
© 2015 Pakistan Journal of Statistics 121 

Pak. J. Statist. 

2015 Vol. 31(3), 121-134 

 

MIXED MODEL APPROACHES FOR DETECTING INFLUENTIAL 

OBSERVATIONS IN GENETIC DATA ANALYSIS 

 

Yousaf Hayat
1§

, Jian Yang
2
 and Jun Zhu

3
 

1 
Department of Mathematics, Statistics and Computer Science 

The University of Agriculture, Peshawar, Pakistan. 
2 

Queensland Brain Institute, The University of Queensland, Australia 
3 

Key Laboratory of Crop Germplasm Resource of Zhejiang Province, 

Institute of Bioinformatics, Zhejiang University, Hangzhou,  

Zhejiang 310058, China. 
§ Corresponding author: yhayat@aup.edu.pk 

 

ABSTRACT 
 

 Influence diagnostics for detection of influential data points are widely used in 

statistical modeling to gauge out their impact on various aspect of the analysis. We 

proposed a method for detection of influential observations in mixed linear model using 

MINQUE (1) for estimation of variance components and linear unbiased prediction 

(LUP) for prediction of random effects. The method is based on the analogue of the Cook 

distance statistics for detection of influential observations affecting both the fixed and 

random components of a mixed linear model. The method is illustrated with both 

simulated and the real data sets based on an experimental model for genetic analysis.  
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1. INTRODUCTION 
 

 Genetic analysis is often conducted to assess the effect of different genotypes across 

diverse locations and several years. These assist growers and plant breeders in selecting 

suitable genotypes (Yan and Rajcan, 2003). The genotype effects can be further 

partitioned into various genetics effects and their interaction with environments  

(Zhu, 1994). In such trials, researchers are often interested to study the main effects of 

different genotypes as well as their interaction with specific environments. Mixed linear 

models are often applied to cope with a situation, which can handle factors both of the 

fixed and random effects involved in the experiments. Generally, it is impractical to make 

perfect measurements in the agricultural experiments because the complex traits with 

continuous phenotypic variation may depend on variations of different genotypes, 

environmental and genotype  environment interaction effects. Therefore, some 

measurement noise associated with each data point may exist and it is therefore important 

for the data analyst to have prior knowledge of these data points which exhibit unusually 

large influence on the results of the analysis and their subsequent interpretation 

(Öfversten, 1998). In reality, this problem is almost arises if there exist anomalous 

observations in a data set (Öfversten, 1998; Hayat et al., 2007). Such cases may be 
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assessed as either being appropriate and remain in the analysis, or may indicate 

inappropriate data and be eliminated from the analysis, or may advocate that the current 

modeling scheme is inadequate, or else may show a data reading or recording error 

(Christensen et al., 1992). Thus, the identification of these data points is necessary before 

any valid inferences about the characteristics of the model can be drawn which can be 

overcome with the help of influence diagnostic analysis.  
 

 Influence diagnostics methods that evaluate the fit of a linear regression model have 

been well established (Cook, 1977; Belsley et al., 1980; Cook and Weisberg, 1982) and 

are available in most of the statistical software like SAS, SPSS, BMDP and Minitab. 

Interest in mixed model diagnostics has grown recently for the detection of outliers and 

influential observations (Christensen et al., 1992; Demidenko and Stukel, 2005; 

Cavanaugh and Shang, 2005; Nobre and Singer, 2011; Turkan and Toktamış, 2012; Mun 

and Lindstrom, 2013) but a related problem that has received less attention is the 

detection of influential observations to variety performance trials and other experiments 

of biological importance (like genetic models), in particular. Zewotir and Galpin (2005) 

developed influence statistics for mixed linear models based on basic building blocks and 

upgrading formula with no iterative procedure for deletion of observations. We applied 

the analogue of Cook‟s distance statistics (Zewotir and Galpin, 2005) for detecting 

influential data points in the experimental model using the framework of LUP via 

MINQUE (1) (Zhu and Weir, 1994a, b). The method is illustrated by means of 

simulations, and real data set was analyzed to address the effect of influential 

observations in agricultural trials. In addition, the results of simulation are compared with 

the best linear unbiased prediction (BLUP) via restricted maximum likelihood (REML).  

 

2. METHODOLOGY 
 

Description of Mixed Linear Model 

 Most of the design models in terms of mixed linear model can be expressed in a 

general form  
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where y  is the ( 1)n
 
vector of phenotype values; b  is a ( 1)p  vector of fixed effect 

with known design matrix X  of order ( )n p ; uU
 
is ( )un q

 
known coefficient matrix 

of the u-th random vector ue ( 1,2..., )u r
 
and 1r nU I   related to the ( 1)n  vector of 

random error 1re e  ; each ue  is the ( 1)uq   vector of the u-th random factor and

 2~ 0,
uu u qe N I ; and  2~ 0,e N I  . For random effects vector e , it can also be 

written that ~ (0, )e N D . Where D  is the block diagonal matrix with 
thu  block being 

uu qI , for 2
u u    which indicates that the vectors of random components are 

independent. 
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 Considering (1), the fitted values for response y
 
can be written as: ˆˆ ˆy Xb Ue  , 

yielding the residuals ˆ ˆe y y   ; where b̂  is the generalized least square (GLS) estimate 

of the fixed effects vector  
1

1 1T Tb X V X X V y


  . The symmetric matrix, 

 
1

1 1 1 1T TQ V V X X V X X V


    
 

is the projection matrix of order ( )n n  which 

transform the observed phenotypic values into residuals (Zhu, 1997), that is: 2ê Qy  
 

(using BLUP for prediction), so that,  4ˆ ~ 0,e N Q  , and thus  4ˆ ~ 0,
i iie N Q  , for

( 1,  2, ..., )i n , where iiQ  shows the main diagonal element of matrix Q .  
 

 The linear unbiased prediction (LUP) method uses the following equations to predict 

the random residuals: 
 

  ( )
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where, P Q VQ  . The matrices V  
and Q  

could be obtained by using the following 

equations: 
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 From (2), it is evident that  2
( )

ˆ ~ 0,LUPe N P   
and  2

( )
ˆ ~ 0,

i LUP iie N P  , Pii  being 

the main diagonal elements of matrix P . In case of MINQUE (1), V  and Q  
can be 

reduced to the following expressions (Zhu and Weir, 1996); 
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 One of the commonly used methods in plant and animal breeding experiments for 

prediction of random effects of a mixed linear model is known as BLUP (Henderson, 

1948). Kackar and Harville (1981) determined that BLUP provide unbiased estimates 

when the estimates of variances are used in place of actual values (as is usually the case), 

although they are not guaranteed to be the best of all unbiased linear estimators (Lynch 

and Walsh, 1998). For known variance components, BLUP uses the following equation 

for predicting the random components of a mixed linear model:  
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2 1 2ˆˆ T T
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where 
2  in the bracket describe the fact that BLUP uses known variances; however in 

case of unknown variance components, their estimates can be used instead, which can be 

expressed as: 
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 So the corresponding random effect vector for residuals can be expressed as 
 

   2

2

ˆ
ˆˆ ˆ ˆ

BLUPe e Qy 
    (as  identity matrix of order T

nU I n   )  

 

where, the definition of Q̂  and V̂  is same like those explained above and can be 

obtained as: 
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 While using BLUP for prediction of random effect, restricted maximum likelihood 

method (REML) (Patterson and Thompson, 1971) was used for estimating the variance 

components of a mixed linear model. REML method uses the following equation for 

estimating the variance components: 
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 In case of balanced data, REML provides identical estimates of variance components 

to that of ANOVA, and is preferred for large data set (Lynch and Walsh, 1998).  
 

Experimental Model  

 We considered a general genetic experiment in a randomized complete block design 

with „ g ‟ genotypes  hG , „ y ‟ years  iY , „ l ‟ locations  jL  and „ b ‟ blocks  ( )k ijB  

of each genotype within each year and location. Let hijky  be the phenotypic value of the 

thh  genotype, 
thi  year; thj  location and 

thk  block within each year and location, which 

can thus be expressed by the following linear model 
 

  

( )

1,2,..., ;  1,2,..., ;  1,2,..., ;  1,2,...,

hijk h i hi j hj ij k ij hijky G Y GY L GL YL B

h g i y j l k b

         

   
       (3) 

 

 For simplicity of exposition and computations, the higher-order interaction 

( )G L Y   was ignored. In model (3) only the population mean ( )  and the genotype 

effect  hG  were considered fixed while all other effects were considered as random. 

Equation (3) can be expressed by the following matrix notation of a mixed linear model 
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 Equation (4) has the same mathematical structure as (1) with usual assumptions of 

normality of all the random terms but we have considered (2) when the studentized 

residuals were of particular interest. 

 

Influence Functions 

 In linear regression, the influence diagnostic of Cook (Cook, 1977) i.e. Cook‟s 

distance is based on the case deletion and measure the effect of deleting an observation 

on the estimated regression coefficient and the fitted values without iteration because of 

the availability of its closed form upgrading formula (Beckman and Trussell, 1974; 

Miller, 1974). However, the analogue of the Cook distance statistics (Zewotir and Galpin, 

2005) were adopted to measure the influence of each deleted observations on the fixed as 

well as random effects of a mixed linear model (4) in the framework of LUP via 

MINQUE (1), in the present study. 
 

 The analogue of Cook‟s distance (Zewotir and Galpin, 2005) which measure the 

effect of deleted observations on the estimation of fixed effects, denoted by ( )iCD b , can 

be expressed as 
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  2ˆ ˆˆ ,  ( 1,2,.., )ii
ii i iiv Q t Q p i n           (5) 

 

where, ˆ iiv  indicates the main diagonal elements of matrix 
1V 

 computed by MINQUE 

(1), ˆ
iiQ  is the main diagonal element of the (1)Q  matrix; p  shows the number of 

parameters to be estimated; and it  is the studentized residual computed by:  
 

  ˆ
i i iit e P                    (6) 

 

 It follows a t-distribution with | |df n rank XU   (SAS, 1999). A large value of 

( ) ( 1,2,..., )iCD b i n  will indicate that a particular observation is influential. However, 

in case of BLUP via REML the following expression was used to compute the 

studentized residuals: 
 

  

2 ˆˆ ˆ ~ ( 1)
ii iiiit e Q t n p                   (7) 

 

 Similarly, analogue of the Cook‟s distance for the influence of predicted random 

effects can be defined as 
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where it  
is the studentized residual obtained by using (6), and  ˆ ( 1,2,..., )issq Q i n  is 

the sum of squares of the elements of the 
thi  column of (1)Q  matrix. Any large value of 
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( )iCD e  for the 
thi  observation will indicate that the observation is influential (Zewotir 

and Galpin, 2005). 
 

 Furthermore, we calculate the P-value of each observation from its corresponding  

t-value and define an observation as outlier if it is significant at 5% level of significance. 

In addition, cutoffP  is calculated by the FDR method (Benjamini and Hochberg, 1995) to 

control the false positives. 

 

3. RESULTS 
 

3.1 Simulations 

 In this section, two examples are considered which are based on 200 simulations with 

different perturbation schemes to illustrate the detection ability of these influence 

functions.  
 

 An experimental model (4) for balanced data was considered to meet the required 

objectives of the study. Given the known values of variance components for random 

effects 2 ( 1,2,..., 1)u u r    and the true values of fixed effects (genotypes), 200 data sets 

were simulated using a program written in C++ programming language. To obtain the 

values of X  and U  matrices, a real data set was considered to generate the random 

values from stochastic residuals e  
and the random components ue , and thus the 

phenotypic values ( ) y  were obtained. In generating the data set, it was assumed that all 

the random factors are independent and each of the random factors follows a normal 

distribution i.e.  2~ 0,u ue N  . While simulating the data, two cases were considered  

for understanding the detection of influential data points. In the first case (case 1),  

the following assumptions were taken about the distribution of the random factors  

i.e. ~ (0,3.0)Ye N ; ~ (0,2.0)Le N ; ~ (0,3.5)GYe N ; ~ (0,2.5)GLe N ; ~ (0,3.75)YLe N ; 

( )
~ (0,3.0)

YLBe N  and ~ (0,1.0)e N .  

 

 At each replicate of 200 simulated data sets, the response vector at case number 100 

was incremented by a number 5, to make it aberrant. In the second case (case 2), we 

considered the same sets of fixed and random effects with the same parameter values but 

two aberrant cases were introduced at case number 100 and 300, respectively with 

identical magnitude as defined for case 1. In these simulations, each data set contained a 

total of 450 observations, consisting of 10 genotypes and 5 locations with in each of the 

three years, in addition to 3 blocks for each of the genotype within locations and years. 

We did not change the factors level of any of the fixed genotypic effects and that of the 

random factors involved in model (4) to assume that there is no outlier (leverage) in the 

fixed and random spaces (factor space), during all the simulations. 
 

 Fig. 1 indicates the index plot of ( )CD b  and (e)CD  for the 200 simulated data sets 

(case 1). It turned out that the case number 100 is highly influential in affecting both the 

fixed genotypic and random predicted effects. To check the effectiveness of our approach 

for detection of influential observations we compared it with those of Zewotir and Galpin 

(2005). Compared to Fig. 2b, our approach (Fig. 2a) exhibits a good agreement with both 
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the influence statistics used for detection of influential observation for the influence of 

fixed as well as the random effects, respectively. In approximation, both the methods 

have the same detection ability and almost the same trends for detecting influential data 

points.  
 

 Fig. 2 illustrates the index plot of Cook‟s distance statistics for 200 simulated data 

sets, for case 2. Both the analogue of Cook‟s distance statistics can effectively detect that 

the data points at case number 100 and 300 are influential in affecting both the fixed 

genotypic effects and the predicted random components of model (4). Our approach  

(Fig. 2a) has a nice resemblance and in agreement with Zewotir and Galpin approach 

(Fig. 2b).  

 

3.2 Worked Example  

 In this section, the experimental data of real experiments of rice yield available in the 

software QGA Station (Chen and Zhu, 2003) is considered for illustration. The data set 

has a balanced structure with 5 genotypes tested within four locations over two years in a 

randomized complete block design (RCBD) with three replications. It consists of a total 

of 120 observations with a minimum phenotype value of 9.6 and a maximum of 75.6. The 

genotypic effect was considered fixed while all other factors were taken as random. To 

demonstrate the procedure, we considered model (4) and the data were analyzed in the 

framework of a mixed linear model for obtaining the analogue of Cook‟s distance 

statistics and other required statistical quantities.  
 

 The diagnostics plots for screening of influential data points affecting the fixed as 

well as random effects by using the analogues of Cook‟s distance statistics for 

experimental data of rice yield are shown in Fig. 3, for both the methods. Fig. 3a 

demonstrates that there exists only one data point at case number 100 which is highly 

influential in affecting both of the fixed and random effects, and the same was detected 

by the other method (Fig. 3b). Except the case number 100, some other data points at 

case numbers 102 and 113 were also detected as influential but showed lower peaks as 

compared to the case number 100.  
 

 To further investigate the data point at case number 100, we referred to the original 

data set. This case number belongs to the data point (5, 1, 2, 1) of model (4) i.e. genotype 

5, year 1, location 2 and replication 1. The yield for genotype 5 in all the three replicates 

of the same year 1 and location 2 were 71.5, 47.6 and 55.4. This indicates that  

the difference between genotype mean  5...y
 
and the grand mean  ....y

 
could be more 

substantial and thus having a more profound impact on the estimates of variance 

components as well as the fixed genotypic effects, in addition to the predicted random 

effects. In a similar way, the case numbers 102 and 113 correspond to the data points  

(5, 1, 2, 3) and (5, 2, 2, 2), respectively, also showed high peaks to both the influence 

functions demonstrating to be influential data points. The data point at case number 102 

corresponds to the 3
rd

 replication of the same genotype 5, year 1 and location 2, whereas 

the data point (5, 2, 2, 2) corresponds to case number 113 indicating the same 5
th

 

genotype, in the 2
nd

 location and year 2 (Table 1).  
 

 How could these data points affect the results of the analysis? We performed the case 

deletion diagnostics and the variance components of residuals (only) for the case deleted 
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data sets were obtained (Fig. 4). It revealed that the deletion of case number 100 is 

associated with a drastic decrease in the residuals variance; whilst the effects of the other 

two cases was small as compared to case number 100, in the reduction of residual 

variance. The estimates of variance components for deleting the data of case number(s) 

100; 102 and 103; 100, 102 and 103; all influential data points and outliers (Table 1); and 

that of the full data are listed in Table 2. The results illustrate that much improved 

estimates of variance components and particularly that of residuals can be obtained in the 

absence of influential observations and outliers. However, the net reduction in residual 

variance due to case number 102 and 113 was not too high as compared to only the case 

number 100, and the same was further clarified by the studentized residuals that the case 

number 100 is the most influential observation and a clear outlier  0.01p   (results not 

shown).  

 

4. DISCUSSION, RECOMMENDATION AND CONCLUSIONS 
 

 In linear regression, the influence diagnostics for influence on the estimates of model 

parameters and their underlying assumptions are based on modification of the response 

and explanatory variables (Thomas, 1990). We considered small perturbations in 

response by using MINQUE (1) and LUP as tools for estimation of variance components 

and prediction of random effects, respectively. Monte Carlo simulations showed that the 

influence functions in the above defined framework works well in identifying the 

influential data points and has the same detection ability when BLUP was used for 

prediction of random effects via REML (Figs. 1-2). Zewotir and Galpin (2006) applied a 

series of simulations, and in each iterated simulated data they considered the double of 

the maximum response value to make it anomalous, which was not adopted in the present 

study. We considered only a fixed data point for a specified case number (without regard 

to their being a minimum or maximum) of a response and a very small positive quantity 

was added to make it aberrant.  
 

 The main feature of the present study was to check the performance of the proposed 

method and to make plant breeders aware of the fact that the estimates of parameters in 

the mixed linear model could be affected due to small change in the phenotype data. 

Monte Carlo simulations reveal that our approach works well in identifying unusual data 

points, if present, in the phenotype data. The simplicity of our approach is that it uses the 

method of MINQUE (1) for estimation of variance components and LUP for prediction 

of random factors (Zhu and Weir, 1994a, b). The advantageous feature of MINQUE (1) 

method is that of unbiased and efficient estimation of variance components of the random 

factors with less computational time as compared to the REML method. MINQUE (1) is 

a non-iterative method but the REML needs iteration for estimation of variance 

components, and in some cases it is not possible to converge (Zhu, 1992). It was 

observed that any small change in the phenotype data can made it aberrant and hence was 

detected by both the methods as influential.  
 

 In plant breeding, evaluation of different genotypes in multi-location trials is one of 

the crucial steps to select suitable cultivars for improved yield production to find for each 

environment the genotype that is best adapted (Yan and Rajcan, 2003). Extensive 

experimentation may sometimes lead to erroneous or otherwise abnormal data 

(Öfversten, 1998) where mixed models and the likelihood methods are not robust in the 
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presence of these data points (Christenson et al., 1992; Haslett, 1999). In the worked 

example of rice yield data, we observed three influential observations (Fig. 3) with 

considerably larger influence on the estimates of various parameters (Fig. 4, Table 2). 

The imperative feature of these atypical observations is that all these observations 

(influential data points as well as outliers) were associated with the 5
th

 genotype and more 

frequently in the 2
nd

 location. We are not well aware of other basic steps in collecting 

these observations; however, one possible reason might be that this particular genotype 

would be more sensitive (or stable) at location 2 and thus the methods show it as the most 

influential or else its measurement could be a result of some sort of random error or data 

entry error. Another possible reason could be the complexity of the response of a 

genotype to a particular location, which must depend upon the effects of the total 

seasonal pattern to which a genotype has been subjected or a year may have a general 

period of some sort of stress, stresses at different sites with regard to that particular 

genotype at different periods in the life cycle of the plants (Hanson, 1964). In general, 

examining the data may help us to identify the steps in the field work that are particularly 

exposed to inaccuracies and errors and, consequently, to improve the entire testing 

process (Öfversten, 1998).  
 

 Mixed linear models are commonly used in determining sampling designs, quality 

control procedures and statistical genetics (Christensen et al., 1992). Statistical genetics 

as an active area of research for the inheritance of complex traits, most of the data sets 

restrain outliers and influential observations that can seriously affect the estimates of 

genetic variances of variable effects (additive, dominance and epistasis), prediction  

of random effects (breeding values) and various tests involved. In the present study,  

we have considered a general genetic model but the method can be easily extended  

to more complex genetic models like additive dominance (AD) model, additive 

dominance maternal (ADM) model, diploid plant seeds model, triploid endosperm model 

(Zhu, 1992, 1997; Zhu and Weir, 1994a, b) and that of QTL mapping model (Yang et al., 

2007). It is important to mention that the current method have been applied for the 

influence of outliers on QTL mapping for complex traits, providing the evidence of 

additional QTLs and epistatic loci effecting the 1stBrain and the endbrains-OB in a cross 

of BAD mouse population, and reveal a remarkable increase in estimating heritability of 

QTL in the absence of influential observations and outliers (Hayat et al., 2008). 
 

 Apart from the analogue of Cook‟s distance statistic  ( )iCD b , some other influence 

diagnostic statistics like variance ratio (VR), Andrew-Region (AP) statistic and  

Cook-Weisberg statistic (COW) are also used for identifying outliers and influential 

cases affecting the fixed effects of a mixed linear model (results not reported). Analogue 

of these influence statistics (Zewotir and Galpin, 2005) can be easily applied in mixed 

linear model for identification of aberrant cases. The analogue of VR measures the 

change in the determinant of the variance-covariance matrix of the fixed effect 

parameters estimates ̂  when the i-th case ( 1,2,..., )i n  is deleted. The analogue of AP 

statistic measures the influence of i-th observation ( 1,2,..., )i n on the fit of the data. 

Similarly, the analogue of the Cook-Weisberg statistic measure the change of the 

confidence ellipsoid volume of fixed effect parameters estimates (Zewotir and Galpin, 
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2005). All these influence statistics also detected the same points as influential which 

were detected by using the analogue of Cook‟s distance statistic  ( )iCD b .  
 

 Therefore, it is suggested that when performing any sort of agricultural trials, it is 

necessary to perform a thorough data quality check by searching the data set for possible 

outliers and influential data points so that a correct interpretation of the genetic 

phenomena can be carried out. It is worth mentioning that the methods can be easily 

affected by the well-known masking and swamping effects. However, in real data 

analysis it is suggested to perform influence diagnostic analysis as the prerequisite 

requirements so that the effects of unusual observations on the estimates of various 

parameters of a genetic model can be minimized, to ensure efficient and unbiased 

estimates of the model parameters. 
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Table 1 

Summary Statistics of Outliers and Influential Data Points  

for Rice Yield Data 

Case No. Data point
+
 ti

‡ 
P-value 

100 (5, 1, 2, 1) 3.574 0.0006
** 

102 (5, 1, 2, 3) 2.615 0.0108
**

 

110 (5,2, 1, 2) 1.995 0.0496
*
 

113 (5, 2, 2, 2) -2.678 0.0091
**

 

114 (5, 2, 2, 3) -2.051 0.0437
*
 

+ 
the numbers in brackets (h, i, j, k) correspondingly shows the h-th genotype,  

i-th year, j-th location and k-th replication, respectively;
 ‡

 Studentized residual;  

** significant at Pcuttof = 0 .011304; * significant at P < 0.05. 

 

 

Table 2 

MINQUE (1) Estimates of Variance Components  

for Random Effects of the Rice Yield 

Parameter Full Data a b c d 

Year 87.62 93.90 95.82 103.38 102.73 

Loc 85.60 77.50 83.87 70.19 74.18 

Gen*Year 7.25 5.74 5.41 5.53 5.67 

Gen*Loc 10.95 12.88 12.04 16.17 16.68 

Year*Loc 24.63 28.48 26.46 32.81 32.32 

B(Year*Loc) 12.75 9.83 18.95 15.82 16.35 

Residual 42.63 36.88 35.95 28.06 25.96 

“a”: datum of case number 100 was deleted; “b”: data points at case number 102 

and 113 were deleted; “c”: deletion of all the data points i.e. at case number 100, 

102 and 113; “d”: deletion of all data points with case numbers listed in Table 1. 
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Fig. 1: Index plot of influence diagnostics functions i.e. the analogues of Cook‟s  

distance (CD(b) and CD(e)) for influence on the fixed effects and prediction of 

random effects, respectively for the simulated data (Case 1) using (a) MINQUE 

(1) for estimation of variance components and LUP for prediction of random 

effects (b) REML for estimation of variance components and BLUP for 

prediction of random effects.  

 

 
Fig. 2: Index plot of influence diagnostics functions i.e. the analogues of Cook‟s 

distance (CD(b) and CD(e)) for influence on the fixed effects and prediction 

of random effects, respectively for the simulated data (Case 2) using  

(a) LUP via MINQUE (1) (b) BLUP via REML. 
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Fig. 3: Index plot of influence diagnostics functions i.e. the analogues of  

Cook‟s distance (CD(b) and CD(e)) for influence on the fixed effects  

and prediction of random effects, respectively for the rice yield data  

using (a) LUP via MINQUE (1) (b) BLUP via REML. 

 

 

 
 

Fig. 4: The index plot for the estimates of residuals variance for stepwise  

deleted observations of the rice yield data set by using MINQUE (1)  
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