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ABSTRACT 
 

 In this paper, an exponentiated moment exponential (EME) distribution is proposed. 

Various properties of this distribution including conditional-based characterization are 

drawn. Finally, to illustrate the flexibility and tactability of the proposed distribution 

against the parent distribution some artificial and real data set are taken. Maximum 

likelihood estimators are derived and fit it to artificial and real data set. 
 

1. INTRODUCTION 
 

 If  XH x  is a cumulative distribution function (cdf), then   , 0X xH


      is 

defined as the exponentiated distribution (ED) function, where   is the exponentiated 

parameter. Gompertz (1825) used the function    1 , 0tF t e


      to compare the 

human mortality tables and population growth model. 
 

 Later Gupta et al. (1998) introduced the distribution by substituting 1   to study its 

theoretical properties and compared it with the characteristics of gamma and the Weibull 

distribution (See also Gupta and Kundu, 1999, 2000, 2001, 2003a, 2003b, 2004, 2005). 
 

 Raja and Mir (2011) conducted the empirical study of the eight distributions namely 

gamma, Weibull, lognormal, Gumble, exponentiated Weibull, exponentiated exponential, 

exponentiated lognormal and exponentiated Gumble distributions using two real life data 

sets. The first data set is the failure times of the air conditioning system of an airplane, 

the second data set of the runs scored by a cricketer, under exponentiated lognormal and 

exponentiated exponential distributions. 
 

 If X  is a non-negative random variable then the weighted distribution is defined as 

 

 

, ( )

,

w x f x

E w X



  

 (see Patil, 2000). If   mw X X then it is defined as moment size-biased 

distributions of order m . Dara and Ahmad (2012) studied various moment distribution, 

and developed some basic properties like moments, skewness, kurtosis, moment 

generating function and hazard function. In this paper, we develop a new family of 

distributions named as exponentiated moment exponential (EME) distribution or 

exponentiated weighted exponential (EWE) distributions and obtained various properties.  
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2. EXPONENTIATED MOMENT EXPONENTIAL DISTRIBUTIONS 
 

 The cumulative distribution function of two parameter exponentiated moment 

exponential distribution is as follows 
 

   ,  0,  0,  01 x
X

x
G x e x



  
  

 
     .         (2.1) 

 

where   is the shape parameter and   is the scale parameter and exponentiated moment 

exponential distribution is denoted as EMED  ,    . The probability density function 

(pdf) is defined as 
 

   
1

2
,  0,  0,1 1  ( )  0x xg x x e x e x


   

      


  


    (2.2) 

 

 The graph of g(x) for various values of   and   are 
 

 
Fig. 1: 

 

 Suppose X  denotes the EME random variable with parameters   and  , then the 

thr  raw moment of X  becomes  
 

     
1

1

2
0

1 1r x r xE X x e x e dx
 

    
    
 
 , 

 

 Let t x   then 

     
1

1

0

1 1r r t r tE X t e t e dt
 

      
  , 

 

 By using the binomial series expansion, after simplification it reduces to 
 

     
 

 

1

2
0 0

21
1

   i 1

ii
r r

j r
i j

j ri
E X

j i



 
 

    
     

   
  .       (2.3) 

 

 The series is convergent for 0r  , and for all values of  . 
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2.1 Factorial Moments 

 The factorial moments of EME distribution random variable X are as follows  
 

  
         

0

1 2 ... 1 ,
r

k

k

E X X X X r S r k E X


     
 

for r Z  

 

where  ,S r k  is the Stirling number of first kind and  kE X is defined at (2.3). 

 

2.2 Negative Moments of EME Distribution 

 Let X  be an exponentiated moment exponential (EME) random variable with 

parameters   and  , then its negative thr  moment is 
 

     
1

1

2
0

1 1r x r xE X x e x e dx
 

      
    
 
 , 

      
 

 
2

2

21
1 .

   i 1

ii
r

j r
i j r

j ri

j i




 
 

    
     

   
        (2.4) 

 

2.3 Maximum Likelihood Estimator of EME Distribution 

 Let 1 2,  X , , nX X  be a random sample from the pdf, then the likelihood function is 

     1

1

2 2
1

, ; , , 1, 1
n n

x

nn
x

j

L x xex x x e


   




    








   

 or 

  

   1 2 ln 2 ln ln ( 1) l, ; , ,... 1, n 1 x
nln

x
n n xL x ex xx  

          
 

    

                       (2.5) 

   
ln

ln 1 1 xL n
x e 

     
  

            (2.6) 

 

 Equating (2.6) to zero we have the following MLE   becomes 

  

 
ˆ

ˆ
ˆln 1 1 x

n

x e 


 

    
  

. 

 

 Again differentiate (2.6) w.r.t   
 

  
2

2 2

ln L n 


 
.                 (2.7) 

 

 Then 2ˆ( ) .Var n    
 

 Now differentiate equation (2.5) w.r.t. β, we obtain 
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 

2

2 3

ln 2 ( 1)

1 1

x

x
x

L n nx x e

x e

 

 

    
  

       
 

 .       (2.8) 

 

 Again differentiating equation (2.8) w.r.t. β 
 

  

   

 

2 2
2

2 2 3 5 2

1 1 3ln 2 2 ( 1)

1 1

x x

xx

x e x e x xL n nx

x e

   

 

           
  

       
 

  

                       (2.9) 

  
 

2 2 2ln

1 1

x

x
x

L x e

x e

 

 

  


    
 

             (2.10) 

 

   
 

2 2

1 1
ˆˆ ,

x

x
x

x e
COV

x e

 

 

  
  


 .     

 

 The MLE (Maximum Likelihood Estimate) of  ,    , say ̂ , is obtained by 

solving the nonlinear system. The solution of this nonlinear system of equations does not 

have a closed form, but can be found numerically by using software such as SAS. 
 

 For interval estimation and hypothesis tests on the parameters, we require the 2×2 

information matrix containing second partial derivatives of (2.7), (2.9) and (2.10). Under 

the regularity conditions stated in Cox and Hinkly (1974), that are fulfilled for our model 

whenever the parameters are in the interior of the parameter space, we have that the 

asymptotic distribution of  ˆn   to be a multivariate normal   1
2 0,N A  , where

   1
nlimnA I

    is the information matrix. 
 

2.4 Mode of EME Distribution 

 Let the random variable X  has the pdf (2.2). Differentiate equation (2.2) w.r.t. x  and 

equating it to zero, we obtain 
 

       
2

2

4
1 1 1 0x x x xe x e x x e e


                 

   
 

 

  

 
2

4
   1 1x xlet A e x e


   

    
 

 

 

 Since A>0, then    2 1 0x xx x e e        
 

, provides mode for different 

values of   and  . 
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Table 1 

Mode of EME Distribution for Different Values of   and 
 

  
  

1 2 3 4 

1 1 2 3 4 

2 1.94 3.87 5.81 7.75 

3 2.46 4.93 7.39 9.86 

4 2.83 5.66 8.49 11.32 

 

2.5 Median of EME Distribution 

 By using the definition of median 

  
1

1
2

MM
e



  
  

 
 

 

  

1
 

1 1 2 0MM
e


 
  
     
    

, will provide median. 

 

 This table represents the different values of median at different values of   and  . 

 

Table 2: 

 Values of Median for Different Values of   and   

  
Median 

  

1 2 3 4 5 

1 1.68 2.47 2.95 3.30 3.56 

2 3.36 4.95 5.91 6.59 7.12 

3 5.04 7.42 8.86 9.89 10.69 

4 6.71 9.89 11.81 13.18 14.25 

5 8.39 12.36 14.76 16.48 17.81 

 

2.6 Hazard Rate Function 

 The hazard rate function is a significant quantitative exploration of life phenomenon. 

The hazard rate function measures the conditional instantaneous rate of failure at time x , 

given survival to time x . In the literature Barlow et al. (1963) introduced hazard rate 

function, in studying the relationship between properties of a distribution function  

(or density function) and corresponding hazard rate function. It has significant value in 

the study of reliability analysis, survival analysis, actuarial sciences and demography, in 

extreme value theory and in duration analysis in economics and sociology. 
 

 For the EME distribution it takes the form 
 

   
 

  

1

2
1 (1 )exp

( )

1 ( ) 1 1 (1 )exp

xx x xe
g x

h x
G x x x

  




      


 

      
.     (2.11) 
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2.6.1 Graph of EME Hazard Rate 
 

 

 
Fig. 2: When α < 1 

 

 
Fig. 3: When α >1 

 

 For 0.5  indicates the hazard rate function  h x  decreases with time at first 

(Burn-in), then remains constant with respect to time (useful-life). At 0.5   

monotonically increasing and for 0.5  indicates the hazard rate function  h x  

increases with time at first (wear-out), then remains constant with respect to time (useful-

life). 
 

 For 1  the graphs of different shapes of hazard function show an increasing 

function of x . Furthermore for 1   when 0x  ,   0h x   and when x  , 

  1h x   . 
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2.7 Survival Function 

 The branch of statistics that deals with the failure in mechanical systems is called 

survival analysis. In engineering it is called as reliability analysis or reliability theory. In 

fact the survival function is the probability of failure by time y , where y  represents 

survival time. We use of the survivor function to predict quantiles of the survival time. 
 

 By definition of survival function 
 

   ( ) 1 1 1 (1 ) xS x G x x e


        
 

 

 

2.7.1 Graph of Survival Function 

 The graph of survival function is drawn for different values of   and  . 

 

 
Fig. 4: The Graph of Survival Function 

 

 The survivals curves show the decreasing rate. 

 

2.8 Entropy 

 Entropy is used as a measure of information or uncertainty, which present in a 

random observation of its actual population. There will be the greater uncertainty in the 

data if the value of entropy is large. Entropy is an important factor in communication, 

which limits both data compression and channel capacity. Signal processing techniques 

and analysis based on Entropy is very successful in a dissimilar set of applications 

ranging from ecological system monitoring to crystallography. If entropy-based 

approaches are applied successfully then it is predictable to have analytical expressions 

for the entropy of a given signal model, especially in the communication area. For some 

probability distributions expressions the differential entropy is considered mostly 

effective. An extension of the Shannon (1948) entropy for the true continuous random 

variable X is defined as 
 

  
   

0

Entropy ln ( ) ln ( ) ( )E f X f x f x dx


    
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is given by using equation (2.2) 
 

   
 

2
1

2
0

ln 1 ln 1 1
Entropy 1 1

ln

x
x xx e

x e xe dx
x x

  
   

                
      

  

 

since theoretical result of entropy is not in a closed form, some of the numerical values of 

entropy for different parameters are given below  

 

Table 3 

Entropy 

   

1 2 3 4 5 

  1 1.5637 1.6908 1.7200 1.7322 1.7361 

2 2.2653 2.3841 2.4131 2.4243 2.4293 

3 2.6731 2.7895 2.8186 2.8298 2.8347 

4 2.9179 3.0772 3.1063 3.1175 3.1224 

5 3.1855 3.30036 3.3294 3.3406 3.3455 

 

2.9 Information Function 

 The information function is defined as (see  
 

  IF    
 

1
1

1
0

1 1 exp
s s

s s t

s
t s t s t e dt

s

   



 
      . 

 

 By using the binomial expansion, after simplification it reduces to 
 

   
 

 

( 1)
1

1
0 0

1( 1)
1

      i

is r
s s

j s
i j

j ss r
IF

j r s




 
 

     
      

   
  . 

 

2.10 Characterization 

 An important area of statistical theory is characterization of probability distributions. 

Different methods are used for the characterizations of continuous distributions. 

Characterization based on conditional expectations is one of them. Raqab (2002) 

characterized generalized exponential distribution and some other distributions based on 

conditional expectations of record values. 
 

Theorem 2.1 
 Let X  be a non-negative random variable having an absolute continuous distribution 

function  XF x  with  0 0XF   and 0 ( ) 1XF x   for all 0x  , then its distribution 

function is 
 

     1 (1 )exp 0,  0,  0,,XF x x xx


             

 

if and only if 
 

  

     1 exp  | X  1 (1 )exp( ) ( 1).E x x t t t               
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Proof: 
 The necessary part follows as 
 

  

 1 X  

x

E x e t



 
   
 
 

   
0

1
1 exp

( )

t

x x
F t

      

  

  

     
1

2
1 1 exp expx x x x dx

 
        


 

 

By performing integration by parts, we obtain 
 

  

       
0

1
1 exp 1 1 exp

( )

t

x x x x
F t


               

 

      

     
2

0

1 1 exp exp
x x

x x x dx



         


  

 

  

   
   

1
1 1 exp1 1

1 exp ( )
( ) ( ) 1

t t
t t F t

F t F t


               

 

 

  

   
   1 1 exp

1 exp
1

t t
t t

      
     


 

 

  

   1 1 exp ( 1).t t          

 

 For sufficiency case 
 

  

       1 exp  | X 1 1 exp ( 1).E X X t t t                   

 

  

       
0

1
1 exp ( ) 1 1 exp ( 1)

( )

t

x x f x dx t t
F t

              

 

 

Differentiate both sides w.r.t. t , we have 
 

  

     1 1 exp ( )t t f t      

 

 

   

       2( ) 1 1 exp exp ( )f t t t t t F t             

 

  

       21 exp ( ) ( ) exp ( )t t f t f t t t F t          

 

after simplification 
 

  

 

   

2
exp

( )
.

( ) 1 1 exp

t
t

f t

F t t t


 




    
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 Integrating the above function 
 

  

   ln ( ) ln 1 1 expF t t t          

 

which proves that 
 

    ( ) 1 1 exp .     t 0,  0 , 0.F t t t


              
 

2.11 Percentiles  

 Percentage points of this new distribution are computed with pdf given in (2.2). For 

any 0 1p  , the 100 p
th

 percentile (also called the quantile of order p ) is a number px  

such that the area under the curve of the pdf given in (2.2) to the left of px  is p . 

Provided px  is the root of the equation 

  

 

1

1 1       

px

p

p

x
G x e p






 
          

 

          (2.12) 

 

 By solving the equation (2.12) numerically, the percentage points px  are computed 

for some selected values of the parameters. These are provided in the Tables 3 and 4. 

 

Table 4 

Percentage Points for 1,  1,  2,  3,  4,  5   
 

 75% 80% 85% 90% 95% 99% 

  1 2.693 2.994 3.372 3.890 4.744 6.638 

  2 5.385 5.989 6.745 7.779 9.488 13.277 

  3 8.078 8.983 10.117 11.669 14.232 19.915 

  4 10.771 11.977 13.489 15.558 18.975 26.553 

  5 13.463 14.971 16.862 19.449 23.719 33.192 

 

Table 5 

Percentage Points for 1, 2,  3,  4,  5     

 75% 80% 85% 90% 95% 99% 

  

2 3.518 3.821 4.199 4.714 5.557 7.427 

3 4.002 4.304 4.679 5.189 6.027 7.885 

4 4.344 4.645 5.018 5.526 6.359 8.208 

5 4.608 4.908 5.280 5.785 6.615 8.457 

 

2.12 Simulation and Application 
 To check the flexibility of the proposed distribution, we discuss simulation study of 

proposed distribution. For this purpose we generate artificial population of size 25, 50, 

100 and 200. Several measures of goodness of fit test are carried out to check the 

distribution of artificial data. Parameters estimates are derived using maximum likelihood 
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method in such a way that they maximize the likelihood function of the proposed 

distribution. The computed values of goodness of fit, parameters estimates and likelihood 

functions are given below 

 

Table 6: 

Parameter Estimates, Likelihood and Goodness of Fit Tests for n  25, 50, 100, 200 

 
Size 

25 50 100 200 

Parameters 

Estimates 

̂  18.7383 36.0318 20.7172 14.5074 

̂  0.4853 0.4023 0.4451 0.4927 

Log Likelihood -24.7435 -39.8371 -91.0975 -205.943 

Goodness 

of Fit Test  

(P-Value) 

Anderson-Darling 0.2738 0.3068 0.5130 0.7863 

Cramer-von Mises 0.2421 0.3131 0.5833 0.7342 

Kolmogorov-Smirnov 0.3466 0.1376 0.5948 0.6585 

Kuiper 0.4359 0.0211 0.3002 0.6887 

Pearson 2  0.4629 0.6993 0.0648 0.6344 

Watson 
2U  0.2811 0.0817 0.2786 0.7681 

 

 The plots of empirical data and estimated CDF of proposed distribution for different 

sample sizes are given below 

 

 
Fig. 5: For n  25 
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Fig. 6: For n  50 

 

 
Fig. 7: For n  100 

 

 
Fig. 8: For n  200 
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 From above figures 5 to 8 and table 6, we can see that as we increases sample sizes 

the fitted probabilities and goodness of fit test provided us good fits. It is due to 

flexibility of the proposed distribution.  
 

 To show the authenticity of our newly developed EME distribution, we consider the 

real life data set which already been used by Smith and Naylor (1987). This data 

represents the strengths of 1.5 cm glass fibers, measured at the National Physical 

Laboratory, England. The data is given below 

 

0.55, 0.93, 1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2.0, 

0.74, 1.04, 1.27, 1.39, 1.49, 1.53, 1.59, 1.61, 1.66, 1.68, 1.76, 1.82, 2.01, 

0.77, 1.11, 1.28, 1.42, 1.50, 1.54, 1.60, 1.62, 1.66, 1.69, 1.76, 1.84, 2.24, 

0.81, 1.13, 1.29, 1.48, 1.5, 1.55, 1.61, 1.62, 1.66, 1.70, 1.77, 1.84, 0.84, 

1.24, 1.30, 1.48, 1.51, 1.55, 1.61, 1.63, 1.67, 1.70, 1.78, 1.89 

 

 Proposed distribution along with moment exponential and exponential distribution 

have been fitted on real life data set. PROC NLMIXED command is used in SAS for 

estimating the parameters by employing the method of maximum likelihood estimator. 

Table 7 showing the estimation of parameters along with MLE’s, and likelihood ratio 

criterion. 

 

Table 7 

Maximum Likelihood Estimator and Information Criterion 

Model 
Maximum Likelihood Estimates Information Criterion 

    W AIC CAIC BIC 

EME 12.9250(3.6410) 0.3126(0.0258) 60.2 64.2 64.4 68.4 

ME 1 0.7534(0.06712) 132.6 134.6 134.7 136.8 

E 1 1.5068(0.1898) 177.1 179.7 179.7 181.8 

 

2.13 Concluding Remarks 

 In this work, we have established a new family of exponentiated moment exponential 

distribution. We obtained its distribution, density functions with graphs to see how scale 

and shape parameters influence on its behavior. 
 

 We have also outlined some basic important properties of this new family, which has 

allowed us to outline its complete characterization. For this distribution, we also found its 

moments, entropy, survival function and hazard rate function, all of which play an 

important role in the reliability analysis. Numerical study conducted to find the values of 

mean, median, mode and variance by using Mathematica 10.0. The maximum likelihood 

estimates of the parameters are discussed. The statistical application of the results to a 

problem of real as well as artificial data have been provided. It is found that the EME 

distribution fits better than moment exponential and exponential distribution. 
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