4.409 

0.674 

1.199 

4.336 

0.518 

1.918 

4.257 

0.549 

2.008 

4.455 

0.675 

2.304 

4.133 

0.211 

1.371 

2  

MLEs 

MSEs 

ILs 

4.447 

0.890 

1.809 

4.577 

0.900 

2.398 

4.378 

0.717 

2..002 

4.483 

0.756 

1.812 

3.876 

0.409 

1.698 

4.499 

0.808 

1.979 

4.593 

0.688 

2.213 

4.310 

0.877 

2.000 

4.334 

0.706 

1.745 

3.905 

0.365 

1.566 

2  

MLEs 

MSEs 

ILs 

3.399 

0.689 

2.100 

3.334 

0.699 

1.922 

3.564 

0.867 

2.385 

2.671 

0.555 

1.707 

3.307 

0.437 

1.517 

3.318 

0.657 

1.954 

3.311 

0.516 

2.011 

3.437 

0.676 

2.310 

2.709 

0.456 

1.600 

3.257 

0.275 

1.490 

 

 On the basis of MSE and interval lengths, the Table 1 and Table 2 provide the results 

of MLEs and perform better at censoring plan (e), when so many items are not removed 

at the stress changing time  . In Table 1, the MSEs and ILs get smaller as we increase the 

ratio (m/n). Also, the more we test the items under accelerated conditions; the MLEs are 

best fit for the model.  

 

6. CONCLUSION 
 

 The study provides the processes and simulated procedure for estimating failure time 

information under SSPALT for competing risk based on adaptive type-I hybrid 

censoring. The specimens’ lifetimes are assumed to follow a Weibull distribution. The 

ML estimates are impossible to be produced in closed form and hence the Newton-

Raphson technique as an alternative method is proposed to obtain them. Based on the 

asymptotic distribution of ML estimators, we construct and investigate the approximate 

confidence interval length of the parameters and tempering coefficient. Also, the 

performances of the resulting estimators are examined using MSEs by Monte-Carlo 

simulation procedure. From the results, it is found that the estimates are quite competent, 

especially in the case of sufficiently large sample size. In the end, as a future work, the 

same can be considered on adaptive progressive type-II hybrid censoring plan. Also, a 

Bayesian inference can be an interesting future work to do the same. 
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