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ABSTRACT 
 

 The measurement errors problem is endemic in many econometric studies, and one of 

the oldest known statistical problems. Instrumental variable (IV) method is one of the 

popular solutions adopted to deal with the mismeasured variables in statistical and 

econometric analyses. This paper proposes an efficient IV estimator to the parameters of 

the simple regression model where both variables are subject to measurement errors. The 

proposed IV is defined using simple mathematical transformation of the manifest 

independent variable (mismeasured variable). The proposed method is straightforward, 

and easy to implement. The theoretical superiority of the proposed estimator over the 

existing IV based estimators due to Wald (1940), Bartlett (1949) and Durbin (1954) is 

established by analytical comparison and geometric expositions. Simulation based 

numerical comparisons of the proposed estimator with four different existing estimators 

are also included. 
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1. INTRODUCTION 
 

 The measurement errors problem is a very old problem, and it has been considered by 

a host of authors since the late nineteenth century. This problem is seldom taken into 

fully account, although it has very serious consequences on the statistical inference. 
 

 In reality the measurement errors in data are inevitable and exist in almost all the 

applied fields.  Linnet (1993) states, “It is rare that one of the measurement methods is 

without error.”  The motivation of proposed methods in the literature of measurement 

error is to eliminate, or at least reduce implications of the measurement error on the 

estimator of parameters. The measurement error problem it is often given prominence in 

econometrics texts, for example Judge et al. (1980), Stock et al. (2003), Hill et al. (2008), 

Wooldridge (2010), but it is rarely included in statistical texts (Gillard, 2005). This 
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problem has been studied in depth by some authors such as Fuller (2006), Cheng and van 

Ness (1999), Casella and Berger (1990), Sprent (1969), Dunn (2004) and Kendall and 

Stuart (1973, Chap. 29). They concentrated on the maximum likelihood principle and 

summarize correction formulae for measurement error models based on assumptions of 

additional information. 
 

 However despite all these efforts the challenge is still looming, since Riggs et al. 

(1978) stated that no one method of estimating the true slope is the best method under all 

circumstances. Cheng and van Ness (1999) stated that some users object to the use of 

these side conditions and prefer other methods of approaching the measurement error 

model. This is common, for example, in the econometrics literature. 
 

 The alternative method which was pioneered to overcome the measurement error 

problem since 1920 is the instrumental variables approach (see Goldberger (1972) for a 

historical review). This approach provides supplementary information to make the 

parameters identifiable (cf Cheng and van Ness, 1999, p.93). This method is one of the 

popular solutions adopted to deal with the mismeasured variables in statistical and 

econometric analyses by Wald (1940), Durbin (1954) and Sargan (1958). Most recently, 

Chen et al. (2014) reviewed and investigated the existing errors-in-variables estimation 

methods and their applications in finance research. Almeida et al. (2010) have argued and 

presented an alternative instrumental method to deal with measurement error problems. 
 

 Instrumental variable (IV) technique requires defining an IV that is uncorrelated with 

the model error but highly correlated with the independent variable. Wald (1940) 

suggested to use 1  and 1  for values less than or greater than the median of the 

manifest variable, Bartlett proposed to divide the values in three equal groups and use the 

first and third groups and Durbin used the ranks of the values to define the IV. In each of 

the method there is loss of information (for not using actual values and dropping some of 

the data points) and there are different formulae to find the sum of squares error and 

hence lead to different mean sum of square error, making the analysis incomparable. 
 

 The IV method has been used for studying the natural and quasi-natural experiments 

such as Miguel et al. (2004) studied the weather shocks to identify the effect of changes 

in economic growth on civil conflict. Angrist and Krueger (2001) pointed out that 

instrumental variables have been widely used to reduce bias from omitted variables in 

estimates of causal relationships in randomized experiments such as the effect of 

schooling on earnings. They have presented a survey of the history and uses of 

instrumental variable technique. Cheng and van Ness (1999) stated that the instrumental 

variable method suits all kinds of regression with random regressors for which the 

explanatory variables are correlated with the errors. Bowden and Turkington (1981) and 

Martens (2006) introduced the details of general treatment of instrumental variables and 

their applications and limitations. 
 

 It is worth noting that the greatest drawback of IV approach is how or where to find 

valid instrumental variable, which it is not easy to obtain. Therefore, this paper proposes 

an instrumental variable which is easier to obtain in practice to estimate the parameters of 

bivariate errors-in-variables model. The proposed instrumental variable is defined using 

reflection of the observed values of the independent variable. The proposed modified 

method uses the reflection of the manifest values of the independent variable to define IV 
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estimator. The using of the reflections of the observed values of the independent variable 

in defining the IV method provides a much better estimator of the slope and intercept 

parameters. It also reduces the mean sum of squares error. The analysis of variance and 

regression inferences based on the reflections have much better statistical properties than 

any other form of the IV estimator (Saqr and Khan, 2012). 
 

 In the next section the measurement error regression model is introduced. Section 3 

covers the existing estimation methods for the measurement error model. The proposed 

modified estimator based on the reflections of the observed values of the independent 

variable is provided in Section 4. The superior properties of the modified estimator are 

discussed in Section 5. A simulation study is presented which compares the proposed 

estimator with five different existing estimators are provided in Section 6, and some 

concluding remarks are given in Section 7. 

 

2. MEASUREMENT ERROR MODELS 
 

 In the conventional notation, let j  denote the true measurement on the independent 

variable. This is also called the latent independent variable. In the presence of 

measurement error the actual observations are different from j . Let x  be the 

observable, or manifest variable of the independent variable. When the true value of the 

latent variable j  is observed, the commonly used classical simple linear regression 

model is represented by 
 

  0 1 , 1,2, , ,j j je j n         (1) 
 

where j  is the j th realisation of the latent dependent variable, j  is the fixed j th 

value of the independent variable, and je  is the equation error for 1,2, ,j n  . It is 

assumed that the equation error je  is independently distributed with constant but 

unknown variance, that is,  2~ 0,j ee N  . 

 

 If there is error in the independent variable, the actual observed value, jx , is not the 

„true‟ value of the independent variable. The observed value of the independent variable 

contains measurement error given as 

 

  
, 1,2, , ,j j jx j n      (2) 

 

where j  is the measurement error, and is assumed to be distributed as  20,N  . Note 

that, unlike j ,  jx   is a random variable which is assumed to be distributed as 

 2, .x xN    The model with the fixed j  is called the functional model, and the model 

with the random or stochastic x  is called the structural model. 
 



Mathematical reflection approach to instrumental variable estimation… 40 

 The simple regression model with measurement error in the independent variable can 

be expressed as 
 

  0 1 , 1,2, , ,j j jx v j n        (3) 
 

where 1j j jv e    . Note in equation (1) j  and je  are independent, but in  

equation (3), jx  and jv  are not independent. So the application of least squares  

method is not valid for the models with measurement error. Thus, unlike for the model in 

(1), the validity of the estimator of the slope and intercept of the model in (3) is not 

obvious. However, Fuller (2006, p. 3) assumes that ,j j   and je  are mutually 

independent for the estimation of the parameters. It also assumes that the reliability ratio, 
2 2

x xk 
     is known, where 

2
x  is the variance of the manifest variable jx , and 

2
  is 

the variance of the latent variable j . 

 

1. THE LEAST SQUARES ESTIMATOR OF PARAMETERS 
 

 The ordinary least squares (OLS) estimator of the regression parameters for the 

functional model are 
 

  

1 0 12
ˆ ˆ ˆ, and ,

S

S



  



       (4) 

where 

  

    
22

1 1

1 1
, ,

1 1

n n

j j j
j j

S S
n n

 
 

         
 

   (5) 

 

in which 
1

1 n

j
jn 

    and 
1

1 n

j
jn 

   . The estimators of slope and intercept parameters 

are well known to be the best linear unbiased estimators if there is no measurement error 

in the variables. 
 

 The sampling distribution of the estimator of the regression parameters is given by 
 

  

2

2 2
0 0 2

2
11

2 2

1

ˆ
~ , .

ˆ 1
e

n S S
N

S S

  



 

   
  

      
            

  
   

 (6) 

 

 The unbiased estimator of the error variance 
2
e  is given by 

 

  
1 2ˆ ( 2) ,e e en SSE S     
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where  
2

1

ˆ ,
n

e j j
j

SSE


   in which 0 1
ˆ ˆˆ

j j       is the estimated value of j . 

Also, 
2

e eSSE  follows a 
2  distribution with ( 2)n  degrees of freedom. 

 

 In the presence of measurement error, the x  values are observed instead of ,j  then 

the least squares method yields the estimator of the slope as 
 

  

1 0 12
ˆ ˆ ˆand .

x

x x x

x

S
x

S


      (7) 

 

 It can be easily shown that 1
ˆ

x  is a biased estimator of 1 . Also, the above estimator 

is not a consistent estimator of 1 . 
 

 Note that the regression parameters are different for the model with the manifest 

variable than the model with the latent variable. Even though the aim is to estimate and 

test 0  and 1 , in reality one may end up estimating and testing 0x  and 1x  if one 

fully relies upon x , and overlooks the presence of the measurement error. 

 

2. INSTRUMENTAL VARIABLE (IV) ESTIMATOR 
 

 In the presence of measurement error in the independent variable the IV estimator for 

the regression parameters is defined as 
 

  
1β̂ ( ) ,z x z    (8) 

 

where  0 1
ˆ ˆ ˆβ ( ,


    is the vector of estimator of the intercept and slope parameters of the 

model where 
 

  1 2 1 2

1 1 1 1 1 1
 and  

n n

x z
x x x z z z

   
    
   

 

 

in which jz 's are the values of the second row of the instrumental variable z . The 

selection of the values of jz 's require that it is highly correlated with the independent 

variable but uncorrelated with the model errors. The variance-covariance of the above 

estimator vector is given by 
 

        
1 12ˆvar .z x z z z x
 


      (9) 

 

 Obviously the value of the estimator and the variance depend on the choice of z  (see 

Johnson, 1972). For instance, the Wald method, as suggested by Maddala (1988), defines 

z  by assigning jz  to be 1  or 1  depending upon if jx  is smaller or larger than the 

median value of the manifest variable. The estimator of slope under this choice of IV is 
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2 1
1

2 1

ˆ ,W
x x

 
 


 

 

where 1  is the mean of  -values associated with the values of x  less than its median, 

and 2  is for the mean values larger than the median value of  . Bartlett (1949) 

followed the same selection criterion of jz 's but suggested the exclusion of the middle 

1/ 3  of the values, and his estimator is based on the lower and upper 1/ 3  of the values  

of x  and the associated s . The estimator is expressed as 
 

  

3 1
1

3 1

ˆ ,B
x x

 
 


 

 

where 1  is the mean of  -values associated with the smallest 1/ 3  of the values of x , 

and 3  is that for the largest 1/ 3 . Durbin (1954) proposed to use the rank of x  as jz 's. 

His method yields the following estimator of the slope parameter 
 

  

1
1 1

ˆ ,
n n

D j j
j j

j jx
 

   
     

   
   

 

but does not define the estimator of the intercept. 
 

 The IV method of estimation of the regression parameters does not require any strict 

assumptions such as the ratio of error variances is known. But the actual estimator 

depends on how the IV is defined, as the definition of z  affects both the estimator and its 

variance. In general, the available methods of defining IV causes a significant loss of 

sample information (data) either by replacing the observed values of the independent 

variable by 1  or 1 , or exclusion of some data, or due to ranking of data. 

 

3. PROPOSED IV ESTIMATOR OF SLOPE 
 

 The idea of the proposed estimator of slope is based on using the reflection variable 

of the manifest independent variable as IV variable. The proposed IV variable is obtained 

by reflecting all values of the manifest independent variable about the unfitted regression 

line. This is essentially done by a transformation of the observed values of the 

independent variable to their reflection on the Euclidean plane. In the conventional 

notation, the reflection of the manifest independent variable j j jx   
 

(with 

measurement error j ) for 1,2, , ,j n   can be defined as 

 

   *
0

ˆcos2 sin 2 ,xx x     (10) 

 

where 0
ˆ

x
 is the least squares estimate of the intercept parameter,   is the angle 

measure defined as 1
ˆarctan x    in which 1

ˆ
x  is the least squares estimate of the slope 

parameter in the manifest model, and Cos, Sin are the usual trigonometric cosine and sine 
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functions respectively. For the definition of reflection points on the Cartesian plane 

readers may see (Vaisman 1997, p. 164-169; Saqr and Khan, 2012). 
 

 The proposed reflection method requires to compute the reflection of all data points, 

and the use of the transformed values of x , i.e. *x , in defining the IV to fit the regression 

line of  . The IV estimator of the slope parameter under the proposed modified method 

is 
 

  

 
*1

1 2
ˆ ˆ, and ,

x

r r R

x

S
z x z

S

 
       

where 

  

  * *
2 * *

* * *
11 2

1 1 1
, ,  and  .

n

r x j jx x x x
jn

Z S S S x x x x
x x x 

 
      
 

  

 

 The proposed estimator of the slope parameter of the simple regression model using 

IV based on the reflection of x  is 
 

  

*

1 2
ˆ .

x

R

x

S

S


   (11) 

 

 From (11), it is easy to show that xy yS S
 
and 

2 2 2
xS S S   . It can be found that 

 

  
* sin 2 ,xy xx y

S S SSE    (12) 
 

where   is as defined in equation (10), and xSSE  is the sum of squares error for the 

manifest model. The above result follows from the fact that 
 

  
 *

0
ˆcos2 sin 2j j j j x jx x x x       

   0
ˆ(cos2 1) sin 2 sin 2j j xx      

   

2 2(2sin ) sin 2 sin 2 2sinj jx x      
 

 

 
    2sin 2 2sin ,j jx x       (13) 

 

where 
*
jx  is the reflection of jx . Multiplying both sides of the above equation by j  and 

taking sum over j , yields 
 

  
     * 2sin 2 2sinj j j j j j jx x x x             

  
*

2 2sin 2 2sinx xx
S S S S  

   
 

 

*

,
sin 2

xx

x x

S S
SST SSR SSE




  


 (14) 
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where 
2S SST   is the sum of squares total, xSSR  is the sum of squares regression,  

and xSSE  is the sum of squares error for the regression of   on x . Note  

that 
2

1

2sin ˆtan
sin 2

x


   


. 

 

 Then using equation (10), it can be written as 
 

  

*

1 2 2 2 2

sin 2
ˆ xx x

x

S SSES S

S S S S

  



  

 
   


 

 

  

*

1 2 2 2 2 2

sin 2 sin 2
ˆ .

x x x x

R

x

S S SSE S SSE

S S S S S

  

   

   
   

 
 

 

 Let *  be the ratio of the vertical error variance 
2
v  and horizontal error variance  

2
 , that is 

2
*

2

v




 


. 

 

 Based on the assumption 
*

*

sin 2

x

x

S

S


 


, then 

 

* *

1 2 2 2
ˆ x x

R

x x

S S S

S S S

 




  


 (15) 

 

  
   * *

2
x xx x

S S S S S S  
    

 

which leads to *
2 ,xx

S S S S 
  and finally simplification yields 

 

*

1 12 2
ˆ ˆ, hence .

x

R

x

S S

S S

 





     (16) 

 

4. GEOMETRIC EXPLANATION OF THE PROPOSED ESTIMATOR 
 

 The presence of measurement error in the independent variable and its impact on the 

estimator of the slope as well as how the proposed method „treats‟ the measurement error 

can be explained by graphs. The graphical representation also explains how the actual 

estimator of the slope is recovered by the new method. Figure 1 represents the sum of 

squares and sum of products associated with the definition of the estimators of slope both 

for the latent and manifest variables. This graph represents the presence of measurement 

error in the independent variable as well as the two estimators of the slope parameter. On 

the other hand Figure 2 displays the same along with that of the reflection of the manifest 

variable and three estimators of the slope parameter.  
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Figure 1: Graph Representing the Sum of Squares and Products in the  

Presence of Measurement Error in the Independent Variable 

 

 From Figure 1, the true estimator of the slope when the latent variable is available, 

that is, 1
ˆ
  is represented by the tan of BAC  of  ABC. In the absence of the values of 

the latent variable this is unavailable. But for the manifest variable one can find the 

estimator of the slope to be 1
ˆ

x  which is represented by the tan  of DAE  of  ADE. 

Note that here DC (or equivalently BE) represents the sum of squares of measurement 

error  2 .S  Furthermore, under the assumptions of [ ] 0E  
 
and [ ] 0E   , we have 

BC DE  or xS S  . Finally, 1 2
ˆ ,

S BC

ACS







     and    1 2
ˆ .

xy

x

x

S ED

ADS
    

 

 
Figure 2: Graph Representing the Sum of Squares and Products When the 

Measurement Error in the Independent Variable is 'Treated' by 

Reflection 

 

 The introduction of the reflection of the manifest variable changes   ADE of  

Figure 1 to   ADF in Figure 2. In fact the main difference between the two Figures is 

that Figure 2 has the small   BEF added to Figure 1. This triangle represents the effect 

of the reflection of the manifest variable. From Figure 2 the estimates of the slope are 
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1 2
ˆ x

x

x

S DE

DAS

  
   

 
 (17) 

1 2
ˆ

S BC

ACS







 
   

 
 (18) 

*

1 2
ˆ .

x

R

x

S FD

ADS

  
   

 
 (19) 

 

 Since the tan  of BAC  represents the estimator 1
ˆ
  and tan  of DAF represents

1
ˆ

R , then 1 1
ˆ ˆ

R  
 
because BAC DAF  . 

 

5. SIMULATION STUDY 
 

 In this section, simulated data are used when both the dependent and independent 

variables are subject to measurement error. This study reveals that the performance of 

proposed estimator ( )RIV  is better than OLS estimator and other estimators proposed by 

Wald (1940) ( )Two g , Bartlett (1949) ( )Thr g , and Durbin (1954) ( )Dur . Here 

calculations are based on the generated values of variables for preselected values of 

0 0  , 1 1  , latent variable ~ (0,36)N , 
2 16  , and 

2 9e  . The simulation is 

based on 10,000 replications using MATLAB software. 

 

 
Figure 3: Graphs of the estimated slope (a) and the mean absolute error (b) for five 

different estimators, proposed instrumental variable estimator ( )RIV , 

Wald's estimator ( )Two g , three-group estimator ( )Thr g , Durbin 

estimator ( )Dur , and ordinary least squares estimator ( )OLS . 
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 To show the behavior of the above estimators we selected samples of size 

30,60,90,120, ,1000 . Then computed values of the estimators from the simulated data 

and find their means and mean absolute errors (MAE) for each of the five estimators. 
 

 Figures 3a and 3b show the estimated slope and the mean absolute error for five 

different estimators. From the above graph it is evident that the proposed instrumental 

variable estimator ( )RIV  is consistently better than the other four estimators. Clearly the 

RIV estimator is much closer to the true value of 1  than other four estimators. In fact, 

the proposed RIV estimator is consistently closest to the true value of the slope for all 

sample sizes. 

 

6. CONCLUDING REMARKS 
 

 This paper considers the simple regression model with measurement error in both 

dependent and independent variables. It also proposes a new estimation procedure based 

on the idea of a new instrumental variable which is defined from reflection of the 

manifest variable. It compares the existing methods with proposed new method. Unlike, 

some of the existing methods it does not lose information. 
 

 The simulation study demonstrates the fact that the proposed method significantly 

reduces the mean absolute error than the currently used IV methods. As such, the 

coefficient of determination of the proposed method is higher than that of the existing IV 

methods. Surprisingly, the proposed IV method recovers the true estimator of the slope, 

1
ˆ ,  from the manifest variable and stochastic model even if the true values of the latent 

independent variable are unobservable. The same comment would apply for the estimator 

of the intercept. 
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