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ABSTRACT 
 

 This paper is concerned with a partially linear regression model with unknown 

regression coefficients, an unknown nonparametric function for the nonlinear component 

with correlated and uncorrelated random errors. The estimation of covariance matrices of 

parameter estimates are modeled by Newey-West heteroscedasticity and autocorrelation 

consistent estimator when the errors are dependent. Real and simulated data sets are 

utilized to demonstrate the performance of the biased estimators. 
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1. INTRODUCTION 
 

 Partially linear models are popular semiparametric modeling techniques assuming 

that the response variable of interest depends linearly on some covariates, while its 

relation to other additional variables is characterized by a nonparametric function. In this 

paper, we consider the following partially linear model 
 

    , 1,..., ,i i i iy Z f x i n                 (1) 
 

where iy
’
s are observations, iZ

’
s are known p-dimensional covariate vectors, 

 1 2, ,..., p


      is an unknown p -dimensional parameter vector. All we know about 

 .f  is that its first derivative is bounded by a constant, say L . The 'x s  
have a bounded 

support, say the unit interval, and have been reordered so that 1 2 ... ,nx x x    where n  

is the number of observations in the sample and i
’
s are random errors assumed to be 

independently and identically distributed (i.i.d.) with  20,N s . The main goal is to 

estimate the unknown parameter vector   and the nonparametric function f  from the 
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data  
1

, ,
n

i i i i
y Z x


. The estimating of   and f  in model (1) has been studied by several 

authors including Engle et al. (1986), Speckman (1988), Eubank et al. (1988), Eubank 
(1999). Further examples and discussions of model (1) may be found in Ruppert et al. 
(2003), Härdle (2004), Yatchew (1997; 1999; 2003), Wang et al., 2011. 
 

 The idea of differencing in nonparametric and partially linear models is not new. The 

simplicity of this procedure makes this methodology practical for empirical researchers. 

The differencing device provides a convenient means for introducing nonparametric 

techniques to practitioners in a way which parallels their knowledge of parametric 

techniques. The reason is that it allows one to remove the nonparametric effect and to 

analyze the parametric portion of the model as if the nonparametric portion was not there 

to begin with. Such methods are often called difference-based estimators. This procedure 

may be easily combined with other procedures. Such as, Yatchew used this technique to 

estimate the parametric component of the partially linear model (1) (Yatchew, 1997; 

2003). Conventional estimators require one to use the nonparametric regression 

techniques and they require the selection of a smoothing parameter. In contrast, 

differencing procedure can be performed even if nonparametric regression procedures are 

not available within the software being used and does not require the selection of a 

smoothing parameter.  
 

 In this article, a difference-based estimation method is considered (Yatchew, 1997; 
1999; 2003). Following the approach suggested by Yatchew (1997; 2003), to fit the 

partially linear model (1), we first rearrange the data such that 1 20 ... 1nx x x     . 

Suppose you are given data    1 1 1, , ... , ,i i iy Z x y Z x  on the model  y Z f x    and 

the conditional mean of Z  is a smooth function of x , say    E Z x r x  where r  is 

bounded and   2 .uVar Z x    Then we may rewrite  Z r x u  . If we first difference 

the ordered observations we obtain, 
 

        1 1 1 1, 2,..., .i i i i i i i iy y Z Z f x f x i n             

               1 1 1 1i i i i i i i ir x r x u u f x f x             (2) 

 

 If the observations are sufficiently close and functions  r x  and  f x  are smooth 

with bounded derivatives then a consistent estimate for   can be derived using ordinary 

least squares (OLS) and the vector of estimated parameters, denoted by ˆ
diff , is  

 

  
  

 

1 1

2

1

ˆ .
i i i i

diff

i i

y y x x

x x

 



 
 






 

 

 It is important to note that we assume here that data have already been ordered 

according to the x ’s, but in general, one should start difference-based estimation by 

ordering the data. Permutation matrices (see, Yatchew, 2003) can be used to reorder data.  
 

 Since differencing introduces first-order moving average structure in the error term, 
the OLS estimator is expected to lose efficiency. Fortunately, the efficiency of the 



Tabakan and Turkmen 189 

estimator can be improved substantially by using higher order differencing and 

appropriate differencing weights. Therefore, the general form of (2) for the m th-order 

differencing can be written as  
 

   
1 1 1 1

2,...,
m m m m

j i j j i j j i j j i j
j j j j

d y d Z d f x d i n   
   

 
      

 
        (3) 

 

where m  is the order of differencing and 0 ,..., md d  are differencing weights.  
 

 Now let  0 ,..., md d d   be a  1m  vector, where m  is the order of differencing 

and 0 ,..., md d  are differencing weights minimizing 
0

2

,...,
1 0

min
m

m m l

d d j l j
l j

d d



 

 
   

 
   

satisfying the conditions 
 

  
2

1 1

0, 1 .
m m

j j
j j

d d
 

                (4) 

 

 The first condition in (4) ensures that the differencing removes the nonparametric 
component in (3) as the sample size increases, while the second normalization condition 

implies that the residuals in (3) have variance of 2
 . When the differencing weights are 

chosen optimally, the difference-based estimator, ˆ
diff , obtained by regressing Dy  on 

DZ  approaches asymptotic efficiency by selecting m  sufficiently large. With the 

optimal choice of weights in (3), one can estimate   using OLS (Yatchew, 1997; 2003). 

Let us define to be the vector with elements Dy  to be the   1n m   vector with 

elements and DZ  to be the  n m p   matrix with elements  
1

.
m

j i ji
j

DZ d Z 


   In 

matrix notation, (3) can be rewritten as 
 

  ,y Z                        (5) 
 

where ,y Dy Z DZ  , D    and Z  is a full-rank matrix. Thus, from the least square 

perspective, a simple difference-based estimator of the parameter   can be written as 
 

   
1ˆ ,diff Z Z Z y UZ y


                    (6) 

 

where  
1
.U Z Z


  Once ˆ

diff  is estimated, a variety of nonparametric techniques could 

be applied to estimate f  as if   were known. Formally, subtracting the estimated 

parametric part from both sides of (1), we get: 
 

       ˆ ˆ , 1,...,i i diff i diff i i i iy Z Z f x f x i n            
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 Because ˆ
diff  converges sufficiently quickly to true  , the consistency, optimal rate 

of convergence, and construction of confidence intervals for f  remain valid and f  

could be estimated by the standard smoothing methods. Through the paper, main focus is 

the estimation of   and statistical inference for the nonparametric function f  is omitted.  
 

 In practical applications, there is often some degree of multicollinearity problem 
among the covariates which can be measured by different tools such as the condition 

number. If Z Z  is ill conditioned with a large condition number, then classical 
difference-based estimator generally produces poor estimates of parameters, therefore 

some biased estimators can be utilized to estimate  . To avoid that problem, several 

biased estimation methods have been proposed for linear models (Hoerl and Kennard, 
1970; Hoerl et al. 1975; Liu, 1993; 2003) and some of them adopted for partially linear 
models (Tabakan and Akdeniz, 2010; Akdeniz and Duran, 2010; Duran and Akdeniz, 
2011; Haibing and Jinhong, 2011; Duran et al., 2012; Luo, 2012; Tabakan, 2013; 
Roozbeh and Arashi, 2014; Wu, 2014). 
 

 The paper is organized as follows. Section 2 introduces difference-based ridge and 
restricted ridge estimators for the partially linear model. In section 3, we consider a 
simple version of the partially linear model in the case of independent errors with equal 
variance and give conditions under which the proposed estimators are superior to the 
difference-based estimation technique in the sense of mean squared error. Section 4 
relaxes the assumption of i.i.d. errors and rederives the results of the previous section in 
the presence of heteroscedasticity and autocorrelation. Section 5 and 6 give a Monte 
Carlo simulation study and a numerical example to show the performance of the 
proposed estimator.  
 

2. DIFFERENCE-BASED ESTIMATORS 
 

 From the least squares perspective, the coefficients   in (5) are chosen to minimize 

       L y Z y Z


      .               (7) 

 

 Adding a penalizing function, i.e. 
2

k  , to the least square objective (7), yields  
 

     * ,L k L k       ,                 (8) 
 

where k  is a pre-selected biasing parameter. Tabakan and Akdeniz (2010) have proposed 

the difference-based ridge estimator  ˆ k  obtained by minimizing (8) and given as  
 

   ˆ
kk S Z y  ,  0k                  (9) 

where  
1

kS Z Z kI


  , I  is the p p  identity matrix. Note that  ˆ ˆ
diffk    when 

0k  .  
 

 Now, we consider the linear nonstochastic constraint  
 

  R r  ,                      (10) 
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for a given m p  known matrix R  with rank m p  and a given 1m  known vector r . 

In this case the estimate of   in model (5), obtained by minimizing the Equation (8) 

under the condition (10), is equal to  
 

        1ˆ ˆ ˆ .r k kk k S R RS R R k r


                   (11) 

 

 We call  ˆ
r k  a restricted difference-based ridge estimator of the partially linear 

model (see, Tabakan, 2013).  
 

 In the following sections, we will compare classical difference-based estimator with 

these two ridge estimators using the mean square error matrix (MSEM) criterion. In 

general, if 1̂  and 2̂  are two estimators of ,  2̂  is called MSE superior to 1̂  if the 

difference of their MSEMs is nonnegative definite. Specifically, necessary and sufficient 

conditions for the difference-based ridge estimators to be MSE superior then the classical 

difference-based estimators are given in the Sections 3 and 4 for independent and 

dependent random errors, respectively. The comparison between difference-based ridge 

and restricted ridge estimators when using the same value of k , is also provided. 

 

3. INDEPENDENT CASE 
 

 The aim of Section 3 is to compare the mean square error matrices of the estimators 

 ˆ k ,  ˆ
r k  and ˆ

diff  for the simple version of the partially linear model (1) with 

independent errors.  
 

 We note that for any estimator   of   in a linear model, MSEM is defined  

as         ,MSEM Cov Bias Bias


       where  Cov   denotes the variance-

covariance matrix and    Bias E    . 

 

3.1 Comparisons between Difference-Based Ridge Estimator,  

 ˆ k  and Difference-Based Estimator ˆ
diff  

 Using the estimator  ˆ k  in (9), the variance-covariance matrix and bias of  ˆ k  are 

given by 
 

     2ˆ ,k kCov k S SS                     (12)  

    ˆ
kBias k kS    ,                  (13) 

 

respectively, and therefore MSEM of  ˆ k  is 
 

     2 2ˆ .k k k kMSEM k S SS k S S                 (14) 
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 Similarly, the variance-covariance matrix and MSEM of unbiased estimator ˆ
diff  in 

(6) are given as  
 

      2ˆ ˆ ,diff diffCov MSEM USU                 (15) 

 

where    S D Z D Z
  . From (12) and (15), one write the difference  

 

         2
1

ˆ ˆ
diff k kV Cov Cov k USU S SS        

    2 2 1
.k kk S USU SU US S

k

 
    

 
            (16) 

 

 The necessary and sufficient conditions at which 1V  is a positive definite (p.d.) matrix 

(that is the estimator  ˆ k  has a smaller variance compared to one of estimator ˆ
diff ) are 

given in Tabakan and Akdeniz (2010). They also proved the following theorem for the 

difference-based ridge estimator stating the conditions that  ˆ k  is MSE superior to the 

difference-based estimator, ˆ
diff  when 1V  is a positive definite matrix.  

 

Theorem 3.1. 

 Consider two competing estimators  ˆ k  and ˆ
diff  of .  Let the difference 

    ˆ ˆ
diffCov Cov k    be p.d. Then the biased estimator  ˆ k  is MSE superior over 

the ˆ
diff  if and only if the following inequality holds: 

 

  1
1 1W                       (17) 

 

where  2
1

1
W USU SU US

k

 
    

 
.  

 

Proof:  
 See Tabakan and Akdeniz (2010). 

 

3.2 Comparisons between Difference-Based Estimator  

ˆ
diff  and Restricted Difference-Based Ridge Estimator  ˆ

r k  

 Let us now compare the sampling variance-covariance matrices of ˆ
diff  and  ˆ

r k . 

When the restrictions in (10) are assumed to be true, the variance-covariance matrix and 

bias of  ˆ
r k  are given by 

     2ˆ ,rCov k FSF                       (18) 
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    ˆ ,rBias k kF                     (19) 

 

respectively, where  
 

  

 

 

 

1

1

1
,

k k k k

k k k k

k k k k

F S S R RS R RS

S I R RS R RS S B

I S R RS R R S BS







  

     
  

    
  

 

 

with  
1

.k kB I S R RS R R


    The MSEM of  ˆ
r k  in Equation (11) is given by 

 

     2 2ˆ .rMSEM k FSF k F F                   (20)  

 

 From, (15) and (18) the difference     2
ˆ ˆ

diff rV Cov Cov k     can be written as 

  

    

 

2

2 2

2

ˆ ˆ

,

diff rV Cov Cov k

USU FSF

U S E SE U

   

  

  

 

 

where  
1
.E B I kU


   2V  is a p.d. matrix under the conditions described in the next 

theorem. 

 

Theorem 3.2. 

 The sampling variance of  ˆ
r k  is less than that of the ˆ

diff  if and only if  

 

   1
max 1S E SE  

 
,                (21) 

 

where E  is as defined before.  
 

Proof: 

 Let         ,S D Z D Z D DZ D DZ H H
        where S  is a p p  positive 

definite matrix,   ( )rank D DZ rank H p n m       ,m n  and  
1

U Z Z


  is a 

nonsingular and symmetric matrix as defined (Tabakan and Akdeniz, 2010; Duran and 

Akdeniz, 2011). Since S  is a p.d. matrix and K E SE  is a symmetric matrix, there 

exists a nonsingular matrix Q  such that Q SQ I   and Q KQ   , where   is a 

diagonal matrix and its diagonal elements are the eigenvalues of 
1S K

 (Schott, 2005). 

Thus, the difference 2V  can be rewritten as  
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2

2 1 1 2 1 1

ˆ ˆ

.

diff rV Cov Cov k

UQ Q SQ Q KQ Q U UQ I Q U   

   

      

 

 

 It is seen that the estimator  ˆ
r k  has a smaller variance than ˆ

diff , i.e. 2V  becomes 

a p.d. matrix, if and only if  1
max 1S K   or equivalently  1

max[ ] 1.S E SE     

 

 The following lemma from Farebrother (1976) is needed to prove Theorem 3.3 that 

allows one to compare the MSE matrices of ˆ
diff  and  ˆ

r k .  

 

Lemma 3.1. 

 Let A be a positive definite p p  matrix, b a 1p  nonzero vector, and   a positive 

scalar. Then A bb   is positive (semi-) definite if and only if 1b A b  is less than (or 

equal to)   (Farebrother, 1976). 
 

Theorem 3.3. 

 Consider two competing estimators  ˆ
r k  and ˆ

diff  of  . Let the difference 

    ˆ ˆ
diff rCov Cov k    be p.d. Then the biased estimator  ˆ

r k  is MSE superior over 

the ˆ
diff  if and only if the following inequality holds: 

 

  1
2 1W    ,                    (22) 

 

where    
2

1 1
2 2

.W F U S E SE U F
k

  
   

 

Proof: 

 Using (15) and (20), we find that  
 

  

    

   

 

2

2
2

2
2 1 1

2

2
2

ˆ ˆ

.

diff rMSEM MSEM k

V k F F

k F F U S E SE U F F
k

k F W F

 

    

   

  
     

  

  

 

 

where    
2

1 1
2 2

.W F U S E SE U F
k

  
   Using Lemma 3.1, the stated result is 

obtained.  
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3.3 Comparisons between Difference-Based Ridge Estimator  

 ˆ k  and Restricted Difference-Based Ridge Estimator  ˆ
r k  

 In this section, our objective is to examine the difference between MSEMs of two 

estimators  ˆ k  and  ˆ
r k . Using (12) and (18),  

 

   
     

 

3

2 2 2

ˆ ˆ

,

r

k k k k

V Cov k Cov k

S SS FSF S S B SB S

   

      

 

 

where  
1

k kB I S R RS R R


   , S is a p p  positive definite matrix and kS  is a 

nonsingular and symmetric matrix. Now we can give the following theorem describing 

the conditions for 3V  to be p.d. 

 

Theorem 3.4.  

 The sampling variance of  ˆ
r k  is less than that of the  ˆ k  if and only if  

 

   1
max 1S B SB  

 
.                 (23) 

 

Proof:  

 The difference 3V  can be rewritten as  
 

  

     

 

3

2 1 1

2 1 1
1

ˆ ˆ
r

k k

k k

V Cov k Cov k

S O O SO O O O S

S O I O S

 

 

   

    
  

  

С  

 

where B SBС  is a symmetric matrix, O  is a nonsingular matrix such that O SO I   

and 1O O  С , and 1  is a diagonal matrix and its diagonal elements are the 

eigenvalues of 1 .S С  Therefore, 3V  becomes a p.d. matrix, if and only if 

 1
max 1S С  or  1

max 1S B SB  
 

. 

 

 Theorem 3.4 states that  ˆ
r k  is superior to  ˆ k  in terms of MSEM under certain 

conditions which can be proved by direct application of the following Lemma 3.2. 

 

Lemma 3.2. 

 Let , 1, 2j jA y j    be two linear estimators of .  Suppose that the difference 

   1 2 0,Cov Cov     where   , 1, 2jCov j   denotes the covariance matrix of .j  
Then 

   1 2 0MSEM MSEM     if and only if     
1

2 1 2 1 1 2 1,d Cov Cov d d d
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where   , , 1, 2j jMSEM d j   denote the MSEM and bias vector of ,j  
respectively 

(see, Trenkler and Toutenburg, 1990). 

 

Theorem 3.5. 

 Consider two competing estimators  ˆ
r k  and  ˆ k  of   Let the difference 

     ˆ ˆ
rCov k Cov k    be p.d. Then the biased estimator

  ˆ
r k  is MSE superior over 

 ˆ k  if and only if the following inequality holds: 

  
      

1

2 1 1 2
ˆ ˆ 1rd Cov k Cov k d d d



      ,         (24) 

 

with 1 2, .kd kS d kF       

 

Proof:  

 The difference between the MSEM of  ˆ k  given in (14) and that of  ˆ
r k  in (20) 

is denoted by 3  and is equal to 
 

  

     

 
     

3

2 2 2

1 1 2 2

ˆ ˆ

ˆ ˆ

r

k k k k

r

MSEM k MSEM k

S S B SB S k S S k F F

Cov k Cov k d d d d

    

         

      

 

 

where        2ˆ ˆ ,r k kCov k Cov k S S B SB S      1 kd kS    and 2 .d kF    

Applying Lemma 3.2 on 3  finalizes the proof. 

 

4. DEPENDENT CASE 
 

 In the previous sections, it has been assumed that the original observations are 

independent of each other. However, autocorrelation (dependence) among the errors in 

the regression model is an important problem faced in applications. When autocorrelation 

is present in the errors the OLS estimator will not be efficient and the usual estimator of 

the variance-covariance matrix will be biased. To combat these effects, more general case 

of heteroscedasticity and autocorrelation in the error terms is considered.  
 

 Suppose we have data  
1

, ,
n

i i i i
y Z x


 as described earlier on the semiparametric model 

 y Z f x   . Let  Var     is not necessarily diagonal as assumed so far. In 

other words, here we relax homoscedasticity and independence assumptions on errors. If 

 Var    , then the covariance matrix for the difference-based estimation becomes 
 

   ˆ
diffCov USU  ,                 (25) 
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where  
1

U Z Z


  and .S Z D D Z    We now need a consistent estimate of D D  to 

have a consistent estimator of  ˆ
diffCov  . For this purpose, we will use Newey-West 

heteroscedasticity and autocorrelation consistent estimator (Newey and West, 1987). Let 

L  be the maximum lag which exhibits non-zero autocorrelation in the matrix   and L  

be a matrix with ones on the l-th diagonal. Define matrices ,H  0,...,l  L  as follows. 

Let 0H  be the identity matrix. For 1,...,  l  L  let 
 

  

 1, 0

0,

ij
ij

if D D
H

otherwise

      
 


L L
. 

 

 Thus we define 
 

  D D D D
  

 
        

 

ʘ
0 1

H


  
     


L

L
,            (26) 

with ˆ
diffD Dy DZ



    , ʘ denoting the element-wise matrix product. Plugging (26) in 

(25), we have a consistent estimator for  ˆ
diffCov  ; (see, Yatchew, 1999 for details). 

 

 Similarly, we can write down   ˆCov k  and   ˆ
rCov k  as: 

 

    ˆ
k kCov k S SS                     (27) 

  
  ˆ

rCov k FSF   ,                

 (28) 
 

where kS  and F  as defined in Section 3. Using (25) and (27), the difference 

    1
ˆ ˆ

diffV Cov Cov k     can be given as  

 

  

 

 

 

1

2

2

1

,

k k

k k

k k

V USU S SS

k S USU SU US S
k

k S M N S

 

 
   

 

  

 

 

where 
1

0,
k

   ,M USU N US SU  . Since M  is  p p  positive definite 

matrix and N  is a symmetric matrix there exists a nonsingular matrix T  such that 

T MT I   and T NT G  , where G  is a diagonal matrix and its diagonal elements are 
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the roots   of the polynomial equation 
1 0N M M N I    (Graybill, 1993; 

Haville, 1997) and we may write 1V  as in the following form: 
 

   
 

 

2 1 1
1

2 1 1

,

.

k k

k k

V k S T T MT T NT T S

k S T I G T S

 

 


     


   

 

 

where  111 ,...,1 .ppI G diag g g     Since 0N US SU    there is at least 

one diagonal element of G  that is nonzero. Let 0iig  , 
 

  0

1
0 min

iig
iig

                    (29) 

 

and hence 1 0iig   for all 1,...,i p  and I G  is a positive definite matrix. Hence, 

1V  becomes positive definite matrix. It is now evident that the estimator  ˆ k  has a 

smaller variance compared with the estimator ˆ
diff  if and only if (29) is satisfied. Thus 

we can give the following theorem. 

 

Theorem 4.1. 

 Consider the estimators ˆ
diff  and  ˆ k  of .  Let     ˆ ˆ

diffCov Cov k    be a 

positive definite matrix. Then the biased estimator  ˆ k  is MSE superior to ˆ
diff  if and 

only if the following inequality holds: 
 

  
1

1 1W                       (30) 
 

where  1

1
.W USU SU US

k

 
   
 

  

 

Proof: 

 Consider the differences  
 

  

    

          

  
 

 

1

2 2

2

2
1

ˆ ˆ

ˆ ˆ ˆ ˆ

,

diff

diff

k k

k k

k k

MSEM MSEM k

Cov Cov k bias k bias k

S k SU US k USU k S

k S N M S

k S W S
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where 1W M N  , ,M USU N US SU    and 
1

.
k

    Applying Lemma 3.1, the 

assertation follows (see, Duran et.al., 2012). 
 

 Theorem 4.1 gives conditions under which the biased estimator  ˆ k  is superior to 

ˆ
diff  in the presence of heteroscedasticity and autocorrelation in the data. 

 

 With similar argumentation as above obtained in Section 3.2, Theorem 3.2 can be 

extended straight forwardly to the general case by exchanging S  by .S Z D D Z    

Hence, the estimator  ˆ
r k  has a smaller variance than ˆ

diff  if and only if 

 1
max 1,S E SE  

 
where max  is the maximum eigenvalue of  1S E SE  . 

 

 Now, we can give a generalized version of Theorem 3.3 to compare the MSE matrices 

of ˆ
diff  and  ˆ

r k . 

 

Theorem 4.2. 

 Consider the estimators ˆ
diff  and  ˆ

r k  of  . Let     ˆ ˆ
diffCov Cov k    be a 

positive definite matrix. Then the biased estimator  ˆ
r k  is MSE superior to ˆ

diff  if and 

only if the following inequality holds: 
 

  
1

2 1W                        (31) 
 

where  1 1
2 2

1
W F U S E SE U F

k

  
   

. 

 

Proof:  
 Similar to the proof of Theorem 3.3. 
 

 Note that for comparison of biased estimators  ˆ
r k  and  ˆ k , Theorem 3.4 can be 

extended for heteroscedastic and autocorrelated errors by exchanging S  by S . Hence, the 

sampling variance of  ˆ k  is always smaller than that of  ˆ
r k , if and only if 

 1
max 1,S B SB  

   
where max  is the maximum eigenvalue of  1S B SB  . Thus, the next 

theorem extends the results of Theorem 3.5 of Section 3.3 to the more general case of (24). 

 

Theorem 4.3. 

 Consider two competing estimators  ˆ
r k  and  ˆ k  of   Let the difference 

     ˆ ˆ
rCov k Cov k    be p.d. Then  ˆ

r k  is MSE superior over the  ˆ k  if and 

only if the following inequality holds: 
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1

2 1 1 2
ˆ ˆ 1rd Cov k Cov k d d d



      ,         (32) 

 

where        ˆ ˆ ,r k kCov k Cov k S S B SB S      1 kd kS    and 2d kF   . 

 

Proof:  
 Similar to the proof of Theorem 3.5. 
 

 In the following sections, we investigate the numerical performances of the estimators 

using both simulated and real data sets. 

 

5. A MONTE CARLO EXPERIMENT 
 

 In this section, the theoretical comparisons are extended with a Monte Carlo study. 

We compare the performances of classical difference-based, ridge and the restricted ridge 

estimators in terms of simulated MSE values. The MSE estimates of ˆ
diff ,  ˆ k , and 

 ˆ
r k  are obtained under different degrees of collinearity as well as different levels of 

error variances. All computations were conducted using R version 3.0.0.  
 

 To compare the three estimators, following McDonald and Galarneau (1975), the 

explanatory variables and the observations on the dependent variable are generated by 
 

   
1 2

2
11 , 1,..., ; 1,...,ij ij ipz w w i n j p        

 

where ijw  are independent standard normal pseudo-random numbers and 2  is the 

theoretical correlation between any two explanatory variables. For the nonparametric 

component in Equation (1), we selected a smooth function of the form 

   2sin 4i if x x   for ix i n  on  0, 1 .  

 

 
Fig. 1: Plot for the Nonparametric Sine Function 
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 Observations on the dependent variable are then generated by the following model 
 

  
 1 1 2 2 ... , 1,...,i i i p ip i iy z z z f x i n         

 

where i  are independent standard normal pseudo-random numbers with mean zero and 

variance 2 ,  2~ 0,N  . The parameter vector is taken as  1 2 ... p    and fixed 

through the replications. Once , ,Z   f  and   are generated, the dependent variable 

vector y is simulated by .y Z f    The data are standardized to obtain Z Z  in 

correlation form. The resulting Z  matrix,   and f  are kept fixed through the 

replications.  
 

 For the independent errors with constant variance, the least squares estimate of error 
variance proposed by Eubank et al. (1988) is used and calculated as 
 

  

2ˆ
diff =

   

  
Dy I H Dy

tr D I H D

 

 
               (33) 

 

with  .tr  the trace function for a square matrix and H  the projection matrix 

  
     

1

.H DZ DZ DZ DZ


        

 

 

 We consider three different correlation coefficients denoted by   (i.e., 0.7, 0.95 and 

0.995). To see the effect of the number of observations and the number of variables, two 

different combinations of n  and       : , 20,4 , 60,10p n p   are used. The restriction 

for the restricted ridge estimator is R r   where  1 1 ... 1R  ,  1 2r p p c    

and c  is a constant. The usage of c  allows one to control whether the restriction is true 

or not and how illuminating the prior information for the parameter of interest and it is 
selected as 0.5, 1, or 1.5 throughout the replications. It is obvious that the restriction 

 1 2 ... 1 2p p p c        is true and prior information is exactly equal to the 

actual parameter when 1c   yielding the optimal results for both estimators. The 

approaches of Hoerl et al. (1975) is used to specify the value of k . That is, the biasing 

parameter is set to    2ˆ ˆ ˆˆ 0.676HKB diff diff diffk p       where 2ˆ
diff  is the classical least 

squares estimates of error variance given in (33). Although original error terms are 
independent and homoscedastic, differencing can introduce a correlation structure and 
heteroscedasticity in the model. Therefore, standard errors are calculated using classical 
least squares estimates and Newey-West estimators of the variances.  
 

 For the simulation study, we used order 3m  . For each choice of c ,  , n  and p , 

the experiment is replicated 5000 times by generating new error terms for the fixed Z , 

  vector and f . Once 5000 samples are generated, we calculated ˆ
diff ,  ˆ k ,  ˆ

r k  

and computed their respective simulated MSE values defined by 
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5000 2

* *

1 1

1
,

5000

p

ij i
j i

MSE
 

                (34)  

 

where *
ij  denotes the estimate of the i th parameter in j th replication and 

, 1,...,i i p   are the true parameter values. Monte Carlo experiments conducted to 

examine the relative efficiency of competing estimators. In general, the relative 

efficiency of *
1  and *

2  is given as 
 

   
 
 

*
2* *

1 2 *
1

,
MSE

eff
MSE


  


,               (35) 

 

where *
1   and *

2  are two estimators of  . If the relative efficiency value obtained from 

(35) is smaller than 1, then it means that 2  has a smaller MSE than *
1 . 

 

 We obtain the simulated MSE values for the ˆ
diff ,  ˆ k  and  ˆ

r k  using the 

Equation (34). Then, the relative efficiencies of  ˆ k  with respect to ˆ
diff , 

  ˆ ˆ,diffeff k  , and  ˆ
r k ,     ˆ ˆ,reff k k  , as well as the relative efficiency of 

 with respect to ˆ
diff ,  ˆ ˆ, ( )diff reff k  , are calculated using (35) and 

summarized in Table 1 and Table 2. 
 

Table 1 

Relative Efficiencies of Estimators for 20n  , 4p   

  c 
0.01   0.1   1   

0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 

0.7 

 ˆ ˆ, ( )diffeff k   0.130 0.130 0.130 0.301 0.301 0.301 0.524 0.52 0.524 

 ˆ ˆ, ( )diff reff k 
 

0.218 0.144 0.398 0.402 0.298 0.567 0.763 0.514 0.528 

 ˆ ˆ( ), ( )reff k k 
 

1.677 1.108 3.062 1.336 0.990 1.884 1.456 0.981 1.008 

0.9 

 ˆ ˆ, ( )diffeff k 
 

0.107 0.107 0.107 0.107 0.107 0.107 0.322 0.322 0.322 

 ˆ ˆ, ( )diff reff k 
 

0.107 0.089 0.214 0.152 0.111 0.231 0.369 0.322 0.328 

 ˆ ˆ( ), ( )reff k k 
 

1.005 0.833 2.008 1.422 1.042 2.156 1.146 0.999 1.019 

0.995 

 ˆ ˆ, ( )diffeff k 
 

0.068 0.068 0.068 0.109 0.109 0.109 0.148 0.148 0.148 

 ˆ ˆ, ( )diff reff k 
 

0.064 0.034 0.056 0.127 0.115 0.171 0.191 0.148 0.202 

 ˆ ˆ( ), ( )reff k k 
 

0.939 0.501 0.825 1.163 1.060 1.566 1.288 1.000 1.362 

 kr̂
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Table 2 

Relative Efficiencies of Estimators for 60n  , 10p   

  c 
0.01   0.1   1   

0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 

0.7 

 ˆ ˆ, ( )diffeff k   1.498 1.498 1.498 0.962 0.962 0.962 0.682 0.682 0.682 

 ˆ ˆ, ( )diff reff k 
 
640.076

 
1.423 662.653 56.247 0.939 48.481 3.455 0.673 2.889 

 ˆ ˆ( ), ( )reff k k 
 
427.303

 
0.950 442.375 58.489 0.976 50.413 5.068 0.987 4.239 

0.9 

 ˆ ˆ, ( )diffeff k 
 

0.318
 

0.318 0.318 0.328 0.328 0.328 0.340 0.340 0.340 

 ˆ ˆ, ( )diff reff k   0.514 0.318 0.542 8.782 0.327 7.398 6.882 0.340 5.586 

 ˆ ˆ( ), ( )reff k k 
 

1.616
 

0.999 1.705 26.750 0.997 22.536 20.240 1.000 16.427 

0.995 

 ˆ ˆ, ( )diffeff k 
 

0.034
 

0.034 0.034 0.042 0.042 0.042 0.247 0.247 0.247 

 ˆ ˆ, ( )diff reff k 
 

1.706
 

0.034 1.674 2.775 0.040 2.450 0.418 0.248 0.399 

 ˆ ˆ( ), ( )reff k k 
 

49.963
 

1.000 49.034 65.811 0.939 58.114 1.689 1.001 1.615 

 

 In all of the settings for 20n  , 4p   both  ˆ k  and  ˆ
r k  perform better than the 

ˆ
diff  estimator which is not surprising given the existence of multicollinearity. When 

60n  , 10p  , ˆ
diff  is better than both  ˆ k  and  ˆ

r k  for the smallest  and the 

smallest correlation. However as  and correlation increases, ˆ
diff  loses its optimality. In 

general, the efficiency of ˆ
diff

 
clearly decreases as the correlation increases. 

 

 From Table 1 where 20n   and 4p  , we can see that for small correlation and 

large error variance  ˆ
r k  seems to be either slightly more efficient than  ˆ k  when 

1c   that is the linear restriction is true or as efficient as  ˆ k . Specifically, for 

0.01   as correlation increases,  ˆ
r k

 
seems to be doing better. However, when the 

linear restriction is not satisfied, then  ˆ k  beats  ˆ
r k . The results for the 60n   and 

10p   given in Table 2 indicate that  ˆ
r k

 
performs even worse than former case when 

the linear restriction does not meet. Once again  ˆ k  and  ˆ
r k  perform at par for 1c   

and they are better than ˆ
diff  especially for larger correlations.  

 

 The optimal k  value is ranged between 0 to 0.05 for all simulations when 20n  , 

4p  , 0.1   and 0.9  . Figure 2(a) and 2(b) illustrate the trace of the covariance 
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matrices (i.e. sum of variances) and sMSEs for ˆ
diff ,  ˆ k  and  ˆ

r k  for 0 0.05k  . It 

can be seen from Figure 2 that  ˆ k  has smaller sum of variances and smaller sMSE 

values than  ˆ
r k . sMSE (which is same as sum of variances) value for ˆ

diff  is equal to 

3.07 and it is higher than ones both obtained from  ˆ k  and  ˆ
r k . These results are 

consistent with the Table 1. Furthermore, if we apply Theorem 3.1 (Theorem 4.1) for 

0.03k  , we observe also that 1V  is positive definite and  ˆ k  is MSE superior to ˆ
diff

 
since inequalities in (17). (30) hold for 0.03k  . Similarly, Theorem 3.3 (Theorem 4.2) 

indicates  ˆ
r k  is MSE superior to ˆ

diff . Theorem 3.5 and 4.3 are not applicable since the 

difference between the covariance matrices of  ˆ k  and  ˆ
r k

 
is not p.d. when 0.03k  .

  
 

 
Fig. 2: Trace of (a) Covariance and (b) MSE Matrices of Coefficient  

Estimates for 20n  , 4p  , 0.1  , 0.9   
 

 To evaluate the performances of the classical and Newey-West estimators, we 
compared these estimates with the actual values of variances again for 20n  , 4p   

and 0.9  . More specifically, we calculated the standard deviations of the coefficient 

estimates using the real 
2I    (where 0.1  ) and standard errors obtained by the 

classical and Newey-West estimators. The sum of the absolute differences between true 
and estimated standard deviations for 4p   coefficients is used a measure of accuracy. 

Figure 3 demonstrates boxplots obtained for 5000 simulations indicating that standard 
errors calculated using Newey-West estimator yielded smaller differences, thus it is better 
than the classical estimator of variance. This might lead the conclusion that inference 
based on Newey-West estimator of variances can be more appropriate if one uses a 
difference-based estimator especially for small sample size at which differencing may 
cause violating the assumption of independent errors with equal variance.  
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Fig. 3: Boxplots of Sum of the Absolute Differences between the True Standard 

Deviations and Standard Errors when 20n  , 4p  , 0.1  , 0.9   for  

(a) all Estimators (b) only Ridge and Restricted Ridge where NW in the 

Parentheses Indicate Newey-West Estimate 

 

6. EMPIRICAL APPLICATION: HEDONIC PRICING  

OF HOUSING ATTRIBUTES 
 

 To motivate the problem of restricted ridge estimation in partially linear regression 
model, we will fit a partially linear hedonic pricing model of house attributes using the 
data collected by Ho (1995). This data set includes 92 detached homes in the Ottawa area 
that were sold in 1987. The variables are defined as follows: y is the sale price (saleprix) 
of the house (dependent variable), fireplac=1 if the house has a fireplace, garage=1 if the 
house has a garage, luxbath=1 if the house has a luxury appointment, avginc is the 
average neighborhood income, disthwy is the distance to highway, lot area is a 
continuous variable showing the lot size of the property in square feet, usespace is the 
square footage of housing, nrbed is the number of bedrooms. The model aims to explain 
saleprix (response variable) as a function of the remaining variables. Initially, we can 

write in the following pure parametric model which gives the OLS estimates ˆ
OLS  of the 

parameters. 
 

  

0 1 2 3 4

5 6 7 8

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

i i i i

i i i i i

saleprix fireplac garage luxbath avginc

disthwy nrbed usespace lotarea

     

     
  (36) 

 

 For checking multicollinearity among the variables in model (36), we calculated the 

condition number corresponding to the *Z  that is an 92 9  observation matrix consisting 

of the fireplac, garage, luxbath, avginc, disthwy, nrbed, usespace, lotarea in addition to a 

column of ones. The resulting condition number of *Z  is 250.069 which is large and 

consequently *Z  is considered as being “ill-conditioned”.  
 

 An alternative to the pure parametric model given in (36) is the partially linear model 
in (2). Standard scatter plots of the response variable versus other explanatory variables 
indicate that the effect of lotarea on saleprix is likely to be nonlinear, while the effects of 
others variables are roughly linear. In other words, lotarea is very effective on the sale 
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price of the house, but it has no natural parametric specification; therefore, we include a 

nonparametric lot size effect, ( )f lotarea , in our partially linear model given as 
 

  
1 2 3 4

5 6 7

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

i i i i

i i i i i

saleprix fireplac garage luxbath avginc

disthwy nrbed usespace f lotarea

    

     
   (37) 

 

which includes both parametric effects and nonparametric effect. It should be noted that 
we assume here that data have already been ordered according to the lotarea. 
 

 Let Z  denotes the 92 7  matrix of the following regressor variables: fireplac, 

garage, luxbath, avginc, disthwy, nrbed, usespace. Similar to the *Z , Z  is also “ very ill-
conditioned” due to the multicollinearity among the columns. Since classical difference-
based estimates will have large variances in the presence of multicollinearity, we will 
also examine biased estimation techniques discussed in the paper to estimate the 
parametric components in (36).  
 

 Optimal difference sequences for 1   10m   can be found in Yatchew (2003). For this 

study, we used order 5m   and the parametric effect,  , in model (37) is estimated by a 

differencing procedure. We consider the parametric restriction 0R  , where 

 1 10 1 1 10R       as in Akdeniz and A. Duran (2010) for the restricted ridge estimator.  
 

 Table 3 illustrates OLS estimates for the parameters of the benchmark parametric 
model given in (36); classical difference-based, restricted difference-based ridge and 
difference-based ridge estimates for the parameters of the partially linear model given in 
(37). It should be noted that in the specification of the partially linear model, the dummy 
variables enter the linear part of model (1). 
 

Table 3 

Coefficient Estimates of Parameters.  ˆ
r k  and  ˆ k  are Calculated 

using 0.22k   and 0.32k   (in the Parentheses). 

 ˆ
OLS  ˆ

diff   ˆ
r k   ˆ k  

(Intercept) 62.520 -- -- -- 
fireplac 6.428 6.582 6.163 (5.998) 6.721 (6.682) 
garage 13.112 12.140 12.664 (12.703) 12.299 (12.256) 
luxbath 66.426 66.943 62.338 (63.572) 62.589 (63.886) 
avginc 0.607 0.646 0.669 (0.668) 0.659 (0.655) 

disthwy -11.171 -12.661 -11.734 (-11.797) -12.142 (-12.298) 
nrbed 3.688 3.368 4.565 (4.425) 4.162 (3.929) 

usespace 26.691 30.159 27.942 (28.468) 28.175 (28.759) 
lotarea 0.730 -- -- -- 

 

 The plots constructed for two cases: under the independent errors with constant 
variance assumption (Figure 4a) and more general assumptions on the errors allowing 
heteroscedasticity and dependence (Figure 4b). For the latter case, Newey-West 
covariance estimator is utilized for standard error calculations. Figure 4 (a) indicates that 
the minimum sMSE achieved at k=0.32 (k=0.22) for independent (dependent) error 
setting. All estimates demonstrate that sale price is positively correlated with all 
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covariates except for distance to highway. In this section, we can note from our theorems 

that the comparison result depend on the unknown parameters   and 2 . Since they are 

unknown, we replaced them by ˆ
diff  and 2ˆ

diff , respectively. The trace of the MSEM for 

a given estimator, called scalar MSE, is calculated and denoted by sMSE in the tables.  
 

 It can be seen in Table 4 that the OLS estimates of the parametric model provides 
larger sMSE estimate than the classical difference-based estimates for the partially linear 
model parameters meaning that the latter has a better performance. In general, we can see 
that OLS estimator performs the worst among all estimators in terms of the scalar MSE. 

One may also see in Table 4 that the restricted difference-based ridge estimator  ˆ
r k  

has smaller sMSE values than the ones from difference-based ridge estimator  ˆ k . 

Therefore, by choosing the proper prior information,  ˆ
r k  may always outperform 

 ˆ k . To assess the significance of the covariates, the standard errors calculated using 

classical and Newey-West estimates of covariance and reported in Table 4.  
 

 Under the independent error assumption, all methods found presence of luxurious 
bath significant while both difference-based ridge methods also declared average 
neighbor income as an important variable. All difference-based methods identified these 
two variables along with garage and square footage of usable space under the dependent 
error assumption while yielding much smaller sMSE values compared to the ones 
obtained with dependent error assumption. In general, since difference-based estimators 
introduce a dependence structure among errors due to the differencing (especially for 
small m), considering heteroscedastic and autocorrelated errors might be beneficial.  
 
 

Table 4 

Standard Errors for Coefficients, Estimated Variance  

and sMSE Values of Parameters 

 
0.32k   0.22k   

ˆ
OLS  ˆ

diff   ˆ
r k   ˆ k  ˆ

OLS  ˆ
diff   ˆ

r k   ˆ k  

(Intercept) 19.081
*
 -- -- -- 16.291

*
 -- -- -- 

fireplac 6.466 7.010 6.594 6.534 5.936 7.354 6.921 7.187 
garage 5.371 5.764 5.561 5.528 4.246

*
 4.098

*
 3.977

*
 4.019

*
 

luxbath 11.231
*
 11.613

*
 10.818

*
 10.085

*
 7.213

*
 7.161

*
 6.867

*
 6.831

*
 

avginc 0.239 0.251 0.248
*
 0.248

*
 0.184

*
 0.179

*
 0.175

*
 0.178

*
 

disthwy 5.711 6.008 5.784 5.769 5.769 6.738 6.561 6.659 
nrbed 5.226 5.499 5.196 5.117 4.411 5.019 4.797 4.919 

usespace 11.765 12.821 11.708 10.706 12.110 10.948
*
 10.294

*
 10.285

*
 

lotarea 2.336 -- -- -- 1.586 -- -- -- 

sMSE 764.720 448.002 412.649 419.277 572.607 312.630 294.574 300.587 
tr(Var(b)) 764.720 448.002 389.039 395.433 572.607 312.630 282.918 288.812 

*
 indicates significance at 1% level. 

 
 To further explore the performances of restricted difference-based ridge and ridge 
estimators for different values of biasing parameter, k, and make a connection between 
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empirical and theoretical results derived earlier, we constructed the Figure 4. From Figure 

4(a), one can see that the  ˆ
r k  outperforms the  ˆ k  for all values of k. However since 

     ˆ ˆ
rCov k Cov k    is not a p.d. matrix (i.e. 1

max[ ( )] 1S B SB   ) for  0,1k  , 

we cannot apply Theorem 3.5. On the other hand since both     ˆ ˆ
diffCov Cov k  

 
and 

    ˆ ˆ
diff rCov Cov k    are p.d. matrices for all 0k  , Theorem 3.1 and Theorem 3.3 

are applicable. These theorems indicates that the conditions (17) and (22) are satisfied for 
difference-based ridge with 0<k<0.74 and restricted difference-based ridge with 

0 0.79k  . These results are also supported by sMSE plots in Figure 4(a). Similar 

arguments are hold for Figure 4(b).  
 

 

Fig. 4: Estimated MSE Values of  ˆ
r k  and  ˆ k  (a) under the Assumptions  

of Independent Errors with Constant Variance (b) Dependent Errors  

with Non-Constant Variance for Different Values of k.  
 

7. CONCLUSIONS 
 

 In this paper, we focus on biased estimators for estimating the parametric component 
of the partially linear regression model with multicollinearity and correlated and 

uncorrelated random errors. We consider difference-based ridge,  ˆ k  and restricted 

ridge,  ˆ
r k , estimators for the partially linear model. The bias and mean square error 

matrix  MSEM  expressions of the estimators are given. The theoretical properties of 

the  ˆ k  and  ˆ
r k  are discussed and their performances over the difference-based 

estimator, ˆ
diff , in terms of MSEM criterion are investigated. A real data example and a 

simulation study have been provided to evaluate the performance of these estimators 
based on the MSEM criterion. It is evident from the real data example and simulation 
results that the difference-based ridge estimators work well for the partially linear 
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regression model under multicollinearity and our estimators are meaningful in practice. It 
is also shown that Newey-West estimator of variances can be more appropriate if one 
uses a difference-based estimator since differencing may cause violating the assumption 
of independent errors with equal variance especially when the sample size is small.  
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